JPS62211860A - Nickel positive plate for alkaline storage battery - Google Patents

Nickel positive plate for alkaline storage battery

Info

Publication number
JPS62211860A
JPS62211860A JP61055813A JP5581386A JPS62211860A JP S62211860 A JPS62211860 A JP S62211860A JP 61055813 A JP61055813 A JP 61055813A JP 5581386 A JP5581386 A JP 5581386A JP S62211860 A JPS62211860 A JP S62211860A
Authority
JP
Japan
Prior art keywords
nickel
active material
discharge
positive electrode
electrode plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61055813A
Other languages
Japanese (ja)
Other versions
JPH0656762B2 (en
Inventor
Masayuki Yoshimura
公志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP61055813A priority Critical patent/JPH0656762B2/en
Publication of JPS62211860A publication Critical patent/JPS62211860A/en
Publication of JPH0656762B2 publication Critical patent/JPH0656762B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/32Nickel oxide or hydroxide electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase very high rate discharge performance by forming a nickel oxide layer having a specified mean thickness on the surface of a nickel porous body, and containing a cobalt compound which does not form a solid solution with nickel hydroxide in the active material. CONSTITUTION:A porous sintered nickel substrate obtained by sintering carbonyl nickel powder in a reducing atmosphere is heated in an atmosphere of the air to form a nickel oxide layer having a mean thickness of 5-70Angstrom thereon. A cobalt compound which does not form a solid solution with nickel hydroxide which is a positive active material is contained in the active material. This active material is filled in the sintered substrate to form a nickel positive plate for an alkaline storage battery. By the synergistic effect, the dependency of active material utility and discharge voltage on the discharge rate is decreased. Since the performance drop in very high rate discharge is reduced, the battery is useful for the power source of a power tool or the like.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、超高率放電における特性が非常に良好であり
、またサイクルの進行に伴なう性能低下がほとんど起き
ない高性能のアルカリ蓄電池用ニッケル正極板に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to a high-performance nickel-based alkaline storage battery that has very good characteristics in ultra-high rate discharge and exhibits almost no performance deterioration as the cycle progresses. This relates to the positive electrode plate.

従来の技術 従来、アルカリ蓄電池に用いられるニッケル正極板の多
くは、カーボニルニッケル粉末を還元雰囲気下で焼結し
た多孔性のニッケル焼結基板にニッケル塩を主成分とす
る酸性溶液を含浸し、濃縮後、熱アルカリ溶液に浸漬し
て、ニッケル基板の孔中に水酸化ニッケルを主成分とす
る正極活物質を充填するという方法によって作製されて
いる。
Conventional technology Conventionally, most nickel positive electrode plates used in alkaline storage batteries are made by impregnating a porous nickel sintered substrate made by sintering carbonyl nickel powder in a reducing atmosphere with an acidic solution mainly composed of nickel salts, and then concentrating it. The nickel substrate is then immersed in a hot alkaline solution to fill the pores of the nickel substrate with a positive electrode active material whose main component is nickel hydroxide.

また最近、ニッケル正極板の性能改良について2つのこ
とが提案されている。その1つは、正極活物質中に水酸
化ニッケルと固溶体を形成しないコバルト化合物を含有
させることである。この方法によると放電時の活物質利
用率を従来のものより10〜15%程度高くすることが
可能である。例えば、従来の正極板ではIOA放電の活
物質利用率が約70〜80%であったのに対し、前記の
改良法では約85〜90%になるため正極板の高容量化
に有利である。もう1つは、ニッケル焼結体の表面にニ
ッケル酸化物の層を形成させることである。例えば、ニ
ッケル酸化物の層を形成していないニッケル焼結基板を
用い、化学含浸法によって活物質を充填した場合、酸性
の含浸液によってニッケル焼結体がm食されて、極板の
機械的強度が低下する。
Recently, two methods have been proposed to improve the performance of nickel positive electrode plates. One of them is to include a cobalt compound that does not form a solid solution with nickel hydroxide in the positive electrode active material. According to this method, it is possible to increase the active material utilization rate during discharge by about 10 to 15% compared to the conventional method. For example, in the conventional positive electrode plate, the active material utilization rate for IOA discharge was about 70 to 80%, whereas in the above-mentioned improved method, it was about 85 to 90%, which is advantageous for increasing the capacity of the positive electrode plate. . The other method is to form a nickel oxide layer on the surface of the nickel sintered body. For example, when a nickel sintered substrate without a nickel oxide layer is used and the active material is filled by chemical impregnation, the nickel sintered body is eaten away by the acidic impregnating liquid, causing mechanical damage to the electrode plate. Strength decreases.

