JPS62210884A - Speed control unit for three-phase synchronous motor - Google Patents

Speed control unit for three-phase synchronous motor

Info

Publication number
JPS62210884A
JPS62210884A JP61051880A JP5188086A JPS62210884A JP S62210884 A JPS62210884 A JP S62210884A JP 61051880 A JP61051880 A JP 61051880A JP 5188086 A JP5188086 A JP 5188086A JP S62210884 A JPS62210884 A JP S62210884A
Authority
JP
Japan
Prior art keywords
phase
circuit
signal
speed
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61051880A
Other languages
Japanese (ja)
Other versions
JPH0785672B2 (en
Inventor
Hiroshi Kuromaru
黒丸 広志
Takatoshi Kogure
小暮 孝敏
Akihiro Hoshino
昭広 星野
Masayoshi Nakai
正義 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP61051880A priority Critical patent/JPH0785672B2/en
Publication of JPS62210884A publication Critical patent/JPS62210884A/en
Publication of JPH0785672B2 publication Critical patent/JPH0785672B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

PURPOSE:To obtain a control unit superb in high responsibility with less torque ripple, by operationally outputting the armature winding impressed voltage so that the armature current will agree with the command value by an equivalent circuit of an armature winding. CONSTITUTION:In an inductance potential drop prediction circuit 12, a voltage drop due to the armature winding inductance is predicted by multiplying a rate of change of current by an inductance value of an armature winding. In DC resistance potential drop prediction circuit 13 a voltage drop due to the resistance of an armature winding is predicted. In inducing a voltage prediction circuit 14 the inducing voltage in an armature winding is predicted. A two-phase command circuit 15 adds output signals of each prediction circuit 12, 13 and 14 and strikes a two-phase voltage command signal, which is then turned into a three-phase voltage command signal by a two-phase-to-three-phase conversion circuit 16. By amplifying this signal by an amplification circuit 5 a three-phase synchronous motor 7 is driven.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ブラシレス・サーがモータ等の三相同期電動
機の速度制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a speed control device for a three-phase synchronous motor such as a brushless motor.

〔従来の技術〕[Conventional technology]

ブラシレス・モータは、一般の永久磁石形同期機と同様
で、固定電機子と回転磁石界磁とから構成されている。
A brushless motor is similar to a general permanent magnet type synchronous machine, and is composed of a fixed armature and a rotating magnet field.

界磁には、永久磁石が用いられる。ブラシレス・モータ
は、一般的な磁石界磁形石流サーデモータの電機子と磁
石界磁の位置が内と外で逆になっており、ブラシとコミ
ユテータによる整流機構が、回転子位置検出機構と半導
体スイッチに置き換えられたものである。
A permanent magnet is used for the field. In a brushless motor, the positions of the armature and magnet field are reversed on the inside and outside of a typical magnet-field stone flow servomotor, and the rectifying mechanism using the brushes and commutator is connected to the rotor position detection mechanism and semiconductors. It was replaced by a switch.

以下、ブラシレス・モータのトルク発生原理について説
明する。
The torque generation principle of a brushless motor will be explained below.

ブラシレス・モータのトルクは直流モータと同様に電機
子起磁力と回転子の磁束が常に直交関係を保つように、
電機子巻線(−電流を供給することにより得られる。回
転子の磁束はファラデーの法則、レンツの法則により電
機子巻線の誘起電圧波形にて間接的に観測できるので、
上述の回転子位置検出機構の基準位置を誘起電圧波形に
合せ、決めておくことにより取るべき電機子起磁力方向
が判定できる。ブラシレス・モータの電機子巻線は通常
三相の平衡巻線であるので回転子の回動により、各々の
電機子巻線には、互いに回転子の基準位置からの変位角
(電気角)で120度位相のずれた誘起電圧が発生する
。各相の電機子導体に交差する磁束は円周方向に正弦波
状に分布する様にモータ磁気回路が設計されている。す
なわち、各相の磁束密度度をBu # BY t BW
磁束密度の最大値をBm、回転子の変位角をθ、とする
と、 Bu=Bm−出(θr )      −−(1)BY
=Brn−1IhI(θr−120’ )   −・−
C2)BW=Bm−8hI(θr−240’ )   
−・自−・(3)となる。ブラシレス・モータの発生ト
ルクTは各相の発生トルクの和となり、フレミングの法
則より、 で示される(但しに:定数)。ここで、各相の電機子電
流I、 、 Iv、 I、を正弦波状とし、位相情報を
各々の磁束密度の位相に一致させることにより TOC8In2 θ1 +gtn” (θr −120
’) 十g+n” (θF −2400)=1.5・・
・・・・(5) となり発生トルクTは電機子電流と磁束密度のそれぞれ
の最大値の積にのみ依存し、回転子の変位角θ1には無
関係と々る。
The torque of a brushless motor is similar to that of a DC motor, so that the armature magnetomotive force and the rotor magnetic flux always maintain an orthogonal relationship.
The magnetic flux of the rotor can be indirectly observed from the induced voltage waveform of the armature winding according to Faraday's law and Lenz's law.
By determining the reference position of the rotor position detection mechanism described above in accordance with the induced voltage waveform, the armature magnetomotive force direction to be taken can be determined. The armature windings of brushless motors are usually three-phase balanced windings, so as the rotor rotates, each armature winding has a displacement angle (electrical angle) from the rotor's reference position. Induced voltages with a phase shift of 120 degrees are generated. The motor magnetic circuit is designed so that the magnetic flux crossing the armature conductors of each phase is distributed in a sinusoidal manner in the circumferential direction. That is, the magnetic flux density of each phase is Bu # BY t BW
If the maximum value of magnetic flux density is Bm and the displacement angle of the rotor is θ, then Bu=Bm−out(θr)−−(1)BY
=Brn-1IhI(θr-120') ---
C2) BW=Bm-8hI(θr-240')
−・Auto−・(3). The generated torque T of a brushless motor is the sum of the generated torques of each phase, and according to Fleming's law, is expressed as (where: constant). Here, by making the armature currents I, , Iv, I, of each phase sinusoidal and matching the phase information with the phase of each magnetic flux density, TOC8In2 θ1 +gtn'' (θr −120
') 10g+n'' (θF -2400)=1.5...
(5) Therefore, the generated torque T depends only on the product of the respective maximum values of the armature current and the magnetic flux density, and is unrelated to the displacement angle θ1 of the rotor.

