JPS6221041B2 - - Google Patents

Info

Publication number
JPS6221041B2
JPS6221041B2 JP10384282A JP10384282A JPS6221041B2 JP S6221041 B2 JPS6221041 B2 JP S6221041B2 JP 10384282 A JP10384282 A JP 10384282A JP 10384282 A JP10384282 A JP 10384282A JP S6221041 B2 JPS6221041 B2 JP S6221041B2
Authority
JP
Japan
Prior art keywords
magnetic
core
firing
powder
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10384282A
Other languages
Japanese (ja)
Other versions
JPS58221204A (en
Inventor
Katsumi Sawada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP10384282A priority Critical patent/JPS58221204A/en
Publication of JPS58221204A publication Critical patent/JPS58221204A/en
Publication of JPS6221041B2 publication Critical patent/JPS6221041B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0278Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements with at least one alloying element having a minimum content above 5%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、鉄(Fe)、珪素(Si)、アルミ
(Al)を主成分とする鉄―珪素―アルミ磁性合金
を原料とした圧粉磁心の製造方法に関するもので
ある。 Fe―Si―Al磁性合金は既に公知であり、重量
でSi4〜13%、Al4〜7%、残鉄の組成のものが透
磁率が最も大きくなることが知られている。 従来、Fe―Si―Al磁性合金で圧粉磁心を構成
し、インダクタンス素子として装荷線輪や高周波
磁心に用いられている。このような圧粉磁心は、
合金イレゴツトを粉砕して得た合金粉末に絶縁皮
膜を施した後、バインダーを加えてプレス成形
し、これを焼成することによつて製造されてお
り、こうして得られた圧粉磁心は、ヒステリシス
損および渦電流損が小さく、飽和磁束密度が大き
く、温度特性が良好である等の特長を有してい
た。 しかしながら、高性能な磁気特性を有するフエ
ライトの出現によつて、装荷線輪、LCフイルタ
用チヨークコイルはフエライトに置き換えられ、
また電源用チヨークコイル等には透磁率が高く、
電力損失の低いMo―Ni―Feを主成分とするモリ
ブデンパーマロイ圧粉磁心が用いられ、現在で
は、Fe―Si―Al系磁性合金の圧粉磁心はほとん
ど用いられなくなつている。 この理由は、Fe―Si―Al系磁性合金は透磁率
が80(10kHz)、電力損失が250kW/m3
(25kHz、1000G)であり、モリブデンパーマロ
イ圧粉磁心の透磁率125(10kHz)、電力損失
150kW/m3(25kHz、1000G)に比して磁気特性
が悪いことによる。 一方で、モリブデンパーマロイの原料であるモ
リブデンやパーマロイの価格が高いので、合金自
身が高価となる欠点があるが、Fe―Si―Alは逆
に廉価である。 従つて、本発明は廉価なFe―Si―Al系磁性合
金からなり、磁気特性を改善した圧粉磁心を製造
する方法を提供することを目的とする。 本発明は、重量でSi4〜13%、Al4〜7%、残鉄
を主成分とする鉄―珪素―アルミ磁性合金インゴ
ツトを700〜1100℃で熱処理(焼鈍)後、粉砕
し、得られた粉末にバインダを加えてプレス成形
し、この成形体を水素雰囲気中で600〜800℃にて
焼成することを特徴とする鉄―珪素―アルミ系磁
性合金圧粉磁心の製造方法である。 Fe―Si―Al合金では溶解鋳造時にAlやSiが偏
析を起し易い。このためインゴツトの焼鈍は、バ
ルクへのSi、Alの拡散を考慮し、高い温度ほど望
ましい。しかし、余り高いとSi、Alが表面から酸
化物として出てしまうので、組成が変化してしま
う。またSiが少なくAlに富んだ異相が結晶粒内お
よび粒界に析出し磁気特性を劣化させる。焼鈍温
度が1200℃を越えると、この特性劣化がはなはだ
しい。従つて、焼鈍温度は700〜1100℃が望まし
い。 また焼成は、プレス成形時のひずみを除去する
ために600〜800℃で行なうことが望ましいが、大
気焼成の場合、この温度では、粒子が酸化し、透
磁率の低下とともに電力損失の増大を招く。しか
し、水素中にて焼成すれば、粒子が酸化せず効果
的に透磁率・電力損失を改善できる。 以下本発明を図面を参照して詳細に説明する。 第1図および第2図は(熱処理温度(即ち焼鈍
温度))と透磁率(10kHz)および電力損失
(1000G)との関係を示し、それぞれ曲線aは焼
成を水素中700℃で行なつたもの、曲線bは焼成
を大気中700℃で行なつたものを示す。第1図お
よび第2図から、焼鈍温度は700〜1100℃の範囲
が良いことがわかる。また焼成は大気中より水素
中の方が良いことがわかる。 第3図から第5図は、インゴツトの熱処理を
1000℃で行ない、コア焼成の雰囲気を水素中(曲
線a)としたものおよび大気中(曲線b)とした
ものについての、コア焼成温度に対する透磁率
(10kHz)、透磁率(1000kHz)および電力損失
(25kHz、1000G)の変化を、それぞれ、示して
いる。 第3図〜第5図から、コア焼成の雰囲気は大気
中より水素中の方が良いこと、焼成温度は600〜
800℃の範囲が良いことがわかる。 Si9.2重量%、Al5.7重量%、残FeのFe―Si―
Al合金インゴツトを、本発明に従つて、1000℃
で3時間熱処理し、これを粉砕(スタンプミル)
後、150〜250メツシユに篩分けし、680℃で1時
間粉末酸化して絶縁皮膜を形成し、これに無機質
絶縁結着剤のバインダーを添加混合後、32メツシ
ユ以下に整粒し、これを20t/cm2でプレスして、
水素中にて700℃、1時間の焼成を行なつて圧粉
磁心試料を得た。この本発明による圧粉磁心試料
の磁気特性と電力損失を測定した。その結果を第
1表および第2表で示す。 第1表、第2表には、比較例として、本発明の
製造方法に従がわず、熱処理温度を1250℃、コア
焼成温度を700℃で1時間とし、他の条件は、上
記の本発明試料と同一として製造した試料につい
ての特性および、従来のモリブデンパーマロイの
特性を示した。 なお、第2表は各直流重量時の場合の透磁率を
示す。
The present invention relates to a method for manufacturing a powder magnetic core using an iron-silicon-aluminum magnetic alloy as a raw material, the main components of which are iron (Fe), silicon (Si), and aluminum (Al). Fe--Si--Al magnetic alloys are already known, and it is known that those with a composition of 4 to 13% Si, 4 to 7% Al, and balance iron have the highest magnetic permeability. Conventionally, powder magnetic cores are made of Fe--Si--Al magnetic alloys and used as inductance elements in loaded coils and high-frequency magnetic cores. Such a powder magnetic core is
It is manufactured by applying an insulating film to the alloy powder obtained by crushing the alloy irregularity, adding a binder, press-forming it, and firing it.The powder magnetic core obtained in this way has a low hysteresis loss. It also had features such as low eddy current loss, high saturation magnetic flux density, and good temperature characteristics. However, with the advent of ferrite, which has high-performance magnetic properties, loading coils and chiyoke coils for LC filters have been replaced with ferrite.
In addition, magnetic permeability is high for power source coils, etc.
