JPS62210747A - Light transmission equipment - Google Patents

Light transmission equipment

Info

Publication number
JPS62210747A
JPS62210747A JP61054043A JP5404386A JPS62210747A JP S62210747 A JPS62210747 A JP S62210747A JP 61054043 A JP61054043 A JP 61054043A JP 5404386 A JP5404386 A JP 5404386A JP S62210747 A JPS62210747 A JP S62210747A
Authority
JP
Japan
Prior art keywords
signal
phase
cmi
fluctuation
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61054043A
Other languages
Japanese (ja)
Inventor
Susumu Morikura
晋 森倉
Tsutomu Tanaka
勉 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61054043A priority Critical patent/JPS62210747A/en
Publication of JPS62210747A publication Critical patent/JPS62210747A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dc Digital Transmission (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To reduce fluctuation in the phase of a clock to be extracted, by setting a signal transmitted by a LED as the signal on which the inverted polarity of a CMI (Code Mark Inversion) coding signal is attached, and taking a phase lock with the leading edge of the pulse of an inverted signal at a reception part. CONSTITUTION:An NRZ signal (a) is converted at an encoder 1, and is changed to a CMI signal (b), and furthermore, it is changed to a signal (c) whose polarity is inverted at an inversion gate 30. Since the LED has a sharp rising characteristic, the fluctuation of the phase in the leading edge of a signal (f) obtained by identifying the output signal (e) of an amplifier 5 with the identification level H of a gate 10, is very small. Therefore, the change of the phase of a clock (g) extracted by performing the phase comparison at the rising of the pulse of the signal (f), is very small. As a result, a judgment error accompanied by the identification of a code at a decoder 6 is reduced. Also, since the fluctuation of the phase of a reproduced signal (b) is reduced, the quantity of the fluctuation accumulated in a relay time, is also reduced, thereby it is possible to increase the number of stages to relay.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はCMI (Code Mark Inverg
ion )符号化信号の光伝送装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION Industrial field of application The present invention is directed to CMI (Code Mark Inverg.
ion) relates to an optical transmission device for encoded signals.

従来の技術 従来の光伝送装置では、第4図に示すようにまずエンコ
ーダ1でNRZ信号aとクロックCを入力してCMI信
号すに変換し、LED駆動回路2と手先ダイオード(L
ED)31で光信号に変換して、光ファイバ3に送出す
る。この時の各部の波形を第5図a、b、dに示す。第
5図すに示すように、CMI符号ではデータの「o」は
”01”で、また「1」はoO”と“11”を交互に用
いて表わす。このことにより、「oJまたは「1」の同
符号が連続した場合にも、3ビツトに1度は必ずパルス
の立下り部が発生するのでタイミング情報の消失が避け
られる。さらにパルスの立下りの間隔は基本周期Tの整
数倍となるので、立下り毎に位相同期をとることにより
、CMI信号に同期したクロックを描出することができ
る。受信側では、受光素子4で光信号を電気信号に変換
し、さらにアンプ5で一定振幅の信号θ′を得る。その
後ゲート11の識別レベルHで0か1の判定を行ない、
反転信号f′ を得る。
2. Description of the Related Art In a conventional optical transmission device, as shown in FIG.
ED) 31 converts it into an optical signal and sends it out to the optical fiber 3. The waveforms of each part at this time are shown in FIGS. 5a, b, and d. As shown in FIG. '' even if the same sign continues, the trailing edge of the pulse always occurs once every three bits, so loss of timing information can be avoided. Furthermore, since the interval between the falling edges of the pulse is an integral multiple of the basic period T, a clock synchronized with the CMI signal can be drawn by performing phase synchronization every falling edge. On the receiving side, a light receiving element 4 converts the optical signal into an electrical signal, and an amplifier 5 obtains a signal θ' with a constant amplitude. After that, the identification level H of the gate 11 is used to determine whether it is 0 or 1,
Obtain an inverted signal f'.