しかし、前記改良技術に基づきニッケル焼結体の表面に
ニッケル酸化物の層を形成した場合は、前記した如きニ
ッケル焼結体の腐食を防ぐことが可能である。
However, if a layer of nickel oxide is formed on the surface of the nickel sintered body based on the improved technique described above, it is possible to prevent the corrosion of the nickel sintered body as described above.

発明が解決しようとする問題点 以上の改良がなされた結果、最近のニッケル正極板は従
来のものに比べその性能が向上しているものの、このと
ころ雪皿が急増している電動工具の動力源として用いる
場合のような超高率放電用としてはまだ性能的に不充分
である。例えば、電動工具の用途では、アルカリ蓄電池
の放電々流が3OCA程度を必要とする。このような条
件では前記した如き改良がなされた最近のニッケル正極
板であっても放電時の分極が相当大きくなり、蓄電池の
端子電圧が大きく低下する。また活物質利用率も同様で
ある。
As a result of improvements that go beyond the problems that the invention aims to solve, the performance of recent nickel positive electrode plates has improved compared to conventional ones. The performance is still insufficient for ultra-high rate discharge such as when used as a battery. For example, for use in power tools, an alkaline storage battery requires a discharge current of about 3 OCA. Under such conditions, even with the recent improved nickel positive electrode plates as described above, polarization during discharge becomes considerably large, resulting in a significant drop in the terminal voltage of the storage battery. The same applies to the active material utilization rate.

問題点を解決するための手段 本発明は前記のような超高率放電における活物質利用率
と放電4位の低下が非常に小さく、かつ高容抛であるニ
ッケル正極板に関するものであり、その構造としては活
物質中に水酸化ニッケルと固溶体を形成しないコバルト
化合物を含有しており、さらに活物質を保持しているニ
ッケル多孔体の表面に平均厚み5〜70人のニッケル酸
化物の層が存在することを特徴とするものである。
Means for Solving the Problems The present invention relates to a nickel positive electrode plate that has a very small decrease in active material utilization rate and discharge rank in ultra-high rate discharge as described above, and has a high capacity. contains a cobalt compound that does not form a solid solution with nickel hydroxide in the active material, and a layer of nickel oxide with an average thickness of 5 to 70 people exists on the surface of the nickel porous body that holds the active material. It is characterized by this.

作  用 ニッケル正(へ板はカドミウム負極板よりも活物質利用
率の放電レート依存性は小さく良好であるが、先に述べ
たような電動工具などの超高率放電の用途においてはさ
らに良好な放電レート依存性が求められる。これは活物
質利用率だけでなく放電4位についても同様である。
The nickel positive electrode plate is better than the cadmium negative electrode plate because the dependence of the active material utilization on the discharge rate is smaller, but it is even better in ultra-high discharge rate applications such as power tools as mentioned above. Discharge rate dependence is required.This applies not only to the active material utilization rate but also to the fourth discharge rate.

先に述べた2つの改良技術のうち、活物質利用率を向上
させる方法、即ち、水酸化ニッケルと固溶体を形成しな
いコバルト化合物を活物質中に含有させるという方法は
その効果の大きざ故に注目されたが、もう1つのニッケ
ル焼結基板の表面にニッケル酸化物の層を形成すること
は重要視されなかった。その理由は次のようなことのた
めである。化学含浸法によって活物質を充填する場合、
ニッケルを主とする酸性金属塩溶液の含浸、中和、そし
て乾燥といった一連の工程を数回繰返すことを要するが
、製造コストの点でその回数を少なくすることが望まれ
ていた。そのため、従来は故意にニッケル焼結体を腐食
させて活物質化し、活物質の充l1ltはを多くしてい
た。ニッケル焼結体の表面にニッケル酸化物の層を形成
して防食することは、これに逆行することであり、コス
トアップの要因になる。
Of the two improvement techniques mentioned above, the method of improving the active material utilization rate, that is, the method of incorporating a cobalt compound that does not form a solid solution with nickel hydroxide into the active material, is attracting attention because of its large effect. However, no importance was placed on forming a nickel oxide layer on the surface of the other nickel sintered substrate. The reason for this is as follows. When filling the active material by chemical impregnation method,
Although it is necessary to repeat a series of steps such as impregnation with an acidic metal salt solution mainly containing nickel, neutralization, and drying several times, it has been desired to reduce the number of steps from the viewpoint of manufacturing costs. Therefore, in the past, the nickel sintered body was intentionally corroded to become an active material, and the amount of active material was increased. Forming a layer of nickel oxide on the surface of a nickel sintered body to prevent corrosion goes against this and becomes a factor in increasing costs.

