JPS62210287A - Water pump - Google Patents

Water pump

Info

Publication number
JPS62210287A
JPS62210287A JP5391186A JP5391186A JPS62210287A JP S62210287 A JPS62210287 A JP S62210287A JP 5391186 A JP5391186 A JP 5391186A JP 5391186 A JP5391186 A JP 5391186A JP S62210287 A JPS62210287 A JP S62210287A
Authority
JP
Japan
Prior art keywords
pulley
impeller
shaft
armature
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5391186A
Other languages
Japanese (ja)
Inventor
Makoto Nakagawa
誠 中川
Minoru Kanehara
金原 実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP5391186A priority Critical patent/JPS62210287A/en
Publication of JPS62210287A publication Critical patent/JPS62210287A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/164Controlling of coolant flow the coolant being liquid by thermostatic control by varying pump speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To make it possible to secure a flow rate required for cooling during high speeds even with a smaller impeller diameter by transmitting power by arranging a solenoid joint as a transmitting means operative under a warm condition and connecting a pulley with a shaft directly. CONSTITUTION:When the temperature of coolant water rises and a warm condition is produced, a water temperature switch is turned on, and a solenoid coil 27 is energized. Then, due to its exciting action, a magnetic circuit is formed so that an armature 31 located within the said circuit and interposed in a gap between a flange part 30a facing a pulley 25 and the pulley 25 is attracted to the pulley 25. Due to that, the armature 31 is pressed against the pulley 25, power transmitted to the pulley 25 is transmitted to the armature 31, and the power of the armature 31 is transmitted via a spring seat 32, a rivet 33, a holder 30 and a pulley seat 29 to a shaft 30 to turn an impeller at high speeds. With this constitution, it is made possible to secure a flow rate required for cooling during high speeds even with a smaller diameter of the impeller 14.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、水冷式内燃機関用ウォータポンプに関するも
ので、更に詳細には、水温によりポンプインペラの回転
制御を行なうウォータポンプに関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a water pump for a water-cooled internal combustion engine, and more particularly, to a water pump that controls the rotation of a pump impeller based on water temperature. It is related to.

(従来の技術) 従来のこの種のウォータポンプとして特開昭60−22
019号公報に開示され、第4図に示すものがあった。
(Prior art) As a conventional water pump of this type, Japanese Patent Application Laid-Open No. 60-22
There was one disclosed in Publication No. 019 and shown in FIG.

このウォータポンプ50は、ポンプハウジング51に回
転自在に支承され、外側一端にエンジンと連結するプー
リーを取付けたシャフト53.該シャフト53にベアリ
ングを介して回転自在に支承されるケース54.該ケー
ス54に内部空間が形成されるように固定されるケース
カバー55、前記内部空間内に位置するようにシャフト
53に固定されるロータ56、前記ケースカバー55に
固定されるインペラ57、前記内部空間を粘性流体を貯
える油溜り室58と前記ローター56を収容する作動室
59とに分離する支切板60.該支切板60に形成され
前記油溜り室58から前記作動室59へ粘性流体を還流
させる流入調整孔61、前記油溜り室58側に固定され
スプリング62により該流入調整孔61を閉塞押圧する
バルブ63及び、前記ケースカバー55の外面に取り付
けられ冷却水温に感応して該バルブ63に当接しバルブ
63を開閉制御する怒温体64から構成され、インペラ
の回転を水温により継手効率が可変する粘性流体継手に
より制御し消費馬力及び燃料消費の節減を計るものであ
った。
This water pump 50 is rotatably supported by a pump housing 51, and has a shaft 53 attached to one outer end thereof with a pulley connected to the engine. A case 54 rotatably supported by the shaft 53 via a bearing. A case cover 55 fixed to the case 54 so as to form an internal space, a rotor 56 fixed to the shaft 53 so as to be located in the internal space, an impeller 57 fixed to the case cover 55, and the inside A partition plate 60 that separates the space into an oil reservoir chamber 58 that stores viscous fluid and an operating chamber 59 that accommodates the rotor 56. An inflow adjustment hole 61 is formed in the dividing plate 60 and allows the viscous fluid to flow back from the oil reservoir chamber 58 to the working chamber 59. An inflow adjustment hole 61 is fixed to the oil reservoir chamber 58 side and is pressed to close the inflow adjustment hole 61 by a spring 62. It is composed of a valve 63 and a hot body 64 attached to the outer surface of the case cover 55 and abuts against the valve 63 in response to the cooling water temperature to control the opening and closing of the valve 63, and the joint efficiency of the rotation of the impeller is varied depending on the water temperature. It was controlled by a viscous fluid coupling to reduce horsepower and fuel consumption.