Molybdenum permalloy dust cores whose main components are Mo--Ni--Fe, which has low power loss, are now used, and powder magnetic cores made of Fe--Si--Al magnetic alloys are almost no longer used. The reason for this is that Fe-Si-Al magnetic alloy has a magnetic permeability of 80 (10kHz) and a power loss of 250kW/ m3.
(25kHz, 1000G), permeability of molybdenum permalloy powder magnetic core is 125 (10kHz), power loss
This is due to poor magnetic properties compared to 150kW/m 3 (25kHz, 1000G). On the other hand, since molybdenum and permalloy, the raw materials for molybdenum permalloy, are expensive, the alloy itself has the disadvantage of being expensive, but Fe-Si-Al, on the other hand, is inexpensive. Therefore, an object of the present invention is to provide a method for producing a dust core made of an inexpensive Fe--Si--Al based magnetic alloy and with improved magnetic properties. The present invention is a powder obtained by heat-treating (annealing) an iron-silicon-aluminum magnetic alloy ingot whose main components are 4 to 13% Si, 4 to 7% Al, and residual iron by weight at 700 to 1100°C, and then pulverizing the ingot. This is a method for producing an iron-silicon-aluminum magnetic alloy dust core, which is characterized by adding a binder to the material, press-forming the product, and firing the molded product at 600 to 800°C in a hydrogen atmosphere. In Fe-Si-Al alloys, Al and Si tend to segregate during melting and casting. For this reason, when annealing the ingot, a higher temperature is preferable in consideration of the diffusion of Si and Al into the bulk. However, if it is too high, Si and Al will come out as oxides from the surface, resulting in a change in composition. In addition, a heterogeneous phase rich in Al and low in Si precipitates within the crystal grains and at the grain boundaries, deteriorating the magnetic properties. When the annealing temperature exceeds 1200°C, this property deterioration becomes significant. Therefore, the annealing temperature is preferably 700 to 1100°C. Additionally, it is desirable to perform firing at a temperature of 600 to 800°C to remove strain during press forming, but in the case of atmospheric firing, at this temperature the particles will oxidize, leading to a decrease in magnetic permeability and an increase in power loss. . However, by firing in hydrogen, the particles are not oxidized and magnetic permeability and power loss can be effectively improved. The present invention will be described in detail below with reference to the drawings. Figures 1 and 2 show the relationship between (heat treatment temperature (i.e. annealing temperature)), magnetic permeability (10kHz) and power loss (1000G), where curve a is for sintering in hydrogen at 700°C. , curve b shows that the firing was carried out in the air at 700°C. From FIG. 1 and FIG. 2, it can be seen that the annealing temperature is preferably in the range of 700 to 1100°C. It is also clear that firing in hydrogen is better than in the air. Figures 3 to 5 show the heat treatment of ingots.
Magnetic permeability (10kHz), magnetic permeability (1000kHz), and power loss versus core firing temperature for core firing conducted at 1000℃ and in hydrogen (curve a) and in air (curve b). (25kHz, 1000G) are shown respectively. From Figures 3 to 5, it is clear that the core firing atmosphere is better in hydrogen than in the air, and the firing temperature is 600~600℃.
It can be seen that the range of 800℃ is good. Si9.2% by weight, Al5.7% by weight, remaining Fe—Si—
According to the present invention, an Al alloy ingot was heated to 1000°C.
Heat treated for 3 hours and crushed (stamp mill)
After that, the powder is sieved into 150 to 250 meshes and oxidized at 680℃ for 1 hour to form an insulating film.After adding and mixing an inorganic insulating binder, the powder is sized to 32 meshes or less. Press at 20t/ cm2 ,
A powder magnetic core sample was obtained by firing in hydrogen at 700°C for 1 hour. The magnetic properties and power loss of this powder magnetic core sample according to the present invention were measured. The results are shown in Tables 1 and 2. Tables 1 and 2 show comparative examples in which the manufacturing method of the present invention was not followed, the heat treatment temperature was 1250°C, the core firing temperature was 700°C for 1 hour, and the other conditions were the same as in the above book. The characteristics of a sample manufactured identical to the invention sample and the characteristics of conventional molybdenum permalloy are shown. Note that Table 2 shows the magnetic permeability at each DC weight.