本発明者はこの防食についても詳細に検討したところ、
含浸工程でニッケル焼結体の腐食を防ぐことと共に、ニ
ッケル正極板の製造工程が終了した時点、つまりニッケ
ル正極板の構造としてニッケル焼結体表面に存在するニ
ッケル酸化物の厚みがその放電性能に対し、非常に重要
な効果を及ぼすことを見い出した。つまり、ニッケル焼
結体の表面に平均厚み5〜70人のニッケル酸化物の層
を有するニッケル正極板は活物質利用率及び放電4位の
放電レート依存性が小さく非常に良好であり、300△
のようなJf1高率放電での性能低下が小さいことを見
い出した。
The present inventor also studied this corrosion protection in detail, and found that
In addition to preventing corrosion of the nickel sintered body during the impregnation process, the thickness of the nickel oxide present on the surface of the nickel sintered body affects the discharge performance at the end of the nickel positive electrode plate manufacturing process. We found that it has a very important effect. In other words, a nickel positive electrode plate having a layer of nickel oxide with an average thickness of 5 to 70 people on the surface of a nickel sintered body has a very good active material utilization rate and a small dependence on the discharge rate of the fourth discharge, and has a very good 300△
It has been found that the deterioration in performance is small in Jf1 high rate discharge such as.

また上記のニッケル正極板の活物質中に水酸化ニッケル
と固溶体を形成しないコバルト化合物を含有さ往た場合
、相乗的に正極板の放電性能がさらに良好になり、13
高率放電の用途に適していることがわかった。
Furthermore, if the active material of the nickel positive electrode plate does not contain a cobalt compound that does not form a solid solution with nickel hydroxide, the discharge performance of the positive electrode plate will synergistically improve.
It was found that it is suitable for high rate discharge applications.

ニッケル酸化物層の厚みが5人未満あるいは70人を超
える場合は超高率放電の用途に適していない。例えば5
人未満の場合、正極板の初JIJ性能は良好であるが充
放電サイクルの進行に伴ない性能は徐々に低下する。こ
の要因の1つとしては、ニッケル焼結体の活物質化によ
る次のような影警が考えられる。第1に含浸工程で外部
から充填する活物質の組成は通常水酸化ニッケルを主成
分とするニッケル、コバルト及びカドミウムの混合物で
あるが、これはニッケル単独の場合に比べ正極板の充電
効率や放電時の活物質利用率などが良好なためである。
If the thickness of the nickel oxide layer is less than 5 or more than 70, it is not suitable for ultra-high rate discharge applications. For example 5
In the case of less than 100 liters, the initial JIJ performance of the positive electrode plate is good, but the performance gradually deteriorates as the charge/discharge cycle progresses. One of the reasons for this is considered to be the following effects caused by the use of sintered nickel as an active material. First, the composition of the active material filled externally in the impregnation process is usually a mixture of nickel, cobalt, and cadmium, with nickel hydroxide as the main component. This is because the active material utilization rate at the time is good.

ところがニッケル焼結体のIll IQによって生成す
るのは水酸化ニッケルだけである。つまり!11!電体
であるニッケル焼結体と充填した活物質の間に充電効率
や放電時の活物質利用率の低い水酸化ニッケル単独の活
物質の層が生成するため、極板の性能を低下させている
ことが考えられる。
However, only nickel hydroxide is produced by the nickel sintered body Ill IQ. In other words! 11! A layer of active material consisting of nickel hydroxide alone, which has low charging efficiency and low active material utilization during discharging, is formed between the nickel sintered body and the filled active material, which reduces the performance of the electrode plate. It is possible that there are.

また活物質の組成が異なるため、電流分布が不均一にな
ることも考えられる。また第2に集電体であるニッケル
焼結体が減少することによる集電性能の低下である。こ
のような問題点は焼結式正極板に限ったことではなく、
非焼結式も同様である。
Furthermore, since the active materials have different compositions, it is possible that the current distribution becomes non-uniform. The second problem is a decrease in current collection performance due to a decrease in the amount of nickel sintered body serving as a current collector. These problems are not limited to sintered positive electrode plates;
The same applies to the non-sintered type.

一方、ニッケル酸化物層の厚みが70人を超えた正極板
は初期からその放電性能が低下している。
On the other hand, in the case of a positive electrode plate in which the thickness of the nickel oxide layer exceeds 70 mm, the discharge performance deteriorates from the beginning.

この原因の1つとしては、ニッケル酸化物層が厚くなる
と本来絶縁体であるニッケル酸化物の性質が顕著に現わ
れ、活物質と集電体であるニッケル焼結基板との接触抵
抗が大きくなることが考えられる。
One reason for this is that as the nickel oxide layer becomes thicker, the properties of nickel oxide, which is originally an insulator, become more apparent, and the contact resistance between the active material and the nickel sintered substrate, which is the current collector, increases. is possible.

実施例 以下、本発明の実施例及びその効果を従来例と比較して
説明する。
EXAMPLES Hereinafter, examples of the present invention and their effects will be explained in comparison with conventional examples.