(発明が解決しようとする問題点) しかしながら上記した従来のウォータポンプに於いては
、エンジンの動力を粘性流体継手を介してインペラに伝
達している為第5図に示されるように粘性流体継手の特
性上、温間時におけるエンジン高回転時に於いてインペ
ラの回転がプーリーの回転に追従せず頭打ちになり、冷
却に必要な流量が得られずオーバーヒートを起こす恐れ
があった。
(Problems to be Solved by the Invention) However, in the conventional water pump described above, the power of the engine is transmitted to the impeller via the viscous fluid coupling, so as shown in FIG. Due to the characteristics of the engine, when the engine is running at high speeds when the engine is warm, the rotation of the impeller does not follow the rotation of the pulley and reaches a plateau, causing the risk of overheating because the flow rate necessary for cooling cannot be obtained.

そこで本発明は、温間時におけるエンジン高回転時にイ
ンペラの回転が頭打ちにならないようにすること、をそ
の技術的課題とする。
Therefore, the technical problem of the present invention is to prevent the rotation of the impeller from reaching a ceiling during high engine rotation during warm conditions.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記技術的課題を解決するために講じた技術的手段は、
エンジンに連結されるプーリーとインペラが固定される
シャフトとの温間時に於ける伝達手段を電磁継手とする
ことである。
(Means to solve the problem) The technical measures taken to solve the above technical problem are:
An electromagnetic coupling is used as a transmission means during warm times between the pulley connected to the engine and the shaft to which the impeller is fixed.

(作用) 温間時に於けるプーリーとインペラの伝達を電磁継手を
作動させることにより直結することによって、エンジン
高回転時に於いてもインペラの回転が頭打ちになること
がなく、エンジン冷却に必要な流量を得ることができ、
また冷間時に於いては粘性流体継手を介してプーリーか
らインペラへ動力が伝達されるので暖機特性の向上及び
中、高速域の損失馬力の低減をはかることができる。
(Function) By directly linking the transmission between the pulley and the impeller during warm conditions by operating an electromagnetic coupling, the rotation of the impeller does not reach a plateau even when the engine is running at high speeds, and the flow rate required for engine cooling is maintained. you can get
Furthermore, when the engine is cold, power is transmitted from the pulley to the impeller via the viscous fluid coupling, which improves warm-up characteristics and reduces horsepower loss in medium and high speed ranges.

(実施例) 以下、本発明に従った一実施例について第1図に基づい
て説明する。
(Example) Hereinafter, an example according to the present invention will be described based on FIG. 1.