次に従来のブラシレス・サーがモータの速度制御装置を
第8図に基づき説明する。
Next, a conventional brushless motor speed control device will be explained with reference to FIG.

速度指令回路1は所定の速度指令に対応した速度指令信
号を発生する。速度補償回路2は速度指令回路1からの
速度指令信号と速度検出回路9からの速度帰還信号とか
ら得られる速度偏差信号にPID補償演算を施し、電流
指令信号を生成する。三相電流指令回路3は、速度補償
回路2からの電流指令信号と変位角検出回路8からの変
位角信号とにより電機子巻線三相分の三相電流指令信号
を生成する。電流補償回路4は、三相電流指令回路3か
らの三相電流指令信号と三相電流検出回路6にて検出し
た電機子巻線三相分の電流検出信号とから得られる三相
分の電流偏差信号にPID補償演算を施し、三相電圧指
令信号を生成する。増幅回路5は電流補償回路4からの
三相電圧指令信号を増幅し、三相同期電動機1を駆動す
る。また、変位角検出回路8と速度検出回路9は、各々
のセンサ部が三相同期電動機70回転子軸に連結され、
変位角θ1゜〔発明が解決しようとする問題点〕 ところで、三相同期電動機のトルク・l 、 fルを防
止するためには前述のごとく電機子電流の位相を正確に
、磁束密度の位相に一致させる必要がある5、磁束の位
相は電機子の回転角によシ決まるため、高速回転時にお
いては磁束の位相変化も大きくなる。従うて、電機子電
流の制御は高速応答性が要求される。
A speed command circuit 1 generates a speed command signal corresponding to a predetermined speed command. The speed compensation circuit 2 performs PID compensation calculation on the speed deviation signal obtained from the speed command signal from the speed command circuit 1 and the speed feedback signal from the speed detection circuit 9, and generates a current command signal. The three-phase current command circuit 3 generates three-phase current command signals for three phases of the armature winding based on the current command signal from the speed compensation circuit 2 and the displacement angle signal from the displacement angle detection circuit 8. The current compensation circuit 4 calculates the three-phase current obtained from the three-phase current command signal from the three-phase current command circuit 3 and the current detection signal for the three phases of the armature winding detected by the three-phase current detection circuit 6. A PID compensation calculation is performed on the deviation signal to generate a three-phase voltage command signal. The amplifier circuit 5 amplifies the three-phase voltage command signal from the current compensation circuit 4 and drives the three-phase synchronous motor 1. Further, the displacement angle detection circuit 8 and the speed detection circuit 9 each have a sensor section connected to the rotor shaft of the three-phase synchronous motor 70,
Displacement angle θ1゜ [Problem to be solved by the invention] By the way, in order to prevent the torque l and f of a three-phase synchronous motor, the phase of the armature current must be accurately aligned with the phase of the magnetic flux density, as described above. 5. The phase of the magnetic flux is determined by the rotation angle of the armature, so the change in the phase of the magnetic flux becomes large during high-speed rotation. Therefore, control of the armature current requires high-speed response.

従来装置における電機子電流の制御は前述のごとく電流
補償回路のPID制御により行なわれているが、トルク
・す、fルを十分に抑制する程には応答性が良くなく、
従ってより高性能な制御方式が望まれるところであった
The armature current in conventional devices is controlled by PID control of the current compensation circuit as described above, but the responsiveness is not good enough to sufficiently suppress the torque.
Therefore, a control system with higher performance is desired.

本発明は、このような点を考慮し、高速応答性に優れ、
トルク・リッノルの少ない三相同期電動機の速度制御装
置を提供することを目的とする。
Taking these points into consideration, the present invention has excellent high-speed response and
The purpose of the present invention is to provide a speed control device for a three-phase synchronous motor with low torque/reinol.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

従来の電流制御系はPID補償演簿9にて、電機子巻線
印加電圧(三相電圧指令信号)を決めていたが、本発明
では電流制御系内に電機子巻線の等価回路を持ち、その
等価回路によりインダクタンスおよび直流抵抗の電圧降
下や誘起電圧を予測して、電機子電流が電機子電流指令
値に一致するような電機子巻線印加電圧を演算し出力す
るようにしている。なお本発明では、電機子巻線印加電
圧演算回路規模を縮小するため、三相同期電動機であり
ながら検出器及び制御演算回路な二相にて構成している
In the conventional current control system, the voltage applied to the armature winding (three-phase voltage command signal) was determined by the PID compensation register 9, but in the present invention, the current control system has an equivalent circuit of the armature winding. The voltage drop and induced voltage of the inductance and DC resistance are predicted by the equivalent circuit, and the voltage applied to the armature winding such that the armature current matches the armature current command value is calculated and output. In the present invention, in order to reduce the scale of the armature winding applied voltage calculation circuit, although it is a three-phase synchronous motor, it is configured with two phases including a detector and a control calculation circuit.

第1図は本願の第1の発明の構成を示す図で、1は速度
指令回路、2は速度補償回路、1ノは二相電流指令回路
、12はインダクタンス電圧降下予測回路、13は直流
抵抗電圧降下予測回路、14は誘起電圧予測回路、15
は二相電圧指令回路、16は二相三相変換回路、5は増
幅回路、17は二相電流検出回路、7は三相同期電動機
、18は二相変位角検出回路、9は速度検出回路である
。二相変位角検出回路18及び速度検出回路9のセンサ
部は共に三相同期電動機7の回転子軸に連結駆動される
FIG. 1 is a diagram showing the configuration of the first invention of the present application, where 1 is a speed command circuit, 2 is a speed compensation circuit, 1 is a two-phase current command circuit, 12 is an inductance voltage drop prediction circuit, and 13 is a DC resistance. Voltage drop prediction circuit, 14, induced voltage prediction circuit, 15
16 is a two-phase voltage command circuit, 16 is a two-phase three-phase conversion circuit, 5 is an amplifier circuit, 17 is a two-phase current detection circuit, 7 is a three-phase synchronous motor, 18 is a two-phase displacement angle detection circuit, and 9 is a speed detection circuit. It is. The sensor sections of the two-phase displacement angle detection circuit 18 and the speed detection circuit 9 are both coupled to and driven by the rotor shaft of the three-phase synchronous motor 7.

速度指令回路1は所定の速度指令に対応した速度指令信
号を発生する。
A speed command circuit 1 generates a speed command signal corresponding to a predetermined speed command.

