JPS62211338A - Shape memory alloy for low temperature - Google Patents

Shape memory alloy for low temperature

Info

Publication number
JPS62211338A
JPS62211338A JP5330786A JP5330786A JPS62211338A JP S62211338 A JPS62211338 A JP S62211338A JP 5330786 A JP5330786 A JP 5330786A JP 5330786 A JP5330786 A JP 5330786A JP S62211338 A JPS62211338 A JP S62211338A
Authority
JP
Japan
Prior art keywords
shape memory
alloy
temperature
describes
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5330786A
Other languages
Japanese (ja)
Inventor
Yuichi Suzuki
雄一 鈴木
Yuichi Tamura
裕一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEIJIYOU KIOKU GOKIN GIJUTSU KENKYU KUMIAI
Original Assignee
KEIJIYOU KIOKU GOKIN GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEIJIYOU KIOKU GOKIN GIJUTSU KENKYU KUMIAI filed Critical KEIJIYOU KIOKU GOKIN GIJUTSU KENKYU KUMIAI
Priority to JP5330786A priority Critical patent/JPS62211338A/en
Publication of JPS62211338A publication Critical patent/JPS62211338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To provide cold workability as well as shape memorizability due to superior R phase transformation and to enable behavior at low temp., by adding Fe to Ni-Ti and by properly setting up a compositional range and heat treatment conditions. CONSTITUTION:In the ternary diagram of Ni, Ti, and Fe, each composition is regulated so that it is within the area enclosed with a pentagon connecting the points from A to E, where the angle A describes, by atom, 48.4% Ni, 49.6% Ti, and 2.0% Fe, the angle B describes 49.7% Ni, 49.0% Ti, and 1.3% Fe, the angle C describes 50.9% Ni, 49.0% Ti, and 0.1% Fe, the angle D describes 50.2% Ni, 49.7% Ti, and 0.1% Fe, and the angle E describes 47.4% Ni, 50.6% Ti, and 2.0% Fe. This alloy is subjected to cold working at >=about 15% draft and then to shape memory treatment at about 300-500 deg.C. This alloy has various characteristics such as behavior at low temp., long life, low hysteresis, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は室温以下の比較的低温領域で動作する1’Ji
−Ti−f;’e系形状記憶合金に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is directed to a 1'Ji
-Ti-f;'e-based shape memory alloy.

(従来の技術) NiとT1を原子比で1:1または、その近傍の組成で
含むNi −’l’i合金、およびこれに遷移金属、貴
金属、B、Cなどを添加した合金は、形状記憶効果を示
すことで知られている。
(Prior art) Ni-'l'i alloys containing Ni and T1 in an atomic ratio of 1:1 or a composition close to that, and alloys to which transition metals, noble metals, B, C, etc. are added, have a shape It is known to exhibit memory effects.

これまで、Ni−Ti合金の形状記憶効果は、他の形状
記憶効果を示す合金1例えば、Cu−Zn−A1合金や
ALI −(:d合金と同様に熱弾性型マルテンサイト
変態によって引起こされるものと言われていた。ところ
が最近の研究によって、Ni −Ti合金の形状記憶効
果の原因が、これまで言われていたマルテンサイト変態
の他に、まったく異なる機構を持つR相変態によるとい
う事実が判明してきた。R相変態は、他の形状記憶合金
には見られないl’Ji−Ti合金特有の現象で、マル
テンサイト変態と比較すると、きわめて小さな温度ヒス
テリシスと、高い繰り返し寿命をもたらすことが特徴で
ある。形状記憶合金をアクチュエーターなどの用途に使
用する場合は、繰り返し寿命の良いことが要求されるの
で、R相変態による形状記憶効果を利用することが多く
なってきている。
Until now, the shape memory effect of Ni-Ti alloys has been caused by thermoelastic martensitic transformation similar to other alloys exhibiting shape memory effects, such as Cu-Zn-A1 alloy and ALI-(:d alloy. However, recent research has revealed that the cause of the shape memory effect in Ni-Ti alloys is the R-phase transformation, which has a completely different mechanism, in addition to the previously thought martensitic transformation. It has become clear that R-phase transformation is a phenomenon unique to l'Ji-Ti alloys that is not observed in other shape memory alloys, and compared to martensitic transformation, it can result in extremely small temperature hysteresis and high cycle life. When shape memory alloys are used in applications such as actuators, they are required to have a good repeat life, so the shape memory effect due to R-phase transformation is increasingly utilized.