第1図に示されるウォータポンプ10のポンプボデー1
1内にベアリング12を介してシャフト13が支承され
、該シャフト13の図示右端にインペラ14が固設され
る。該インペラ14が揚水作用を行うポンプ室15を密
封するためにインペラ14とベアリング12との間に周
知のメカニカルシール16が配設される。一方、シャフ
ト13の図示左側には、ベアリング17.18を介して
第1ハウジング16.第2ハウジング17が回転自在に
支承され、該第1ハウジング19に第2ハウジング20
が内部空間を形成するようにシール用Oリング21を介
して固定されている。内部空間内にはシリコーンオイル
等の粘性流体が封入されており、またベアリング17.
18の間のシャフト13上には外縁を内部空間に介在す
るロータ22が固設され、ロータ22と第2ハウジング
20の相対面には周知のラビリンス溝から構成される、
トルク伝達面23が形成されている。
Pump body 1 of water pump 10 shown in FIG.
A shaft 13 is supported within the shaft 1 via a bearing 12, and an impeller 14 is fixedly installed at the right end of the shaft 13 in the drawing. A well-known mechanical seal 16 is disposed between the impeller 14 and the bearing 12 in order to seal a pump chamber 15 in which the impeller 14 pumps water. On the other hand, on the left side of the shaft 13 in the drawing, a first housing 16. A second housing 17 is rotatably supported, and a second housing 20 is attached to the first housing 19.
is fixed via a sealing O-ring 21 so as to form an internal space. A viscous fluid such as silicone oil is sealed in the internal space, and a bearing 17.
A rotor 22 is fixed on the shaft 13 between the rotor 18 and the rotor 22 with its outer edge interposed in the inner space, and a well-known labyrinth groove is formed on the opposing surface of the rotor 22 and the second housing 20.
A torque transmission surface 23 is formed.

またボデー11の図示左端には前記第1ハウジング19
の外径に圧入され一体となったプーリー25がベアリン
グ24を介して回転自在に支承されており、該プーリー
25はソレノイドコイル27を嵌装したカバー°28が
遊挿され、カバー28は溶接等により結合された支持部
材34によりボデー11に螺着され固定されている。
Further, the first housing 19 is located at the left end of the body 11 in the figure.
A pulley 25 is press-fitted into the outer diameter of the unit and is rotatably supported via a bearing 24. A cover 28 fitted with a solenoid coil 27 is loosely inserted into the pulley 25, and the cover 28 is welded, etc. The support member 34 is screwed and fixed to the body 11 by means of a support member 34 connected to the support member 34 .

シャフト13の図示左端にはプーリーシート29が圧入
固定され、該プーリーシート29にはプーリー25との
間に間隙を設けてプーリー25と対面する鍔部30aを
有したホルダー30が固定されている。該鍔部30aと
プーリー25との間隙にはアーマチュア31が介装され
ており、アーマチュア31はスプリングシート32を介
して複数個のリベット33により間隙内を軸方向に移動
可能に鍔部30aに鋲着されている。
A pulley seat 29 is press-fitted and fixed to the left end of the shaft 13 in the drawing, and a holder 30 having a flange 30a facing the pulley 25 with a gap therebetween is fixed to the pulley seat 29. An armature 31 is interposed in the gap between the flange 30a and the pulley 25, and the armature 31 is riveted to the flange 30a via a spring seat 32 with a plurality of rivets 33 so as to be movable in the axial direction within the gap. It is worn.

上記構成のウォータポンプに於いて、次にその作用につ
いて説明する。
Next, the operation of the water pump having the above structure will be explained.

冷却水温が低い冷間時に於いては、図示しない水温スイ
ッチがオフ(OFF)で、ソレノイドコイル27が通電
されないので、プーリー25に伝えられたエンジンの動
力は、プーリー25の内周面に圧入された第1ハウジン
グ19及び、第2ハウジング20に伝えられ、第2ハウ
ジング20とロータ22の相対面に設けられたトルク伝
達面23によって粘性流体を介してシャフト13に伝え
られてインペラ14は低速回転する。
When the cooling water temperature is low, the water temperature switch (not shown) is OFF and the solenoid coil 27 is not energized, so the engine power transmitted to the pulley 25 is press-fitted into the inner peripheral surface of the pulley 25. The torque is transmitted to the first housing 19 and the second housing 20, and is transmitted to the shaft 13 via viscous fluid by the torque transmission surface 23 provided on the opposing surface of the second housing 20 and the rotor 22, causing the impeller 14 to rotate at a low speed. do.