速度補償回路2は速度指令信号と速度検出回路9からの
速度帰還信号とから得られる速度偏差信号にPID補償
演算を施し、電流指令信号を生成する。二相電流指令回
路11は電流指令信号と二相変位角検出回路18からの
二相回転角信号とにより二相電流指令信号を生成する。
The speed compensation circuit 2 performs PID compensation calculation on the speed deviation signal obtained from the speed command signal and the speed feedback signal from the speed detection circuit 9 to generate a current command signal. The two-phase current command circuit 11 generates a two-phase current command signal based on the current command signal and the two-phase rotation angle signal from the two-phase displacement angle detection circuit 18.

インダクタンス電圧降下予測回路12では二相電流指令
信号と二相電流検出回路17からの二相電流帰還信号及
び電機子巻線二相インダクタンス値とから、電機子巻線
インダクタンスによる二相電圧降下値な予測する。直流
抵抗電圧降下予測回路13は二相電流指令信号あるいは
二相電流帰還信号と電機子巻線の直流抵抗値より電機子
巻線の直流抵抗による二相電圧降下値な予測する。誘起
電圧予測回路14td、、二相変位角検出回路18から
の二相回転角信号から電機子巻線二相誘起電圧値を予測
する。二相電圧指令回路15は、インダクタンス電圧降
下予測回路12の二相インダクタンスによる二相電圧降
下信号と、直流抵抗電圧降下予測回路13の二相直流抵
抗による二相電圧降下信号と誘起電圧予測回路14の二
相誘起電圧信号とから二相電圧指令信号を生成する。二
相・三相変換回路16は、二相電圧指令回路15からの
二相電圧指令信号な三相電圧指令信号に変換する。増幅
回路5は、二相・三相変換回路16からの三相電圧指令
信号を増幅し三相同期電動機を駆動する。
The inductance voltage drop prediction circuit 12 calculates the two-phase voltage drop value due to the armature winding inductance from the two-phase current command signal, the two-phase current feedback signal from the two-phase current detection circuit 17, and the armature winding two-phase inductance value. Predict. The DC resistance voltage drop prediction circuit 13 predicts the two-phase voltage drop value due to the DC resistance of the armature winding based on the two-phase current command signal or the two-phase current feedback signal and the DC resistance value of the armature winding. The induced voltage prediction circuit 14td predicts the armature winding two-phase induced voltage value from the two-phase rotation angle signal from the two-phase displacement angle detection circuit 18. The two-phase voltage command circuit 15 receives a two-phase voltage drop signal due to the two-phase inductance of the inductance voltage drop prediction circuit 12, a two-phase voltage drop signal due to the two-phase DC resistance of the DC resistance voltage drop prediction circuit 13, and the induced voltage prediction circuit 14. A two-phase voltage command signal is generated from the two-phase induced voltage signal. The two-phase/three-phase conversion circuit 16 converts the two-phase voltage command signal from the two-phase voltage command circuit 15 into a three-phase voltage command signal. The amplifier circuit 5 amplifies the three-phase voltage command signal from the two-phase/three-phase conversion circuit 16 and drives the three-phase synchronous motor.

また、第2図は本願の第2の発明の構成を示す図であり
、第1図と同一部分には同一符号を付しである。したが
って、重複する説明は省略する。21は二相速度指令回
路であり、速度指令回路1からの速度指令信号と二相変
位角検出回路18の二相回転角信号とにより二相速度指
令信号を生成する。微分回路23は二相変位角検出回路
18からの二相回転角信号を微分し二相速度帰還信号を
生成する。二相速度補償回路22は二相速度指令回路2
1からの二相速度指令信号と微分回路23からの二相速
度帰還信号とから得られる速度偏差信号にp補償演算を
施し二相電流指令信号を生成する。誘起電圧予測回路2
4は二相速度指令回路21からの二相速度指令信号から
電機子巻線二相誘起電圧値を予測する。
Moreover, FIG. 2 is a diagram showing the configuration of the second invention of the present application, and the same parts as in FIG. 1 are given the same reference numerals. Therefore, duplicate explanations will be omitted. A two-phase speed command circuit 21 generates a two-phase speed command signal based on the speed command signal from the speed command circuit 1 and the two-phase rotation angle signal from the two-phase displacement angle detection circuit 18. Differentiating circuit 23 differentiates the two-phase rotation angle signal from two-phase displacement angle detection circuit 18 to generate a two-phase velocity feedback signal. The two-phase speed compensation circuit 22 is the two-phase speed command circuit 2.
A p-compensation calculation is performed on the speed deviation signal obtained from the two-phase speed command signal from 1 and the two-phase speed feedback signal from the differentiating circuit 23 to generate a two-phase current command signal. Induced voltage prediction circuit 2
4 predicts the armature winding two-phase induced voltage value from the two-phase speed command signal from the two-phase speed command circuit 21.

〔作用〕[Effect]

作用を説明するに当り、まず本発明の基礎をなす理論を
説明する。
In explaining the operation, the theory underlying the present invention will first be explained.

第3図に三相同期電動機の一相分の電機子巻線の等何回
路を示す。ここでrlは電機子巻線直流抵抗を、L、は
電機子巻線インダクタンスを、euはU相の電機子巻線
の誘起電圧を、vuはU相の電機子巻線印加電圧を、■
□はU相の電機子巻線電流をそれぞれ示す。同様にay
 e f3yeVv、 VW、 I、 、 1.は各々
V相W相の誘起電圧。
Figure 3 shows the equivalent circuit of the armature winding for one phase of a three-phase synchronous motor. Here, rl is the armature winding DC resistance, L is the armature winding inductance, eu is the induced voltage of the U-phase armature winding, vu is the U-phase armature winding applied voltage,
□ indicates the U-phase armature winding current. Similarly ay
e f3yeVv, VW, I, , 1. are the induced voltages of V phase and W phase, respectively.

印加電圧9巻線電流とする。The applied voltage is 9 winding current.

三相同期電動機の電機子巻線電圧方程式は、(但し、p
:微分演算子)で表わせる。
The armature winding voltage equation of a three-phase synchronous motor is (however, p
: differential operator).

各相の誘起電圧は、回転子の変位角をθ、。The induced voltage of each phase is the displacement angle of the rotor, θ.