実験1 先ず、ニッケル焼結基板として以下に説明する2種類の
ものを用い、そして以下に示す本発明によるニッケル正
極板及び従来のニッケル正極板をそれぞれ作製した。
Experiment 1 First, two types of nickel sintered substrates described below were used, and a nickel positive electrode plate according to the present invention and a conventional nickel positive electrode plate shown below were respectively produced.

カーボニルニッケル粉末をメチルセルロース及び水と混
練してニッケルスラリーとなし、このニッケルスラリー
をニッケルメッキした穿孔鋼板に塗布、乾燥した後、水
蒸気を含む還元雰囲気下900℃で焼結し、ニッケル焼
結基板を作製した。これを基板へとする。さらに基板A
を空気雰囲気下250℃で加熱処理し、ニッケル焼結体
の表面にニッケル酸化物の層を有するニッケル焼結基板
を作製した。これを基板Bとする。なお、基板Bのニッ
ケル酸化物層の平均厚みは約80人であったが、熱処理
の条件を変更することによって酸化物層の厚みを自由に
変えることができる。
Carbonyl nickel powder is kneaded with methyl cellulose and water to form a nickel slurry, and this nickel slurry is applied to a nickel-plated perforated steel plate, dried, and then sintered at 900°C in a reducing atmosphere containing water vapor to form a nickel sintered substrate. Created. Use this as a substrate. Furthermore, board A
was heat-treated at 250° C. in an air atmosphere to produce a nickel sintered substrate having a nickel oxide layer on the surface of the nickel sintered body. This will be referred to as substrate B. Although the average thickness of the nickel oxide layer of substrate B was about 80, the thickness of the oxide layer can be freely changed by changing the heat treatment conditions.

正極板A(従来品) ニッケル、コバルト、カドミウム
の比が95:2:3である各硝酸塩の混合水溶液にニッ
ケル酸化物層を形成していない基板Aを浸漬し、次いで
濃縮、中和を行なうという通常の化学含浸の工程を数回
繰返して作製した。
Positive electrode plate A (conventional product) Substrate A without a nickel oxide layer is immersed in a mixed aqueous solution of nitrates with a ratio of nickel, cobalt, and cadmium of 95:2:3, and then concentrated and neutralized. The conventional chemical impregnation process was repeated several times.

正極板B(従来品) 正極板Aを用い、さらに硝酸コバ
ルト単独の溶液で通常の化学含浸の工程を1回行なって
活物質中に単独の水酸化コバルトを生成させて作製した
Positive electrode plate B (conventional product) Positive electrode plate B was prepared by using positive electrode plate A and further performing a normal chemical impregnation process once with a solution of cobalt nitrate alone to generate individual cobalt hydroxide in the active material.

正極板C(従来品) 正極板Aにおける基板Aの代わり
に平均厚みが80人のニッケル酸化物の層を有する基板
Bを用いた以外は全て正掻板Aと同様の方法で作製した
Positive electrode plate C (conventional product) Positive electrode plate C was produced in the same manner as positive electrode plate A except that substrate B having a nickel oxide layer having an average thickness of 80 mm was used instead of substrate A in positive electrode plate A.

正極板D(本発明品) 正極板Bにおける基板への代わ
りに平均厚みが8OAのニッケル酸化物の廐を有する基
板Bを用いた以外は全て正極板Bと同様の方法で作製し
た。
Positive electrode plate D (product of the present invention) This was produced in the same manner as positive electrode plate B except that substrate B having a nickel oxide base having an average thickness of 8 OA was used instead of the substrate in positive electrode plate B.

なお、活物質の含浸工程終了後に測定した正極板C及び
Dのニッケル酸化物層の平均厚みは両方とも約60人で
あった。また正極板A及びBでは活物質の含浸工程中に
ニッケル焼結体の20%がffI食していた。また活物
質中に単独の水酸化コバルトを含有している正極板B及
びDについては、そのコバルト化合物の添加量によって
正掻板の放電性能が影響を受けることがわかっており、
すでにコバルト化合物の適正な配合量を確認しているの
で、その適正な配合量とした。例えばニッケル焼結体表
面にニッケル酸化物層を形成していない正極板では、単
独のコバルト化合物の山が水酸化ニッケルの量に対し、
2.0〜8.0モル%の場合に放電性能が良好である。
Note that the average thickness of the nickel oxide layer of positive electrode plates C and D measured after the completion of the active material impregnation step was about 60. In addition, in positive electrode plates A and B, 20% of the nickel sintered body was eaten by ffI during the active material impregnation process. In addition, regarding positive electrode plates B and D containing single cobalt hydroxide in the active material, it is known that the discharge performance of the positive plate is affected by the amount of the cobalt compound added.
Since the appropriate amount of cobalt compound has already been confirmed, that amount was set as the appropriate amount. For example, in a positive electrode plate that does not have a nickel oxide layer formed on the surface of the nickel sintered body, the amount of a single cobalt compound is higher than the amount of nickel hydroxide.
The discharge performance is good when the content is 2.0 to 8.0 mol%.