ところが、LEDではパルスの立上りは急であるが、立
下りはゆるやかであるため、隣接する符号間で干渉を生
じ、立下りの位相(位置ンがずれる。また、ゲート11
の識別レベルHも、ある一定の識別不確実幅を有し、さ
らにそのレベルは周囲温度や電源電圧の変動・素子のノ
(ラツキによって変化する。
However, in an LED, the pulse has a steep rise but a slow fall, which causes interference between adjacent codes, causing the phase (position) of the fall to shift.
The discrimination level H also has a certain discrimination uncertainty range, and furthermore, the level changes due to fluctuations in ambient temperature, power supply voltage, and element irregularities.

その結果、アンプの出力波形e′をレベルHで識別した
反転信号I′の)(ルスの立上りの位相は第5図f′ 
のように大きくゆらぐことになる。したがって、信号f
′ をタイミング抽出回路32に入力し、パルスの立上
り毎に位相同期をとシ抽出したクロックq′の位相は第
6図q′のようにゆらいでいる。デコーダ6の再生波形
h′ も同様である。
As a result, the phase of the rising edge of the inverted signal I', which identifies the output waveform e' of the amplifier at level H, is shown in Fig. 5 f'.
It will fluctuate greatly like this. Therefore, the signal f
' is input to the timing extraction circuit 32, and the phase of the extracted clock q' is phase synchronized at every rising edge of the pulse.The phase of the extracted clock q' fluctuates as shown in FIG. 6, q'. The same applies to the reproduced waveform h' of the decoder 6.

発明が解決しようとする問題点 このような従来の方式では、LEDにおける)くルスの
立上りと立下りでは特性が異なり、立下りは立上シより
もゆるやかになるという点に注意が払われていない。
Problems to be Solved by the Invention In such conventional methods, attention is paid to the fact that the characteristics of the rise and fall of the pulse (in an LED) are different, and the fall is more gradual than the rise. do not have.

そのため、受信後反転した信号CMI  のノ(ルスの
立上りで位相同期をとる場合には、クロックの位相が大
きくゆらぎ、符号を識別する際に判断誤りが発生しやす
かった。また、再生信号の位相もクロックとともにゆら
ぎ、これは中継した場合に累積されるので、多段中継に
適さないという問題があった。
Therefore, when phase synchronization is performed at the rising edge of the signal CMI, which is inverted after reception, the phase of the clock fluctuates greatly, making it easy to make judgment errors when identifying codes. Also, the phase of the reproduced signal Since the clock also fluctuates with the clock, and this is accumulated during relaying, there is a problem that it is not suitable for multi-stage relaying.

本発明はかかる点に鑑みてなされたもので、簡単な回路
構成で符号の判断誤りを小さくし、まだ多段中継に適し
た光伝送装置を提供することを目的としている。
The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical transmission device that has a simple circuit configuration, reduces code judgment errors, and is still suitable for multi-stage relay.

・問題点を解決するための手段 本発明は上記問題点を解決するため、ディジタル光伝送
系を、CMI信号の極性を反転してCMI信号とし、前
記CMI信号でLEDを駆動する送信部と、前記CMI
信号を受光して前記CMI信号のパルスの立上シで位相
同期をとるタイミング抽出回路の受信部とで形成するも
のである。
- Means for Solving the Problems In order to solve the above problems, the present invention provides a digital optical transmission system with a transmitter that inverts the polarity of a CMI signal to generate a CMI signal and drives an LED with the CMI signal; Said CMI
It is formed by a receiving section of a timing extraction circuit which receives a signal and establishes phase synchronization at the rising edge of the pulse of the CMI signal.