誘起電圧定数なKffiとすると となる。すなわち電機子電流■。、 Iy e 1w 
を流すためには、(6)式、(7)式を満たす電機子印
加電圧vu、 vv、 V+、を印加すれば良い。本発
明では、演算回路規模を縮小するために上記電機子印加
電圧を求める演算を二相回路にて行なっている。(6)
 、’ (7)式を第4図にて定義される三相−二相変
換するため、座標変換行列 ここで を流すためには■ct、■βを印加すれば良いことは言
うまでもない。
Let Kffi be the induced voltage constant. That is, the armature current■. , Iy e 1w
In order to flow, it is sufficient to apply armature applied voltages vu, vv, V+ that satisfy equations (6) and (7). In the present invention, in order to reduce the scale of the calculation circuit, the calculation for determining the voltage applied to the armature is performed using a two-phase circuit. (6)
,' Needless to say, in order to perform the three-phase-to-two-phase transformation of equation (7) as defined in FIG. 4, it is sufficient to apply ■ct and ■β to flow the coordinate transformation matrix here.

ここで■α1,1β0を二相を流指令信号、Vα1゜V
β1を二相電圧指令信号、 I、 、 Iβを二相電流
帰還信号とすると(8)式、 (11)式より・・・・
・・0′4 またインダクタンス環は ・・・・・・α1 と近似できるため(但し、ΔT:微小時間)(6)式は ・・・・・・a4 と表わすことができる。すなわち二相電流指令判明すれ
ば、04式により電機子巻線に印加すべき最適な二相電
圧指令信号V♂、Vβ1が求まる。
Here ■α1, 1β0 are two-phase flow command signals, Vα1°V
If β1 is the two-phase voltage command signal and I, , Iβ are the two-phase current feedback signals, then from equations (8) and (11)...
...0'4 Also, since the inductance ring can be approximated as ....alpha.1 (where .DELTA.T: minute time), equation (6) can be expressed as ...a4. That is, once the two-phase current command is known, the optimum two-phase voltage command signals V♂ and Vβ1 to be applied to the armature windings can be determined using equation 04.

ここで、二相電流帰還信号■α、■βは二相における値
で、直接的には検出できないため、三相の電流検出値■
。、 I、 、 L、  より61式にて算出する。
Here, the two-phase current feedback signals ■α and ■β are values in two phases and cannot be detected directly, so the three-phase current detection value ■
. , I, , L, Calculated using formula 61.

すなわち、三相電流の和がゼロになる性質を利用して ここで求まった二相電圧指令信号■♂、■β0は二相に
おける値で、三相電圧指令信号とする必=17− ′ 要があるが、これは二相−三相変換行列を用い次式
にて求める。
In other words, the two-phase voltage command signals ■♂ and ■β0 obtained here using the property that the sum of the three-phase currents is zero are the values for the two phases, and it is necessary to make them three-phase voltage command signals = 17-' This is calculated using the following equation using a two-phase to three-phase conversion matrix.

本発明では、インダクタンス電圧降下予測回路12と直
流抵抗電圧降下予測回路13とでそれぞれ、電機子巻線
のインダクタンス、直流抵抗の電圧降下を予測し、誘起
電圧予測回路14または24で電機子巻線の誘起電圧を
予測しているので電機子電流が電機子電流指令値に一致
する。
In the present invention, the inductance voltage drop prediction circuit 12 and the DC resistance voltage drop prediction circuit 13 predict the inductance of the armature winding and the voltage drop of the DC resistance, respectively, and the induced voltage prediction circuit 14 or 24 predicts the voltage drop of the armature winding. Since the induced voltage of is predicted, the armature current matches the armature current command value.

〔実施例〕〔Example〕

第5図に本発明の一実施例の構成を示す。速度指令回路
1は直流電源101,102を可変抵抗器103にて分
圧し、所定の速度指令に応じた速度指令信号Vrefを
出力する。速度補償回路2は速度指令信号Vrefと速
度検出回路9からの速度帰還信dθ 号□ととの偏差を演算する加算器105と偏差1Q− 信号にPID補償演算を行ない電流指令信号を生成する
PID演算器106とから成る。二相電流指令回路11
は、前記電流指令信号と二相変位Iαds 、 rプを
生成する乗算器111,112からなる。インダクタン
ス電圧降下予測回路12は二相電気指令信号■♂、Iβ
0と二相電流検出回路17からの二相電流帰還信号Ic
t、 Iβとの二相電流偏差を取る加算器121,12
2と、二相電流偏差にユ1の値を乗算し電機子巻線イΔ
T ンダクタンスによる二相の電圧降下信号を出力する乗算
器123,124とから成る。直流抵抗電圧降下予測回
路13は二相電流指令信号■♂、■β1あるいは二相電
圧指令信号塘、■βに電機子巻線直流抵抗値rlの値を
乗算し電機子巻線直流抵抗による二相の電圧降下信号を
出力する乗算器131,132とから成る。誘起にて各
々K1−1ct倍し電機子巻線における二相の誘起電圧
信号を出力する。二相面圧指令回路15は加算器151
,152,153.154とから成り、インダクタンス
電圧降下予測回路12の出力信号と、直流抵抗電圧降下
予測回路13の出力信号と、綽起電圧予測回路14の出
力信号とを加算し、二相電圧指令信号V♂、V/を出力
する。二相・三相変換回路16は乗算器161.162
,163、加算器164,165とから成り乗算器16
1では二相電圧指令信号と乗算器163の出力な加算し
三相電圧指令信号の■u″を出力し、加算器165では
乗算器161及び加算器164の出力を反転加算し、三
相電圧指令信号のvW*を出力する。
FIG. 5 shows the configuration of an embodiment of the present invention. The speed command circuit 1 divides the voltage of DC power supplies 101 and 102 using a variable resistor 103, and outputs a speed command signal Vref according to a predetermined speed command. The speed compensation circuit 2 includes an adder 105 that calculates the deviation between the speed command signal Vref and the speed feedback signal dθ from the speed detection circuit 9, and a PID that performs a PID compensation calculation on the deviation 1Q- signal to generate a current command signal. It consists of a computing unit 106. Two-phase current command circuit 11
consists of multipliers 111 and 112 that generate the current command signal and two-phase displacements Iαds and r. The inductance voltage drop prediction circuit 12 receives two-phase electrical command signals ■♂, Iβ
0 and the two-phase current feedback signal Ic from the two-phase current detection circuit 17
Adders 121 and 12 that take the two-phase current deviation from t and Iβ
2, the two-phase current deviation is multiplied by the value of U1, and the armature winding Δ
It consists of multipliers 123 and 124 that output two-phase voltage drop signals due to T inductance. The DC resistance voltage drop prediction circuit 13 multiplies the two-phase current command signal ■♂, ■β1 or the two-phase voltage command signal 塾, ■β by the armature winding DC resistance value rl to calculate the voltage drop due to the armature winding DC resistance. It consists of multipliers 131 and 132 that output phase voltage drop signals. The two-phase induced voltage signals in the armature windings are each multiplied by K1-1ct by induction and output. The two-phase surface pressure command circuit 15 is an adder 151
, 152, 153, and 154, and adds the output signal of the inductance voltage drop prediction circuit 12, the output signal of the DC resistance voltage drop prediction circuit 13, and the output signal of the electromotive voltage prediction circuit 14, and calculates the two-phase voltage. Outputs command signals V♂, V/. The two-phase/three-phase conversion circuit 16 is a multiplier 161.162
, 163, adders 164, 165, and a multiplier 16
1 adds the two-phase voltage command signal and the output of the multiplier 163 to output the three-phase voltage command signal u'', and the adder 165 inverts and adds the outputs of the multiplier 161 and the adder 164 to obtain the three-phase voltage. Outputs the command signal vW*.