正極板Bの場合は5モル%の日になるようにしである。In the case of positive electrode plate B, the content was set to 5 mol %.

一方、ニッケル焼結体表面にニッケル酸化物層を有する
正極板では、単独のコバルト化合物量が水酸化ニッケル
量に対し、0.4〜1.0モル%の場合に放電性能が良
好である。
On the other hand, in a positive electrode plate having a nickel oxide layer on the surface of the nickel sintered body, the discharge performance is good when the amount of a single cobalt compound is 0.4 to 1.0 mol% relative to the amount of nickel hydroxide.

正極板りや後で述べる実験2においては4.2モル%の
聞になるようにしである。
In the positive electrode plate and in Experiment 2, which will be described later, the amount was set at 4.2 mol%.

以上のようにして作製した4F4類の正144&を所定
の寸法に切断した後、比11,250(20℃)のに0
1−1 ft!解液中で試料正極板と同寸法のカドミウ
ム負極板2枚を対極として用い、放電特性を測定した。
After cutting the 4F4 regular 144& produced as described above into predetermined dimensions, the
1-1 ft! In the solution, two cadmium negative plates having the same dimensions as the sample positive plate were used as counter electrodes to measure the discharge characteristics.

充電は0.20 A X 9時間とし、基tst′FB
極としては酸化水銀電極を使用した。活物質利用率の放
電レート依存性を第1図に、放電中間電位の放電レート
依存性を第2図に示す。なお、第2図の放電中間電位は
理論容量に対するtli電深度が50%の時の値である
Charging is 0.20 A x 9 hours, and the base tst'FB
A mercury oxide electrode was used as the electrode. The dependence of the active material utilization rate on the discharge rate is shown in FIG. 1, and the dependence of the discharge intermediate potential on the discharge rate is shown in FIG. Note that the discharge intermediate potential in FIG. 2 is a value when the tli depth is 50% with respect to the theoretical capacity.

第1図かられかるように、従来品の正橋板Aは他のどの
正極板よりも活物質利用率が低く、放電レート依存性も
劣っている。これに対し、硝酸コバルトを単独で含浸し
て活物質中に水酸化ニッケルと固溶体を形成しない水酸
化コバルトを含む正極板Bは活物質利用率が約15〜2
0%はど向上している。またニッケル焼結体の表面にニ
ッケル酸化物の層を形成して、活物質含浸工程でニッケ
ル焼結体が腐食しないようにした正極板Cは活物質利用
率だけでなく、その放電レート依存性も向上している。
As can be seen from FIG. 1, the conventional positive bridge plate A has a lower active material utilization rate than any other positive electrode plate, and is also inferior in discharge rate dependence. On the other hand, positive electrode plate B containing cobalt hydroxide, which is impregnated with cobalt nitrate alone and does not form a solid solution with nickel hydroxide in the active material, has an active material utilization rate of about 15 to 2.
0% has improved. In addition, the positive electrode plate C, in which a layer of nickel oxide is formed on the surface of the nickel sintered body to prevent the nickel sintered body from corroding during the active material impregnation process, has not only the active material utilization rate but also its discharge rate dependence. has also improved.

さらにニッケル焼結基板の表面にニッケル酸化物の層を
形成し、且つ硝酸コバルトを単独で含浸した本発明品の
正極板りは活物質利用率及びその放電レート依存性が最
も良好で、30CA放電時の性能低下が非常に少ない。
Furthermore, the positive electrode plate of the present invention, which has a nickel oxide layer formed on the surface of the nickel sintered substrate and is impregnated with cobalt nitrate alone, has the best active material utilization rate and its discharge rate dependence, and has the best active material utilization rate and its discharge rate dependence. There is very little performance deterioration over time.

このような性能は従来品では得られなかったものであり
、前述した2つの改良技術による相乗的な効果が現われ
たものと考えられる。
Such performance could not be obtained with conventional products, and is thought to be due to the synergistic effect of the two improved techniques mentioned above.

第2図の放電中間電位においても第1図と同様の傾向で
あるが、特に30CAといった超高率放電の用途ではニ
ッケル焼結体の表面にニッケル酸化物の層を形成するこ
とが重要であると言える。
The same tendency as in Figure 1 is observed at the discharge intermediate potential in Figure 2, but it is important to form a nickel oxide layer on the surface of the nickel sintered body, especially for ultra-high rate discharge applications such as 30CA. I can say that.