作  用 本発明は上記した方式により、LEDで伝送する信号は
CMI信号とし、受信部ではCMI信号のパルスの立上
りで位相同期をとることによって、抽出するクロックの
位相のゆらぎを小さくすることができるので、符号の判
断誤りを小さくし、また多段中継をすることができる。
Effects According to the above-described method, the present invention uses the CMI signal as the signal transmitted by the LED, and achieves phase synchronization at the rising edge of the CMI signal pulse in the receiving section, thereby making it possible to reduce fluctuations in the phase of the extracted clock. Therefore, code judgment errors can be reduced and multi-stage relay can be performed.

実施例 本発明の一実施例を第1図に示す。図において、30は
反転ゲートである。また、第4図と同じ構成要素には同
じ番号を付し、動作の詳細は省略する。
Embodiment An embodiment of the present invention is shown in FIG. In the figure, 30 is an inversion gate. Components that are the same as those in FIG. 4 are given the same numbers, and details of their operations will be omitted.

以下動作波形を示す第2図を用いて動作を説明する。ま
ず、NRZ信号dをエンコーダ1で変換し、CMI信号
すとし、さらに反転ゲート3oでCMI信号Cとする。
The operation will be explained below using FIG. 2 showing operation waveforms. First, the NRZ signal d is converted by the encoder 1 into a CMI signal, and further converted into a CMI signal C by the inverting gate 3o.

CMI信号Cでは、パルスの立上りの間隔が基本周期T
の整数倍であるので、これを光信号に変換したLEDの
出力波形dの立上りもまた、基本周期Tの整数倍となる
In the CMI signal C, the interval between pulse rises is the basic period T.
Therefore, the rise of the output waveform d of the LED, which is converted into an optical signal, is also an integral multiple of the fundamental period T.

一方、LEDは立上りが急な特性をしている。On the other hand, LEDs have a characteristic of having a steep rise.

したがって、アンプ5の出力信号eをゲート1゜の識別
レベルHで識別して得られる信号fの立上りは、間隔が
基本周期の整数祷で、位相のゆらぎがきわめて小さいも
のとなる。そのため、信号fのパルスの立上シで位相比
較をして抽出したクロックqの位相の変化はきわめて小
さい。その結果デコーダ6で符号を識別する際の判断誤
りは小さくなる。また再生した信号りの位相のゆらぎも
小さくなるので中継した時に累積される位相のゆらぎの
量も小さくなり、中継段数を多くすることができる。
Therefore, the rising edge of the signal f obtained by identifying the output signal e of the amplifier 5 using the discrimination level H of the gate 1° has an interval of an integer of the fundamental period, and the phase fluctuation is extremely small. Therefore, the change in the phase of the clock q extracted by phase comparison at the rising edge of the pulse of the signal f is extremely small. As a result, errors in judgment when identifying codes by the decoder 6 are reduced. Furthermore, since the phase fluctuation of the reproduced signal is also reduced, the amount of phase fluctuation accumulated during relaying is also reduced, and the number of relay stages can be increased.

第3図は本発明を示す他の実施例であり、エンコーダ1
の出力段を反転出力端子を有するD型フリップフロップ
で構成すれば、第1図に示す反転ゲート30は不要にな
り、回路を簡単化できる。
FIG. 3 shows another embodiment of the present invention, in which the encoder 1
By constructing the output stage of a D-type flip-flop having an inverting output terminal, the inverting gate 30 shown in FIG. 1 becomes unnecessary and the circuit can be simplified.