すなわち二相・三相変換回路16では、前述の0→式の
演算を行なりている。増幅回路5は、三相分の増幅器1
66.167.168とから成っており、三相電圧指令
信号vu、■。、vwを増幅し、三相同期電動機7を駆
動する。二相電流検出回路17は、各相部の電流検出器
171.172,173から得られた三相電流帰還信号
I、 、 I、 、 I、、から二相電流帰還信号Ia
及Iβを生成する。すなわち加算器114では、Ivか
ら■1を減算し得られた値に乗算器二相電流帰還信号の
■ヶを出力する。
That is, the two-phase/three-phase conversion circuit 16 performs the calculation of the above-mentioned 0→formula. The amplifier circuit 5 includes a three-phase amplifier 1
66.167.168, and three-phase voltage command signals vu, ■. , vw are amplified and the three-phase synchronous motor 7 is driven. The two-phase current detection circuit 17 generates a two-phase current feedback signal Ia from the three-phase current feedback signals I, , I, , I, obtained from the current detectors 171, 172, 173 of each phase section.
and Iβ. That is, the adder 114 subtracts 1 from Iv and outputs 2 of the multiplier two-phase current feedback signal to the obtained value.

すなわち前述の(ト)式の演算を行なりている。That is, the calculation of the above-mentioned equation (g) is performed.

二相変位角検出回路18は、二相励磁、二相出カタイゾ
のレゾルバ181を用いる。発振回路182はレゾルバ
励磁信号生成の九めのクロ。
The two-phase displacement angle detection circuit 18 uses a two-phase excitation, two-phase output type resolver 181. The oscillation circuit 182 is the ninth clock for generating resolver excitation signals.

り信号を発生する。90@位相差発生回路183は上記
クロック信号を入力し互い[90度位相二相信号を出力
する。・1ンド・母スフィルタ184゜185は中心周
波数πの帯域フィルタであり、二相信号の高調波成分を
除去し二相の正弦波虐ωtect11ωtとする。この
二相の正弦波は増幅器186.181により増幅され、
レゾルバの一次巻線を励磁する。レゾルバ181は一次
巻線て励磁すると二次巻線には変位角θ1にて位相変調
された二相正弦波信号th(ωt−θ、)。
generates a signal. 90@Phase difference generation circuit 183 receives the above clock signal and outputs a two-phase signal with a phase of 90 degrees.・1st and bus filters 184 and 185 are bandpass filters with a center frequency π, and remove harmonic components of the two-phase signal to produce a two-phase sine wave vector ωtect11ωt. This two-phase sine wave is amplified by amplifiers 186 and 181,
Energize the primary winding of the resolver. When the primary winding of the resolver 181 is excited, the secondary winding receives a two-phase sine wave signal th (ωt-θ,) which is phase-modulated at a displacement angle θ1.

(2)(ωを一θr)が誘起される。(2) (ω - θr) is induced.

乗算器191では信号(2)ωを及び*(ωを一θr)
の乗算を、また乗算器192では信号自ωを及び(2)
(′ωを一θr)の乗算を行カい、加算器193にてこ
れら乗算結果の加算を行なう。つまり、出ωt−ccs
(ωt−or)−oosωt−ghI(ωt−01〕=
−01 ・・・α力が求められ、加算結果はv’ * 
19y 、となる。同様に乗算器194では信号自ωを
及びth(ωを一θr)の乗算を乗算器195では信号
(2)ωを及び■(ωを一θr)の乗算を行ない加算器
196にてこれら乗算結果の加算を行なう。つまり、部
ωt−cQ!l(ωを一θr)+slnωt−1+Ir
+(ωを一θr):cosθ1・・・・・・0呻 が求められ、加算結果は房θ1となる。
The multiplier 191 inputs the signal (2) ω and *(ω - θr)
The multiplier 192 multiplies the signal ω and (2)
Multiplication is performed by ('ω is - θr), and an adder 193 adds these multiplication results. In other words, output ωt-ccs
(ωt-or)-oosωt-ghI(ωt-01)=
-01 ... α force is calculated, and the addition result is v' *
19y. Similarly, a multiplier 194 multiplies the signals ω and th (ω is - θr), a multiplier 195 multiplies the signals (2) ω and Add the results. In other words, part ωt−cQ! l (ω - θr) + slnωt-1 + Ir
+ (ω - θr): cos θ1...0 is calculated, and the addition result becomes the cluster θ1.

乗算器191,198は得られた二相正弦波速度検出回
路9は速度発電機等により構成されるが、上記二相変位
角検出回路18の信号から電子回路にて速度帰還信号を
生成することも可能である。
The multipliers 191 and 198 generate a speed feedback signal using an electronic circuit from the signal of the two-phase displacement angle detection circuit 18, although the obtained two-phase sine wave speed detection circuit 9 is constituted by a speed generator or the like. is also possible.