以上2つの初期特性を測定した図から明らかなように、
ニッケル焼結体の表面にニッケル酸化物の層を形成して
、活物質の含浸工程に831=ノるニッケル焼結体の腐
食を防ぎ、さらに水酸化ニッケルと固溶体を形成しない
コバルト化合物を活物質中に含有させることによって、
超高率放電特性の非常に良好なニッケル正極板が19ら
れることが明らかである。
As is clear from the diagrams in which the two initial characteristics were measured,
A layer of nickel oxide is formed on the surface of the nickel sintered body to prevent corrosion of the nickel sintered body during the active material impregnation process, and a cobalt compound that does not form a solid solution with nickel hydroxide is added to the active material. By containing it in
It is clear that the nickel positive electrode plate 19 has very good ultra-high rate discharge characteristics.

実験2 次にニッケル焼結体表面に形成するニッケル酸化物層の
厚みと放電特性について述べる。
Experiment 2 Next, the thickness of the nickel oxide layer formed on the surface of the nickel sintered body and the discharge characteristics will be described.

ここで用いたニッケル焼結基板は実験1で用いた塁板B
と同様の方法で作製したち分であるが、酸化条件を変え
ることによってニッケル焼結体の表面に生成するニッケ
ル酸化物層の平均厚みを10〜140人の間で変化させ
たものを用いた。
The nickel sintered substrate used here is the base plate B used in Experiment 1.
The nickel sintered body was prepared using the same method as above, but the average thickness of the nickel oxide layer formed on the surface of the nickel sintered body was varied between 10 and 140 by changing the oxidation conditions. .

活物質の含浸は実験1の正極板B及びDと同様の方法に
従った。つまり、含浸液は硝酸ニッケルを主成分とする
ニッケル、コバルト及びカドミウムの各硝酸塩の混合溶
液であり、この含浸液をニッケル焼結基板に含浸し、次
いで濃縮、中和を行なうという通常の化学含浸の工程を
数回繰返した後、最後にVn酸コバルト単独の溶液を用
いて化学含浸の工程を1回行なって単独の水酸化コバル
トを生成させた。
Impregnation of the active material followed the same method as positive electrode plates B and D of Experiment 1. In other words, the impregnating liquid is a mixed solution of nickel, cobalt, and cadmium nitrates, with nickel nitrate as the main component.This impregnating liquid is impregnated into a sintered nickel substrate, and then concentrated and neutralized, which is a typical chemical impregnation process. After repeating the steps several times, a final chemical impregnation step was performed once using a solution of cobalt Vn acid alone to form cobalt hydroxide alone.

活物質の含浸工程終了後、各正極板毎にニッケル焼結体
表面のニッケル酸化物層の厚みを測定したところ、活物
質の含浸工程前に比べ約20人づつ減少していた。つま
り、活物質の含浸工程中にニッケル酸化物層が約20人
溶解したと考えられる。
After the active material impregnation process was completed, the thickness of the nickel oxide layer on the surface of the nickel sintered body was measured for each positive electrode plate, and it was found that the thickness had decreased by about 20 compared to before the active material impregnation process. In other words, it is considered that approximately 20 portions of the nickel oxide layer were dissolved during the active material impregnation process.

なお、元のニッケル酸化物層の厚みが20人未満であっ
た正極板では、全てニッケル焼結体の腐食が起きていた
ため、以下の試験では除外した。
In addition, all of the positive electrode plates whose original nickel oxide layer had a thickness of less than 20 people had corrosion of the nickel sintered body, and therefore were excluded from the following tests.

試料正極板は下記の条件で連続サイクルを行なった。The sample positive electrode plate was subjected to continuous cycles under the following conditions.

充電 ICAXL2時間 休止 1時間 故fi  3OCA  + 0.IVまt’vs、 1
−1a /HQ 0休止 1時間 第3図に3サイクル目と100サイクル目の放電時活物
質利用率を、第4図にその時の放電中間電位を示す。な
お、横軸のニッケル酸化物層平均厚みは活物質の含浸工
程終了後の値である。
Charging ICAXL 2 hours pause 1 hour failure fi 3OCA + 0. IV Mat'vs, 1
-1a/HQ 0 pause 1 hour FIG. 3 shows the active material utilization rate during the 3rd cycle and the 100th cycle of discharge, and FIG. 4 shows the mid-discharge potential at that time. Note that the average thickness of the nickel oxide layer on the horizontal axis is the value after the completion of the active material impregnation step.

第3図の結果かられかるように、ニッケル焼結体表面の
ニッケル酸ブヒ物層の厚みが80人超えると活物質利用
率が低下している。この理由の1つとしては、ニッケル
酸化物の絶縁体的な性質が影響を及ぼしたものと考えら
れる。一方、100 +J−イクル目ではニッケル酸化
物層の厚みが5人未満の場合にも活物質利用率が低下し
ている。この理由の1つとしては、ニッケル酸化物層の
厚みが非常に薄い場合は充放電ナイクルの進行に伴なう
ニッケル焼結体の活物質化が起こることが考えられる。
As can be seen from the results in FIG. 3, when the thickness of the nickel acid compound layer on the surface of the nickel sintered body exceeds 80, the active material utilization rate decreases. One of the reasons for this is considered to be the influence of the insulating properties of nickel oxide. On the other hand, in the 100+J-th cycle, the active material utilization rate also decreases when the thickness of the nickel oxide layer is less than 5 layers. One possible reason for this is that when the thickness of the nickel oxide layer is very thin, the nickel sintered body becomes an active material as the charge/discharge cycle progresses.