Ni−Ti合金の場合、マルテンサイト変態の変態温度
は合金組成により大幅に変化するため1合金組成を変え
ることにより、変態温度を広い範囲(−50〜+110
℃)に変化させることが出来る。また適当な添加元素(
Co、Fe、 Cu、 Vなど)を添加することによっ
て一100°C以下の合金を比較的容易に得ることがで
きる。
In the case of Ni-Ti alloys, the transformation temperature of martensitic transformation varies greatly depending on the alloy composition, so by changing one alloy composition, the transformation temperature can be adjusted over a wide range (-50 to +110
℃). In addition, appropriate additive elements (
By adding elements such as Co, Fe, Cu, V, etc., an alloy with a temperature of -100°C or less can be obtained relatively easily.

これに対して、R相変態の場合、2元のNi−’l”i
合金では1合金組成や熱処理条件などをいろいろと変え
ても、たかだか+30〜+70°Cの範囲内でしか変態
温度を変えることができない。特に。
On the other hand, in the case of R-phase transformation, the binary Ni−'l”i
In the case of alloys, even if the alloy composition and heat treatment conditions are varied, the transformation temperature can only be changed within the range of +30 to +70°C. especially.

冷蔵庫などに使用する。低温で動作する合金を作ること
が難しいまた。第3元素の添加によって変態温度を変え
ようとしても、R相変態の現象そのものが1合金を冷間
で強加工した後に300〜500℃で形状記憶熱処理し
たとき現れるという性質を持って〜・るため、冷間加工
が充分にできないときには、R相変態そのものが出現し
なくなる。
Used in refrigerators, etc. It is also difficult to make alloys that operate at low temperatures. Even if an attempt is made to change the transformation temperature by adding a third element, the phenomenon of R-phase transformation itself appears when an alloy is subjected to shape memory heat treatment at 300 to 500℃ after severe cold working. Therefore, when cold working cannot be performed sufficiently, R phase transformation itself does not appear.

したがって、マルテンサイト変態を利用する場合には冷
間加工性を考慮せずに任意に組成や添加元素の種類、添
加量を決め、変態温度を比較的自由に制御できるのに対
して、R相変態の場合には、冷間加工が可能な範囲でこ
れらの条件を決めなければならない。さらに当然のこと
ではあるが、マルテンサイト変態の変態温度とR相変態
の変態温度の組成依存性、添加元素に対する依存性は全
く異なった挙動を示す。
Therefore, when using martensitic transformation, the composition, type and amount of added elements can be determined arbitrarily without considering cold workability, and the transformation temperature can be controlled relatively freely. In the case of transformation, these conditions must be determined within a range that allows cold working. Further, as a matter of course, the compositional dependence of the transformation temperature of martensitic transformation and the transformation temperature of R-phase transformation and dependence on added elements exhibit completely different behavior.

(発明が解決しようとする問題点) 本発明はかかる事情に鑑み、R相変態を利用するNi−
’l”i糸形状記憶合金の動作温度範囲を、特に低温領
域に拡大したもので、Ni−4’iにFeを添加しかつ
適正な組成領域と熱処理条件を設定することにより、良
好なR相変態による形状記憶特性とR相変態に必要な冷
間加工性を持ち、かつ、これまでより動作温度の低い形
状記憶合金を提供したものである。
(Problems to be Solved by the Invention) In view of the above circumstances, the present invention provides Ni-
The operating temperature range of the 'l'i thread shape memory alloy has been expanded, especially to the low temperature range, and by adding Fe to Ni-4'i and setting the appropriate composition range and heat treatment conditions, a good R The present invention provides a shape memory alloy that has shape memory properties due to phase transformation and cold workability necessary for R phase transformation, and has a lower operating temperature than ever before.