【表】【table】

【表】 第1表および第2表から明らかなように、本発
明によるコアは、本発明によらないものおよびモ
リブデンパーマロイに比して、透磁率において、
それぞれ、約2倍、約1.2倍である。磁束密度、
電力損失、直流重量においては、モリブデンパー
マロイより同等以上、本発明によらないFe―Si
―Al合金コアに代えて大巾に改善されている。 以上述べた如く本発明によれば、珪素4〜13
%、アルミニウム4〜7%残部鉄とした合金にお
いて、溶解鋳造後、熱処理(焼鈍)として、700
〜1100℃に加熱保持後室温に至るようにし、その
後、機械的粉砕により粉末化しこれを、原料とし
バインダー混合、プレス、水素中にて、600〜
800tで焼成したので磁気特性を良好な圧粉磁心を
提供し得しかも、天然埋蔵量の豊富な元素Si、
Al、Feを、主成分としているため、同様な磁気
特性を有するこの種圧粉磁心を極めて低廉に提供
し得る効果を有する。また、従来のモリブデンパ
ーマロイ圧粉磁心の磁気特性に比して、透磁率、
磁束密度が大きく電力損失直流重畳同程度の圧粉
磁心を極めて低廉に供給し得る。 従つて、本発明によつて得られる圧粉磁心は、
高周波電源用インダクタ、LCフイルタを始め各
種のインダクタに適用して好適であることは勿論
である。
[Table] As is clear from Tables 1 and 2, the core according to the invention has a lower magnetic permeability than the core according to the invention and molybdenum permalloy.
They are about 2 times and about 1.2 times, respectively. magnetic flux density,
In terms of power loss and DC weight, it is equivalent to or better than molybdenum permalloy, and Fe-Si which is not based on the present invention
- Substantially improved by replacing the Al alloy core. As described above, according to the present invention, silicon 4 to 13
% aluminum, 4 to 7% iron alloy, after melting and casting, as heat treatment (annealing), 700
After heating and holding at ~1100℃, it was allowed to reach room temperature, and then mechanically pulverized to powder, which was used as a raw material, mixed with a binder, pressed, and heated in hydrogen for 600~
Because it was fired at 800 tons, it was able to provide a dust core with good magnetic properties.
Since it contains Al and Fe as the main components, it has the effect of being able to provide this type of powder magnetic core with similar magnetic properties at an extremely low cost. In addition, compared to the magnetic properties of conventional molybdenum permalloy powder magnetic cores, magnetic permeability,
A dust core with a large magnetic flux density and a power loss equivalent to DC superposition can be supplied at an extremely low cost. Therefore, the powder magnetic core obtained by the present invention is
Of course, it is suitable for application to various inductors including high frequency power supply inductors and LC filters.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、熱処理温度による透磁
率および電力損失の変化をそれぞれ示す図、第3
図、第4図および第5図は、コア焼成温度によ
る、透磁率(10kHz)、透磁率(1000kHz)およ
び電力損失の変化をそれぞれ示す図である。
Figures 1 and 2 are diagrams showing changes in magnetic permeability and power loss depending on heat treatment temperature, respectively.
4 and 5 are diagrams showing changes in magnetic permeability (10 kHz), magnetic permeability (1000 kHz), and power loss, respectively, depending on the core firing temperature.