つまり、含浸工程で充填した活物質の組成とは異なる水
酸化ニッケル単独の活物質がニッケル焼結体と充填した
活物質の間に生成し、電流分布の不均一などの極板性能
を低下させる原因の1つになっていると考えられる。
In other words, during the impregnation process, an active material consisting of nickel hydroxide alone, which has a different composition from the active material filled in, is generated between the nickel sintered body and the filled active material, resulting in poor plate performance such as uneven current distribution. This is thought to be one of the causes.

第4図の放電中間電位においても第3図と同様の傾向で
あるが、ニッケル酸化物層の厚みが70人を超えると性
能が低下しており、第3図の活物質利用率よりもニッケ
ル酸化物層厚さの影響が大きいようである。
The same tendency as in Fig. 3 is observed at the discharge intermediate potential in Fig. 4, but when the thickness of the nickel oxide layer exceeds 70%, the performance decreases, and the active material utilization rate in Fig. 3 is lower than that of the nickel oxide layer. The effect of the oxide layer thickness seems to be large.

以上のことから、ニッケル焼結体表面のニッケル酸化物
層の平均厚みが5〜70人の場合に、超高率放電特性の
非常に良好なニッケル正極板が1りられることが明らか
である。
From the above, it is clear that when the average thickness of the nickel oxide layer on the surface of the nickel sintered body is 5 to 70, a nickel positive electrode plate with very good ultra-high rate discharge characteristics can be obtained.

なお、前記した実験1及び2ではニッケル焼結基板を用
い化学含浸法によって活物質を充填する方法で本発明を
説明したが、活物質の充填方法が電解含浸法である場合
や非焼結式のニッケル多孔体よりなる基板を用いた場合
でも同様の結果がL9られることを実験により確認して
いる。また単独のコバルト化合物については、水酸化コ
バルトで説明したが、各種のコバルト塩やコバルト酸化
物でも同様の結果が得られることを実験により確認して
いる。
Note that in Experiments 1 and 2 described above, the present invention was explained using a method in which a nickel sintered substrate was used and the active material was filled by a chemical impregnation method. It has been confirmed through experiments that similar results can be obtained even when using a substrate made of a porous nickel material. Furthermore, although cobalt hydroxide has been described as a single cobalt compound, it has been confirmed through experiments that similar results can be obtained with various cobalt salts and cobalt oxides.

発明の効果 前記実施例において示したように本発明に基づき、活物
質を保持しているニッケル多孔体の表面に平均厚み5〜
70人のニッケル酸化物の層を41し、ざらに水酸化ニ
ッケルと固溶体を形成しないコバルト化合物を活物質中
に含有していることによって、超高率tll電において
活物質利用率及び放電々位が非常に良好なニッケル正極
板を得ることができる。
Effects of the Invention As shown in the above examples, based on the present invention, the surface of the nickel porous body holding the active material has an average thickness of 5 to
70 layers of nickel oxide and the active material contains a cobalt compound that does not form a solid solution with nickel hydroxide, which improves the active material utilization rate and the discharge level at ultra-high rate of discharge. However, a very good nickel positive electrode plate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるアルカリ蓄電池用ニッケル正極板
及び従来のこの種ニッケル正極板の活物質利用率の放電
レート依存性の一例を示す特性図、第2図は同じく本発
明によるアルカリM電池用ニッケル正掩板及び従来のこ
の種ニッケル正極板の放電中間電位の放電レート依存性
の一例を示す特性図、第3図はニッケル焼結体表面のニ
ッケル酸化物層の厚みと放電時活物質利用率との関係を
示す特性図、第4図は同じくニッケル焼結体表面のニッ
ケル酸化物層の厚みと放電中間電位との関係を示す特性
図である。 央1 因 一弐[F、塘 (C^) it  々 虚 ((:A)
FIG. 1 is a characteristic diagram showing an example of the discharge rate dependence of the active material utilization rate of a nickel positive electrode plate for alkaline storage batteries according to the present invention and a conventional nickel positive electrode plate of this type, and FIG. A characteristic diagram showing an example of the discharge rate dependence of the mid-discharge potential of a nickel positive electrode plate and a conventional nickel positive electrode plate of this type. Figure 3 shows the thickness of the nickel oxide layer on the surface of the nickel sintered body and the use of active materials during discharge. FIG. 4 is a characteristic diagram showing the relationship between the thickness of the nickel oxide layer on the surface of the nickel sintered body and the discharge intermediate potential. Central 1 Inichi 2 [F, 塘 (C^) it is imaginary ((:A)