(問題を解決するための手段) 本発明はN1−Ti−p’e三元合金のNi、’l’i
およびFeの組成をNi、Ti、およびFeの三元状態
図において、第1番目の角AがNl 48.4 at%
、Ti49.6at%およびFe2.0at%; 第2
番目の角BがNi49.7at%、 Ti 49.0a
t%およびFe 1.3 at%;第3番目の角CがN
i 50.9 at%、Ti49.Oa1%およびFe
0.1at%;第4番目の角りがNi50.2at%、
Ti49.7at%およびp’ e 0.1 a t 
% :第5番目の角EがNi 47.4 at%、 T
i 50,6 at%およびFe2.0at%である5
角形によって囲まれた領域内にある組成とし、かつ該合
金を加工率にして15%以上の冷間加工を施した後、3
00〜500℃の間の温度で形状記憶処理して成る低温
用形状記憶合金である。そしてこのように合金組成を規
定することによりR相変態を利用するNi−’l’i 
 系形状記憶の動作範囲を特に低温領域に拡大できると
共に適正な熱処理条件を設定することにより、良好なR
相変態による形状記憶特性とR相変態に必要な冷間加工
を有する低温用形状記憶合金を得たものである。
(Means for Solving the Problems) The present invention is directed to the N1-Ti-p'e ternary alloy Ni,'l'i
In the ternary phase diagram of Ni, Ti, and Fe, the first angle A is Nl 48.4 at%.
, Ti49.6at% and Fe2.0at%; second
The th corner B is Ni49.7at%, Ti49.0a
t% and Fe 1.3 at%; third corner C is N
i 50.9 at%, Ti 49. Oa1% and Fe
0.1at%; 4th corner is Ni50.2at%,
Ti49.7 at% and p' e 0.1 at
%: 5th corner E is Ni 47.4 at%, T
i 50,6 at% and Fe2.0 at% 5
The composition is within the area surrounded by the square, and after cold working the alloy at a working rate of 15% or more, 3
It is a shape memory alloy for low temperature use which is formed by shape memory treatment at a temperature between 00 and 500°C. By specifying the alloy composition in this way, Ni-'l'i utilizing R-phase transformation can be developed.
By expanding the operating range of the system shape memory, especially to the low temperature region, and by setting appropriate heat treatment conditions, a good R
A low-temperature shape memory alloy having shape memory properties due to phase transformation and cold working necessary for R phase transformation was obtained.

(作用および効果) 本発明の合金組成は第1図のA、B、C,D。(action and effect) The alloy compositions of the present invention are A, B, C, and D in FIG.

およびEの角で囲まれた範囲内のものであるが、直線A
Bと直線BCより外側、つまり低T1側では成形加工が
困難であり、直線CDより低Fe側および直線DEより
高TI側ではAf点が二元合金での最低温度30℃より
低くならない。また直線EAより高pe側では加工性が
低下し、記憶特性も悪(なる。
and within the range surrounded by the corners of E, but the straight line A
Forming is difficult outside B and straight line BC, that is, on the low T1 side, and on the low Fe side of straight line CD and the high TI side of straight line DE, the Af point does not become lower than the minimum temperature of 30°C for the binary alloy. Further, on the higher pe side of the straight line EA, the workability decreases and the memory characteristics also deteriorate.

また冷間加工が15%未満ではR相変態が出現せず、さ
らに300〜500℃の温度範囲で形状記憶処理をする
のは、この温度の範囲外では充分な形状記憶効果が得ら
れないからである。
Furthermore, if the cold working is less than 15%, R-phase transformation will not occur, and the reason why shape memory treatment is performed at a temperature range of 300 to 500°C is because sufficient shape memory effect cannot be obtained outside this temperature range. It is.

(実施例) 以下、本発明を実施例につき説明すると、第1表に示す
配合組成のNi−TiおよびFeを合計で3 kgにな
るよう正確に秤量し、カーボンルツボを用いて高周波真
空溶解(周波数:3kHz、真空度:lX]0Torr
)により溶解し、鋳鉄製鋳型に鋳造した。鋳塊は旋盤で
外削した後、熱間鍛造により直径20mmの丸棒とし、
さらに溝ロールを用いた熱間圧延により直径6朋の線材
とした。
(Example) Hereinafter, the present invention will be explained with reference to an example. Ni-Ti and Fe having the composition shown in Table 1 were accurately weighed to a total of 3 kg, and were melted by high-frequency vacuum melting using a carbon crucible. Frequency: 3kHz, degree of vacuum: lX] 0 Torr
) and cast into cast iron molds. After the ingot was externally machined using a lathe, it was hot forged into a round bar with a diameter of 20 mm.
Furthermore, it was made into a wire rod with a diameter of 6 mm by hot rolling using grooved rolls.

これを適宜、中間焼なましく700°CX5分間)しな
から冷間伸線加工し、直径1.Orsrxの線材とした
。最終伸線加工率は15%以上とし、これ以下の加工率
で断線した合金は冷間加工不可とした。
This was suitably intermediately annealed at 700°C for 5 minutes) and then cold wire drawn to a diameter of 1. Orsrx wire rod was used. The final wire drawing rate was set at 15% or more, and alloys that were broken at a rate lower than this were considered not to be cold-workable.