発明の効果 以上述べてきたように、本発明によれば、CMI符号化
方式において、簡単な構成で、位相のゆらぎのきわめて
小さなりロックを抽出することができ、実用上きわめて
有用である。
Effects of the Invention As described above, according to the present invention, in a CMI encoding system, it is possible to extract a lock having extremely small phase fluctuation with a simple configuration, and it is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における光伝送方式を示すブ
ロック図、第2図はその要部波形図、第3図は本発明の
他の実施例の光伝送方式のブロック図、第4図は従来例
の光伝送方式を示すブロック図、第6図はその要部波形
図である。 30・・・・・・反転ゲート、31・・・・・・LED
、32・・・・・・PLL回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名N 
2 図 a) 城         塚
FIG. 1 is a block diagram showing an optical transmission system in one embodiment of the present invention, FIG. 2 is a waveform diagram of its main parts, FIG. 3 is a block diagram of an optical transmission system in another embodiment of the invention, and FIG. The figure is a block diagram showing a conventional optical transmission system, and FIG. 6 is a waveform diagram of its essential parts. 30...Inversion gate, 31...LED
, 32...PLL circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person N
2 Figure a) Castle mound

Claims (1)

【特許請求の範囲】[Claims] CMI(Code Mark Inversion)符
号化信号の極性を反転してCMI信号とし、前記CMI
信号で、パルスの立上りと立下りで特性の異なる発光ダ
イオードを駆動する送信部と、前記@CMI@信号を受
光して前記@CMI@信号のパルスの立上りで位相同期
をとるタイミング抽出回路の受信部とからなることを特
徴とする光伝送装置。
The polarity of a CMI (Code Mark Inversion) encoded signal is inverted to produce a CMI signal, and the CMI
A transmitter that drives a light emitting diode with different characteristics at the rising and falling edges of the pulse, and a timing extraction circuit that receives the @CMI@ signal and performs phase synchronization at the rising edge of the @CMI@ signal. An optical transmission device comprising:
JP61054043A 1986-03-12 1986-03-12 Light transmission equipment Pending JPS62210747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054043A JPS62210747A (en) 1986-03-12 1986-03-12 Light transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054043A JPS62210747A (en) 1986-03-12 1986-03-12 Light transmission equipment

Publications (1)

Publication Number Publication Date
JPS62210747A true JPS62210747A (en) 1987-09-16

Family

ID=12959571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054043A Pending JPS62210747A (en) 1986-03-12 1986-03-12 Light transmission equipment

Country Status (1)

Country Link
JP (1) JPS62210747A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205938A (en) * 1989-10-06 1991-09-09 Fujitsu Ltd Optical signal repeating transmission control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205938A (en) * 1989-10-06 1991-09-09 Fujitsu Ltd Optical signal repeating transmission control system

Similar Documents

Publication Publication Date Title
US4337457A (en) Method for the serial transmission of binary data and devices for its implementation
US4361895A (en) Manchester decoder
ATE62776T1 (en) METHOD OF GENERATION OF A DIGITAL CLOCK SIGNAL FROM MANCHESTER ENCODED SIGNALS.
AU575280B2 (en) Method of transmitting information, encoding and decoding device
US4746898A (en) Bi-phase decoder
FI883954A0 (en) OVERFLOWING OVER / ELLER ANODNING FOER DEMODULERING AV EN BIPHASE SIGNAL.
IE45458B1 (en) Miller-encoded message decoder
US4232388A (en) Method and means for encoding and decoding digital data
CA1037608A (en) Self-clocked pulse signal decoders
EP0058081A2 (en) Methods and apparatus for encoding binary data
US4292626A (en) Manchester decoder
EP0059224B1 (en) System for coding and decoding binary data
WO1989012891A1 (en) Three-part decoder circuit
JPS62210747A (en) Light transmission equipment
US4928289A (en) Apparatus and method for binary data transmission
ATE14058T1 (en) DIGITAL MESSAGE TRANSMISSION SYSTEM.
GB1507041A (en) Circuit arrangements for decoding data signals
KR890009127A (en) Frame Synchronization Method and System
JPH02501526A (en) Data bit detector for fiber optic systems
JPH0671252B2 (en) Sync signal decoder
US4788605A (en) Receive Manchester clock circuit
US4806907A (en) Apparatus and method for digital data transmission
JPS62274948A (en) Frame synchronizing system
JPH0323714Y2 (en)
KR870000718Y1 (en) Manchester code decoder