Claims (1)

【特許請求の範囲】[Claims] 活物質を保持しているニッケル多孔体の表面に平均厚み
が5〜70Åのニッケル酸化物の層を有し、さらに水酸
化ニッケルと固溶体を形成しないコバルト化合物を活物
質中に含有していることを特徴とするアルカリ蓄電池用
ニッケル正極板。
The porous nickel body holding the active material has a nickel oxide layer with an average thickness of 5 to 70 Å on the surface, and the active material further contains a cobalt compound that does not form a solid solution with nickel hydroxide. A nickel positive electrode plate for alkaline storage batteries characterized by:
JP61055813A 1986-03-12 1986-03-12 Nickel positive electrode plate for alkaline storage battery Expired - Lifetime JPH0656762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61055813A JPH0656762B2 (en) 1986-03-12 1986-03-12 Nickel positive electrode plate for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61055813A JPH0656762B2 (en) 1986-03-12 1986-03-12 Nickel positive electrode plate for alkaline storage battery

Publications (2)

Publication Number Publication Date
JPS62211860A true JPS62211860A (en) 1987-09-17
JPH0656762B2 JPH0656762B2 (en) 1994-07-27

Family

ID=13009371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61055813A Expired - Lifetime JPH0656762B2 (en) 1986-03-12 1986-03-12 Nickel positive electrode plate for alkaline storage battery

Country Status (1)

Country Link
JP (1) JPH0656762B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564372A (en) * 1978-11-07 1980-05-15 Japan Storage Battery Co Ltd Manufacturing method of sintered negative plate for alkaline storage battery
JPS5659460A (en) * 1979-10-03 1981-05-22 Lucas Industries Ltd Nickel electrode and method of manufacturing same
JPS59154779A (en) * 1983-02-21 1984-09-03 Matsushita Electric Ind Co Ltd Charging method of enclosed type nickel-cadmium storage battery
JPS6251157A (en) * 1985-08-29 1987-03-05 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for nickel-cadmium alkaline storage battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5564372A (en) * 1978-11-07 1980-05-15 Japan Storage Battery Co Ltd Manufacturing method of sintered negative plate for alkaline storage battery
JPS5659460A (en) * 1979-10-03 1981-05-22 Lucas Industries Ltd Nickel electrode and method of manufacturing same
JPS59154779A (en) * 1983-02-21 1984-09-03 Matsushita Electric Ind Co Ltd Charging method of enclosed type nickel-cadmium storage battery
JPS6251157A (en) * 1985-08-29 1987-03-05 Shin Kobe Electric Mach Co Ltd Manufacture of cathode plate for nickel-cadmium alkaline storage battery

Also Published As

Publication number Publication date
JPH0656762B2 (en) 1994-07-27

Similar Documents

Publication Publication Date Title
JPS62211860A (en) Nickel positive plate for alkaline storage battery
JPH10189029A (en) Manufacture for sealed lead storage battery
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JPH0679486B2 (en) Lead acid battery and manufacturing method thereof
JPS6357913B2 (en)
JP3030032B2 (en) Sintered cadmium negative electrode for alkaline storage battery and method for producing the same
JPH11273666A (en) Positive electrode plate for lead-acid battery and manufacture thereof
JPH031442A (en) Paste form cadmium negative electrode for alkaline storage battery
TW546887B (en) Lead battery charging/discharging control method and controller
JP3619703B2 (en) Method for producing nickel electrode for alkaline storage battery
JPH10112311A (en) Manufacture of sealed lead-acid battery
JPS59173956A (en) Manufacture of pasted lead plate
JP3040718B2 (en) Lead storage battery
JPH10106574A (en) Sealed lead-acid battery
JPS59180971A (en) Manufacturing method for paste type lead positive electrode plate
JP3448886B2 (en) Method for producing cadmium negative electrode plate for alkaline storage battery
JPH10106576A (en) Sealed lead-acid battery
JPS62122064A (en) Manufacture of nickel positive plate for alkaline storage battery
JPH08138664A (en) Nickel electrode for alkaline storage battery
JPH05166504A (en) Manufacture of lead-acid battery positive electrode plate
CN111435730A (en) Method for forming an interfacial layer of a lead-carbon compound on a lead-based substrate
JPH04126360A (en) Sintering type nickel positive electrode plate for alkaline storage battery
JPH01241752A (en) Sealed type clad type lead storage battery
JPH0622114B2 (en) Manufacturing method of sintered positive plate for alkaline storage battery
JPH0268857A (en) Manufacture of lead acid battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term