第6図は二相変位角検出回路18の信号からdθ1 速度帰還信号   を生成する回路構成を示しゴr ている。第6図において微分器201.202はレゾル
バ181の二次励磁巻線に誘起された二相正弦洩出(ω
を一θr)−am(ωを−01)をそれぞれ微分しくω
−一)魚(ωt−θr)−(ω−土L)画(ωを−01
)dθ1 dt                     dt
を生成する。乗算器203では信号 (ω−9’t’ )cns (ωを一θr)及び房(ω
を一θ1〕の乗IIを行ない、乗算器204では信号 −(ω−W)幽(ωを一θ、)及び−(ωt−θ、)の
乗算を行なう。加算器205は乗算器203の出力信号
から乗算器204の出力信号を減算するdθ ことにより(ω−−Or−)信号を生成する。
FIG. 6 shows a circuit configuration for generating the speed feedback signal dθ1 from the signal of the two-phase displacement angle detection circuit 18. In FIG.
Differentiate θr)−am(ω−01) and ω
-1) Fish (ωt-θr)-(ω-Sat L) painting (ω-01
)dθ1 dt dt
generate. In the multiplier 203, the signal (ω-9't') cns (ω is one θr) and the signal (ω
The multiplier 204 multiplies the signals -(ω-W) by (ω=1θ) and -(ωt-θ,). The adder 205 subtracts the output signal of the multiplier 204 from the output signal of the multiplier 203 to generate a (ω--Or-) signal.

加算器206では定数設定器207にて設定したω信号
から加算器205の出力を減算してd#r ■信号を生成する。
The adder 206 subtracts the output of the adder 205 from the ω signal set by the constant setter 207 to generate the d#r (2) signal.

以上の構成により、三相同期電動機7の電機子巻線には
電機子電流が電機子電流指令値に一致するような印加電
圧が付与される。
With the above configuration, an applied voltage is applied to the armature winding of the three-phase synchronous motor 7 so that the armature current matches the armature current command value.

次に本発明の第二の実施例を第7図に基き説明する。第
7図において、二相速度指令回路21、二相速度補償回
路22.誘起電圧予測回路24.微分回路23を除いて
他の構成、作用は第5図と同様であるので二相速度指令
回路21、二相速度補償回路22.微分回路23゜誘起
電圧予測回路24.についてのみ説明する。
Next, a second embodiment of the present invention will be explained based on FIG. 7. In FIG. 7, a two-phase speed command circuit 21, a two-phase speed compensation circuit 22. Induced voltage prediction circuit 24. Except for the differential circuit 23, the other configurations and operations are the same as those shown in FIG. 5, so the two-phase speed command circuit 21, two-phase speed compensation circuit 22. Differentiation circuit 23° induced voltage prediction circuit 24. I will only explain about.

二相速度指令回路21は乗算器211.212から成り
、速度指令回路1からの速度指令信号vrefと二相変
位角検出回路18からの二相回転酸する。微分回路23
は微分器231.232とから成り、二相回転角信号を
各々微分して二を生成する。二相速度補償回路22は二
相速度を入力し、二相電流指令信号を生成する。すなわ
ち加算器221,222は二相速度偏差信号を演算し、
p補償器223,224にて二相速度偏差信号から二相
電流指令信号を生成する。
The two-phase speed command circuit 21 consists of multipliers 211 and 212, and converts the speed command signal vref from the speed command circuit 1 and the two-phase rotation signal from the two-phase displacement angle detection circuit 18. Differential circuit 23
consists of differentiators 231 and 232, which differentiate the two-phase rotation angle signals to generate two. The two-phase speed compensation circuit 22 inputs the two-phase speed and generates a two-phase current command signal. That is, the adders 221 and 222 calculate the two-phase velocity deviation signal,
P compensators 223 and 224 generate two-phase current command signals from the two-phase speed deviation signals.

(ここでp補償器223.224をPID補償器としな
い理由は速度偏差信号に二相回転角情報が含まれている
ため1.D補償演算を行なうと二相の条件がくずれてし
まうことによる。)誘起電圧予測回路24は、二相速度
指令回路21かに、倍し、電機子巻線における二相の誘
起電圧信号を出力する。これは速度指令信号Vrefは
回転角微分信号情報とみなせることによる。
(Here, the reason why the p compensators 223 and 224 are not used as PID compensators is that the two-phase rotation angle information is included in the speed deviation signal, so if the 1.D compensation calculation is performed, the two-phase conditions will collapse. ) The induced voltage prediction circuit 24 multiplies the two-phase speed command circuit 21 and outputs a two-phase induced voltage signal in the armature winding. This is because the speed command signal Vref can be regarded as rotation angle differential signal information.

以上の構成によっても前述した第1の実施例と同様の効
果が奏される。
The above configuration also provides the same effects as the first embodiment described above.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば、電流制御系内に、
電機子巻線の等価回路を持ち、その等価回路により電機
子電流が電機子電流指令値に一致するような電機子巻線
印加電圧を演算出力しているので、従来装置に比較して
電流制御応答性が改善できる。
As described above, according to the present invention, in the current control system,
It has an equivalent circuit for the armature winding, and uses that equivalent circuit to calculate and output the voltage applied to the armature winding so that the armature current matches the armature current command value, so current control is easier than with conventional devices. Responsiveness can be improved.

また、三相同期電動機でありながら検出器及び制御演算
回路な二相にて構成しているので、回路規模の縮小化が
図れる等の効果を奏する。
In addition, although it is a three-phase synchronous motor, it is configured with two phases including a detector and a control calculation circuit, so that it is possible to reduce the circuit scale.