15%の加工率は良好なR相変態をもたらすために必要
である。冷間伸線した線材は直径7IIM、巻数10回
、丸フック付の引張りばねの形状に成形し、成形した形
状に固定して、500″Cに加熱し。
A processing rate of 15% is necessary to provide good R-phase transformation. The cold-drawn wire rod was formed into the shape of a tension spring with a diameter of 7IIM and a round hook with a number of turns of 10, fixed in the formed shape, and heated to 500''C.

60分間保持した後冷却した。After holding for 60 minutes, it was cooled.

このようにして作られた形状記憶ばねは、一定の負荷(
3009(の重り)をかけた状態で温度を変化させ、た
わみの変化を測定した。
Shape memory springs made in this way can be used under a certain load (
3009 was applied, the temperature was changed, and the change in deflection was measured.

第  1  表 第1表には各合金の組成と共に、Af点と成形加工性が
示されており、成形加工性は冷間加工不可のものを×、
なんとか加工できるが難しいものを△で示した。合金1
から合金3は従来からの二元合金であり、Af点がもつ
とも低い50.6at%Niでも30°Cである。
Table 1 Table 1 shows the composition of each alloy as well as its Af point and formability.
Items that can be processed but are difficult are marked with a △. Alloy 1
Alloy 3 is a conventional binary alloy, and even with 50.6 at% Ni, which has an Af point as low as 30°C.

これに対して本発明合金、のN[L4〜f’h14に示
すものはAf点が一2℃から+27℃で従来合金より著
しく低温である。
On the other hand, the alloys of the present invention shown in N[L4 to f'h14 have an Af point of 12°C to +27°C, which is significantly lower than the conventional alloy.

これに対し組成が本発明の範囲外のN1115〜箋21
に示すものは加工性が悪いか、或はAt点が高いことが
明らかである。
On the other hand, N1115 to No. 21 whose composition is outside the scope of the present invention
It is clear that the materials shown in (a) have poor workability or a high At point.

この第1表を三元組成図上にまとめたものが第1図で、
直線ABと直線BCより外側、つまり低Ti側では成形
加工が困難なことを示しており、直線CDより低Fe側
および直線DEより高Ti側ではAf点が二元合金での
最低温度30℃より低くならない。また直線EAより高
FC側では加工性が低下し、記憶特性も悪くなる。
Figure 1 summarizes this Table 1 on a ternary composition diagram.
This shows that forming is difficult on the side outside of straight lines AB and BC, that is, on the low Ti side, and on the low Fe side of straight line CD and the high Ti side of straight line DE, the Af point is the lowest temperature in the binary alloy of 30°C. No lower. In addition, on the higher FC side than the straight line EA, the workability decreases and the memory characteristics also deteriorate.

また第2図は合金10 (49,ONi −49,6T
i、−1,4FC)を用いたばねの温度変位曲線で、良
好な形状記憶特性が示されている。昇温時のばねの動作
終了温度(Ar点)は図中、矢印で示したように加熱時
の曲線の最大傾斜部と高温側ベースラインをそれぞれ外
挿した交点で決めることとし、当該合金10の場合O℃
である。
Figure 2 shows alloy 10 (49,ONi -49,6T
The temperature displacement curve of the spring using i, -1,4FC) shows good shape memory properties. The end temperature (Ar point) of the spring when the temperature is raised is determined by the intersection point obtained by extrapolating the maximum slope of the curve during heating and the high-temperature side baseline, as shown by the arrow in the figure. In case of O℃
It is.

以上の結果は500℃で熱処理したときの値であるが、
処理温度が300〜500℃の範囲内であれば同様の結
果が得られる。
The above results are the values when heat treated at 500℃,
Similar results can be obtained if the treatment temperature is within the range of 300 to 500°C.

したがって、多角形ABCDEで囲まれた組成領域内に
あるNi −Ti −1”e合金はR相変態を利用した
形状記憶効果を示し、かつ従来の合金より低温領域で動
作し、成形加工性も良好であることがわかる。
Therefore, the Ni-Ti-1"e alloy in the composition region surrounded by the polygon ABCDE exhibits a shape memory effect using R-phase transformation, operates in a lower temperature region than conventional alloys, and has good formability. It can be seen that it is in good condition.