Claims (1)

【特許請求の範囲】[Claims] 1 重量でSi4〜13%、Al4〜7%、残鉄を主成分
とする鉄―珪素―アルミ系磁性合金インゴツトを
700〜1100℃で焼鈍後、粉砕し、得られた粉末に
バインダを加えてプレス成形し、該成形体を水素
雰囲気中で600〜800℃にて焼成することを特徴と
する鉄―珪素―アルミ系磁性合金圧粉磁心の製造
方法。
1 An iron-silicon-aluminum magnetic alloy ingot whose main components are 4 to 13% Si, 4 to 7% Al, and residual iron by weight.
Iron-silicon-aluminum, which is characterized by annealing at 700-1100°C, pulverizing, adding a binder to the resulting powder, press-molding, and firing the compact at 600-800°C in a hydrogen atmosphere. A method for manufacturing a magnetic alloy dust core.
JP10384282A 1982-06-18 1982-06-18 Production of iron-silicon-aluminum magnetic alloy compact core Granted JPS58221204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10384282A JPS58221204A (en) 1982-06-18 1982-06-18 Production of iron-silicon-aluminum magnetic alloy compact core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10384282A JPS58221204A (en) 1982-06-18 1982-06-18 Production of iron-silicon-aluminum magnetic alloy compact core

Publications (2)

Publication Number Publication Date
JPS58221204A JPS58221204A (en) 1983-12-22
JPS6221041B2 true JPS6221041B2 (en) 1987-05-11

Family

ID=14364679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10384282A Granted JPS58221204A (en) 1982-06-18 1982-06-18 Production of iron-silicon-aluminum magnetic alloy compact core

Country Status (1)

Country Link
JP (1) JPS58221204A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62222002A (en) * 1986-03-20 1987-09-30 Hitachi Metals Ltd Production of dust core of fe-si-al alloy
JP7418194B2 (en) * 2019-12-06 2024-01-19 株式会社タムラ製作所 Manufacturing method of powder magnetic core

Also Published As

Publication number Publication date
JPS58221204A (en) 1983-12-22

Similar Documents

Publication Publication Date Title
KR100545849B1 (en) Manufacturing method of iron-based amorphous metal powder and manufacturing method of soft magnetic core using same
JP7089686B2 (en) Magnetic core using MnZn-based ferrite
KR101470513B1 (en) Soft Magnetic Cores Having Excellent DC Biased Characteristics in High Current and Core Loss Characteristics, and Manufacturing Methods thereof
KR20050018235A (en) Method for Making Nano Scale Grain Metal Powders Having Excellent High Frequency Characteristics and Method for Making Soft Magnetic Core for High Frequency Using the Same
JP2007019134A (en) Method of manufacturing composite magnetic material
JP3964213B2 (en) Manufacturing method of dust core and high frequency reactor
JPS63304603A (en) Green compact of fe soft-magnetic alloy and manufacture thereof
JP2006193343A (en) Ferrite sintered body and electronic component using the same
JPWO2019123681A1 (en) MnCoZn ferrite and method for producing the same
JP2001307914A (en) Magnetic powder for dust core, dust core using it, and method for manufacturing dust core
TW316986B (en)
JPS63117406A (en) Amorphous alloy dust core
US1809042A (en) Magnet core
JPS6221041B2 (en)
JP7417830B2 (en) Manufacturing method of composite magnetic material
JPH0246651B2 (en)
JPWO2019167393A1 (en) MnCoZn ferrite and method for producing the same
JPS59179729A (en) Magnetic core of amorphous alloy powder compact
JP2001250709A (en) Magnetic powder for dust core
US3609083A (en) Heat treatment of nickel zinc cobalt ferrite
JP3654303B2 (en) Low loss magnetic material
JPS6360081B2 (en)
TWI694059B (en) MnCoZn series ferrite iron and its manufacturing method
JPH0374811A (en) Ferrite magnetic material
JP3556032B2 (en) Manufacturing method of metallic magnetic material for high frequency