C−C-

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願の第一の発明の構成を示すプロ、り図、第
2図は本願の第二の発明の構成を示すブロック図、第3
図は三相同期電動機の等価回路図、第4図は本発明にお
ける三相二相変換を説明する為の図、第5図は本発明の
一実施例に係る三相同期電動機の速度制御装置の構成を
示すブロック図、第6図は同装置に適用可能な速度検出
回路のブロック図、第7図は本発明の他の実施例に係る
三相同期電動機の速度制御装置の構成を示すブロック図
、第8図は従来の三相同期電動機の速度制御装置の構成
を示すブロック図である。 1・・・速度指令回路、2・・・速度補償回路、5・・
・増幅回路、7・・・三相同期電動機、9・・・速度検
出回路、11・・・二相電流指令回路、12・・・イン
ダクタンス電圧降下予測回路、13・・・直流抵抗電圧
降下予測回路、14.24・・・誘起電圧予測回路、1
5・・・二相電圧指令回路、16・・・二相三相変換回
路、17・・・二相電流検出回路、18・・・二相変位
角検出回路、21・・・二相速度指令回路、22・・・
二相速度補償回路、23・・・微分回路。
Figure 1 is a professional diagram showing the configuration of the first invention of the present application, Figure 2 is a block diagram showing the configuration of the second invention of the present application, and Figure 3 is a block diagram showing the configuration of the second invention of the present application.
The figure is an equivalent circuit diagram of a three-phase synchronous motor, Figure 4 is a diagram for explaining three-phase to two-phase conversion in the present invention, and Figure 5 is a speed control device for a three-phase synchronous motor according to an embodiment of the present invention. 6 is a block diagram showing the configuration of a speed detection circuit applicable to the same device, and FIG. 7 is a block diagram showing the configuration of a speed control device for a three-phase synchronous motor according to another embodiment of the present invention. 8 are block diagrams showing the configuration of a conventional speed control device for a three-phase synchronous motor. 1...Speed command circuit, 2...Speed compensation circuit, 5...
- Amplifier circuit, 7... Three-phase synchronous motor, 9... Speed detection circuit, 11... Two-phase current command circuit, 12... Inductance voltage drop prediction circuit, 13... DC resistance voltage drop prediction Circuit, 14.24... Induced voltage prediction circuit, 1
5... Two-phase voltage command circuit, 16... Two-phase three-phase conversion circuit, 17... Two-phase current detection circuit, 18... Two-phase displacement angle detection circuit, 21... Two-phase speed command Circuit, 22...
Two-phase speed compensation circuit, 23... Differential circuit.

Claims (2)

【特許請求の範囲】[Claims] (1)所定の速度指令に対応した速度指令信号を生成す
る速度指令回路と、 制御対象である三相同期電動機の電機子巻線電流を検出
し、二相電流帰還信号を生成する二相電流検出回路と、 上記三相同期電動機の回転子の回転角を検出し、正弦波
状の二相回転角信号を生成する二相変位角検出回路と、 上記回転子の回転角速度を検出し、速度帰還信号を生成
する速度検出回路と、 前記速度指令信号から前記速度帰還信号を減算し、得ら
れた速度偏差信号にPID補償演算を行ない単相の電流
借令信号を生成する速度補償回路と、 前記単相の電流指令信号に前記二相の回転角信号を乗算
して二相電流指令信号を生成する二相電流指令回路と、 前記二相電流指令信号と前記二相電流帰還信号との差を
予め定められた制御周期情報で除算して電機子電流の変
化率を予測し、この電機子電流の変化率に電機子巻線の
インダクタンス値を乗算することにより電機子巻線のイ
ンダクタンスによる二相の電圧降下を予測するインダク
タンス電圧降下予測回路と、 前記二相電流指令信号もしくは、前記二相電流帰還信号
に電機子巻線の直流抵抗値を乗算することにより、電機
子巻線の直流抵抗による二相の電圧降下を予測する直流
抵抗電圧降下予測回路と、 前記二相回転角信号を微分し、その微分値に誘起電圧定
数値を乗算し電機子巻線における二相の誘起電圧を予測
する誘起電圧予測回路と、前記インダクタンス電圧降下
予測回路の出力信号と前記直流抵抗電圧降下予測回路の
出力信号と前記誘起電圧予測回路の出力信号とを加算し
て二相電圧指令信号を生成する二相電圧指令回路と、 前記二相電圧指令信号を三相電圧指令信号に変換する二
相三相変換回路と、 前記三相電圧指令信号を増幅し前記三相同期電動機を駆
動する増幅回路とを具備したことを特徴とする三相同期
電動機の速度制御装置。
(1) A speed command circuit that generates a speed command signal corresponding to a predetermined speed command, and a two-phase current that detects the armature winding current of the three-phase synchronous motor to be controlled and generates a two-phase current feedback signal. a detection circuit; a two-phase displacement angle detection circuit that detects the rotation angle of the rotor of the three-phase synchronous motor and generates a sinusoidal two-phase rotation angle signal; and a two-phase displacement angle detection circuit that detects the rotation angular velocity of the rotor and provides speed feedback. a speed detection circuit that generates a signal; a speed compensation circuit that subtracts the speed feedback signal from the speed command signal and performs a PID compensation calculation on the obtained speed deviation signal to generate a single-phase current borrow signal; a two-phase current command circuit that generates a two-phase current command signal by multiplying the single-phase current command signal by the two-phase rotation angle signal; The rate of change of the armature current is predicted by dividing by predetermined control period information, and the rate of change of the armature current is multiplied by the inductance value of the armature winding to calculate the two-phase control due to the inductance of the armature winding. an inductance voltage drop prediction circuit that predicts a voltage drop in the armature winding; A DC resistance voltage drop prediction circuit that predicts a two-phase voltage drop; and a circuit that differentiates the two-phase rotation angle signal and multiplies the differential value by an induced voltage constant value to predict the two-phase induced voltage in the armature winding. an induced voltage prediction circuit; and a two-phase circuit that generates a two-phase voltage command signal by adding an output signal of the inductance voltage drop prediction circuit, an output signal of the DC resistance voltage drop prediction circuit, and an output signal of the induced voltage prediction circuit. A voltage command circuit, a two-phase three-phase conversion circuit that converts the two-phase voltage command signal into a three-phase voltage command signal, and an amplifier circuit that amplifies the three-phase voltage command signal and drives the three-phase synchronous motor. A speed control device for a three-phase synchronous motor, characterized by:
(2)所定の速度指令に対応した速度指令信号を生成す
る速度指令回路と、 制御対象である三相同期電動機の電機子巻線電流を検出
し、二相電流帰還信号を生成する二相電流検出回路と、 上記三相同期電動機の回転子の回転角を検出し、正弦波
状の二相回転角信号を生成する二相変位角検出回路と、 前記速度指令信号に前記二相回転角信号を乗算して二相
速度指令信号を生成する二相速度指令回路と、 前記二相回転角信号を微分して二相速度帰還信号を生成
する微分回路と、 前記二相速度指令信号から前記二相速度帰還信号を加減
算し得られた二相速度偏差信号にp補償演算を行ない二
相電流指令信号を生成する二相速度補償回路と、 前記二相電流指令信号と前記二相電流帰還信号との差を
予め定められた制御周期情報で除算して電機子電流の変
化率を予測し、前記電機子電流の変化率に電機子巻線の
インダクタンス値を乗算することにより電機子巻線のイ
ンダクタンスによる二相の電圧降下を予測するインダク
タンス電圧降下予測回路と、 前記二相電流指令信号もしくは前記二相電流帰還信号に
電機子巻線の直流抵抗値を乗算することにより電機子巻
線の直流抵抗による二相の電圧降下を予測する直流抵抗
電圧降下予測回路と、 前記二相速度指令信号に誘起電圧定数値を乗算して電機
子巻線における二相の誘起電圧を予測する誘起電圧予測
回路と、 前記インダクタンス電圧降下予測回路の出力信号と前記
直流抵抗電圧降下予測回路の出力信号と前記誘起電圧予
測回路の出力信号とを加算して、二相電圧指令信号を生
成する二相電圧指令回路と、 前記二相電圧指令信号を三相電圧指令信号に変換する二
相三相変換回路と、 前記三相電圧指令信号を増幅し前記三相同期電動機を駆
動する増幅回路とを具備したことを特徴とする三相同期
電動機の速度制御装置。
(2) A speed command circuit that generates a speed command signal corresponding to a predetermined speed command, and a two-phase current that detects the armature winding current of the three-phase synchronous motor to be controlled and generates a two-phase current feedback signal. a detection circuit; a two-phase displacement angle detection circuit that detects the rotation angle of the rotor of the three-phase synchronous motor and generates a sinusoidal two-phase rotation angle signal; a two-phase speed command circuit that multiplies the two-phase speed command signal to generate a two-phase speed command signal; a differentiation circuit that differentiates the two-phase rotation angle signal to generate a two-phase speed feedback signal; a two-phase speed compensation circuit that performs a p-compensation calculation on a two-phase speed deviation signal obtained by adding and subtracting a speed feedback signal to generate a two-phase current command signal; and a two-phase speed compensation circuit that generates a two-phase current command signal; The rate of change of the armature current is predicted by dividing the difference by predetermined control period information, and the rate of change of the armature current is multiplied by the inductance value of the armature winding. an inductance voltage drop prediction circuit that predicts a two-phase voltage drop; and an inductance voltage drop prediction circuit that predicts a two-phase voltage drop; a DC resistance voltage drop prediction circuit that predicts a two-phase voltage drop; an induced voltage prediction circuit that predicts a two-phase induced voltage in an armature winding by multiplying the two-phase speed command signal by an induced voltage constant value; a two-phase voltage command circuit that adds an output signal of the inductance voltage drop prediction circuit, an output signal of the DC resistance voltage drop prediction circuit, and an output signal of the induced voltage prediction circuit to generate a two-phase voltage command signal; A two-phase three-phase conversion circuit that converts the two-phase voltage command signal into a three-phase voltage command signal, and an amplifier circuit that amplifies the three-phase voltage command signal and drives the three-phase synchronous motor. A speed control device for a three-phase synchronous motor.
JP61051880A 1986-03-10 1986-03-10 Three-phase synchronous motor speed controller Expired - Lifetime JPH0785672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61051880A JPH0785672B2 (en) 1986-03-10 1986-03-10 Three-phase synchronous motor speed controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61051880A JPH0785672B2 (en) 1986-03-10 1986-03-10 Three-phase synchronous motor speed controller