(発明の効果) 以上述べたように1本発明は従来不可能であった低温動
作する高寿命かつ低ヒステリシスの形状記憶合金を提供
したもので、形状記憶合金の用途を拡大し、工業的な効
果大なるものである。
(Effects of the Invention) As stated above, the present invention provides a shape memory alloy that operates at low temperatures, has a long life, and has low hysteresis, which was previously impossible. It is very effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明合金の範囲を示す三元状態図、第2図は
本発明合金を用いたばねの温度変位曲線を示す図である
。 温度 (’C)
FIG. 1 is a ternary phase diagram showing the range of the alloy of the present invention, and FIG. 2 is a diagram showing a temperature displacement curve of a spring using the alloy of the present invention. Temperature ('C)

Claims (2)

【特許請求の範囲】[Claims] (1)Ni,Ti,およびFeの三元状態図において、
第1番目の角AがNi48.4at%、Ti49.6a
t%およびFe2.0at%;第2番目の角BがNi4
9.7at%.Ti49.0at%およびFe1.3a
t%;第3番目の角CがNi50.9at%、Ti49
.0at%およびFe0.1at%;第4番目の角Dが
Ni50.2at%、Ti49.7at%およびFe0
.1at%:第5番目の角EがNi47.4at%、T
i50.6at%およびFe2.0at%である5角形
によつて囲まれた領域内にある組成を有し、R相変態に
よる形状記憶効果を示すことを特徴とする低温用形状記
憶合金。
(1) In the ternary phase diagram of Ni, Ti, and Fe,
The first corner A is Ni48.4at%, Ti49.6a
t% and Fe2.0at%; second corner B is Ni4
9.7at%. Ti49.0at% and Fe1.3a
t%; 3rd corner C is Ni50.9at%, Ti49
.. 0at% and Fe0.1at%; fourth corner D is Ni50.2at%, Ti49.7at% and Fe0
.. 1at%: 5th corner E is Ni47.4at%, T
A shape memory alloy for low temperature use, characterized in that it has a composition within a region surrounded by a pentagon of 50.6 at% i and 2.0 at% Fe, and exhibits a shape memory effect due to R phase transformation.
(2)加工率にして15%以上の冷間加工を施した後、
300〜500℃の間の温度で形状記憶処理して成る特
許請求の範囲第1項に記載の低温用形状記憶合金。
(2) After cold working with a processing rate of 15% or more,
The low-temperature shape memory alloy according to claim 1, which is formed by shape memory treatment at a temperature between 300 and 500°C.
JP5330786A 1986-03-11 1986-03-11 Shape memory alloy for low temperature Pending JPS62211338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5330786A JPS62211338A (en) 1986-03-11 1986-03-11 Shape memory alloy for low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5330786A JPS62211338A (en) 1986-03-11 1986-03-11 Shape memory alloy for low temperature

Publications (1)

Publication Number Publication Date
JPS62211338A true JPS62211338A (en) 1987-09-17

Family

ID=12939064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5330786A Pending JPS62211338A (en) 1986-03-11 1986-03-11 Shape memory alloy for low temperature

Country Status (1)

Country Link
JP (1) JPS62211338A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271735A (en) * 1988-09-06 1990-03-12 Tokin Corp Orthodontic tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0271735A (en) * 1988-09-06 1990-03-12 Tokin Corp Orthodontic tool
JPH0464263B2 (en) * 1988-09-06 1992-10-14 Tokin Corp

Similar Documents

Publication Publication Date Title
US4019925A (en) Metal articles having a property of repeatedly reversible shape memory effect and a process for preparing the same
US3783037A (en) Treatment of alloys
US4283233A (en) Method of modifying the transition temperature range of TiNi base shape memory alloys
US4707196A (en) Ti-Ni alloy articles having a property of reversible shape memory and a method of making the same
US4770725A (en) Nickel/titanium/niobium shape memory alloy & article
US4740253A (en) Method for preassembling a composite coupling
JPS6237353A (en) Manufacture of shape memory alloy
JPS62211338A (en) Shape memory alloy for low temperature
JPS62211339A (en) Ni-ti-cr shape memory alloy
DE2055756C3 (en) Process for the manufacture of objects which can change their shape when the temperature changes, and the application of the process to certain alloys
Tan et al. Ti-content and annealing temperature dependence of deformation characteristics of TiXNi (92− X) Cu8 shape memory alloys
JPS6361377B2 (en)
JPS61119639A (en) Nickel/titanium/niobium shape memory alloy
Jaffee General physical metallurgy of titanium reviewed
JPS6247937B2 (en)
US3989552A (en) Method of making a heat-recoverable article
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JPS6140741B2 (en)
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPH0128252B2 (en)
JPS6314834A (en) Tiniv shape memory alloy
JPS61106740A (en) Ti-ni alloy having reversible shape memory effect and its manufacture
JPH0480097B2 (en)
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JP4017892B2 (en) Method for producing alloys with high vibration damping performance