Publications (2)

Publication Number Publication Date
JPS62210884A true JPS62210884A (en) 1987-09-16
JPH0785672B2 JPH0785672B2 (en) 1995-09-13

Family

ID=12899193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61051880A Expired - Lifetime JPH0785672B2 (en) 1986-03-10 1986-03-10 Three-phase synchronous motor speed controller

Country Status (1)

Country Link
JP (1) JPH0785672B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489996A (en) * 1987-09-28 1989-04-05 Mitsubishi Heavy Ind Ltd Speed controller for three phase synchronous motor
JPH02101997A (en) * 1988-10-05 1990-04-13 Toyota Motor Corp Servo motor controller
JP2003083087A (en) * 2001-09-14 2003-03-19 Mitsubishi Heavy Ind Ltd Gas turbine plant and operation method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153286A (en) * 1979-05-18 1980-11-29 Nippon Telegr & Teleph Corp <Ntt> Driving method for brushless servomotor
JPS5899287A (en) * 1981-12-08 1983-06-13 Fanuc Ltd Controlling method for synchronous motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153286A (en) * 1979-05-18 1980-11-29 Nippon Telegr & Teleph Corp <Ntt> Driving method for brushless servomotor
JPS5899287A (en) * 1981-12-08 1983-06-13 Fanuc Ltd Controlling method for synchronous motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6489996A (en) * 1987-09-28 1989-04-05 Mitsubishi Heavy Ind Ltd Speed controller for three phase synchronous motor
JPH02101997A (en) * 1988-10-05 1990-04-13 Toyota Motor Corp Servo motor controller
JP2003083087A (en) * 2001-09-14 2003-03-19 Mitsubishi Heavy Ind Ltd Gas turbine plant and operation method therefor

Also Published As

Publication number Publication date
JPH0785672B2 (en) 1995-09-13

Similar Documents

Publication Publication Date Title
KR100724667B1 (en) Control device of synchronous electromotor, electrical equipment, and module
EP3032735A1 (en) Motor drive system and motor control device
Liu et al. Adaptive control for a sensorless permanent-magnet synchronous motor drive
JP3435975B2 (en) Current control unit of rotating electric machine and control device using the same
US4458193A (en) Method and apparatus for controlling an AC induction motor
JP2000166278A (en) Control device of synchronous motor
JPH05308793A (en) Control circuit for power conversion device
JPS62210884A (en) Speed control unit for three-phase synchronous motor
JP4120775B2 (en) Vector control method and apparatus for AC motor
JPS5949797B2 (en) AC machine current control method
US4752725A (en) Control apparatus for three-phase induction motor
JPH05244792A (en) Method and apparatus for compensating current phase delay in motor
JPH0479240B2 (en)
JP3958920B2 (en) Spindle controller
JP3687331B2 (en) Induction machine variable speed drive
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JPS6243436B2 (en)
JP2946157B2 (en) Induction motor speed control device
JPH01308187A (en) Calculating method for secondary resistance of induction motor, control method, presuming method for secondary winding temperature protecting method and controller thereof
JPS62203596A (en) Speed controller for 3-phase ac motor
JP2004023804A (en) Motor controller
SU688976A1 (en) Device for compensating for electromotive force in synchronous frequency-controlled electric drive
JPH0546794B2 (en)
JPH0254039B2 (en)
JPH03173388A (en) Torque detector for synchronous motor