次に冷却水温が上昇し温間状態になると、図示しない水
温スイッチがオン(ON)L、ソレノイドコイル27が
通電されると、該ソレノイドコイル27の励磁作用によ
り磁気回路が形成され、該磁気回路中に位置するアーマ
チュア31がプーリー25に吸引される。それによりア
ーマチュア31はプーリー25に圧着され一体となり、
プーリー25に伝えられた動力がアーマチュア31に伝
えられ、アーマチュア3Iの動力がスプリングシー)3
2.  リベット33.ホルダー30及びプーリーシー
ト29を介してシャフト13に直結されて伝えられてイ
ンペラ14は高速回転する以上詳細に説明したように、
本発明は第2図に示す流量(Iりとウォータポンプ回転
数(rpm)の関係を表した特性図の如き特性を持たせ
、冷却水温の低い冷間時に於いては、第1ハウジング1
9、第2ハウジング20及びロータ22から成る粘性流
体継手を介してプーリー25の動力をシャフト13に伝
え、インペラ14の回転を低速回転させて、中、高速域
に於ける損失馬力を低減させると共にエンジンの暖機特
性を向上させることが出来、また冷却水温の高い温間時
には、プーリー25の動力をプーリー258 ソレノイ
ドコイル27、アーマチュア31.スプリングシート3
2゜リベット33及びホルダー30等から成る電磁継手
によりシャフト13に直結させ伝えるため、エンジン高
回転時に於いても冷却に必要な流量を得ることが出来る
Next, when the cooling water temperature rises and enters a warm state, a water temperature switch (not shown) is turned on (ON) L, and when the solenoid coil 27 is energized, a magnetic circuit is formed by the excitation action of the solenoid coil 27, and the magnetic circuit The armature 31 located therein is attracted to the pulley 25. As a result, the armature 31 is crimped and integrated with the pulley 25,
The power transmitted to the pulley 25 is transmitted to the armature 31, and the power of the armature 3I is transmitted to the spring sea) 3
2. Rivet 33. As explained in detail, the impeller 14 rotates at high speed by being directly connected to the shaft 13 through the holder 30 and the pulley seat 29.
The present invention has characteristics as shown in the characteristic diagram showing the relationship between the flow rate (I) and the water pump rotation speed (rpm) shown in FIG.
9. The power of the pulley 25 is transmitted to the shaft 13 through the viscous fluid coupling consisting of the second housing 20 and the rotor 22, and the impeller 14 is rotated at a low speed to reduce horsepower loss in medium and high speed ranges. The warm-up characteristics of the engine can be improved, and when the cooling water temperature is high, the power of the pulley 25 is transferred to the pulley 258, solenoid coil 27, armature 31. spring seat 3
Since it is directly connected to the shaft 13 and transmitted through an electromagnetic joint consisting of a 2° rivet 33, a holder 30, etc., the flow rate necessary for cooling can be obtained even when the engine is running at high speed.

また、第3図に示すようにベアリング24を廃止し、プ
ーリー25にかかる荷重をベアリング17.18に受け
させても良い。
Further, as shown in FIG. 3, the bearing 24 may be omitted and the load applied to the pulley 25 may be received by the bearings 17 and 18.

〔発明の効果〕〔Effect of the invention〕

本発明に於ける技術的課題を解決するためには、電磁継
手のみを使用して、冷却水温によりポンプ回転数を制御
する方法も考えられるが、この場合冷間時に於いて電磁
継手が非作動の時には、ポンプ回転数はO(rpm)で
あるため、エンジン冷却回路内には冷却水が流動してお
らず、その為エンジンの冷却は静止した冷却水への熱伝
導により行われ、エンジン側にヒートスポットが生じ、
それによりシリンダヘッド等に歪みが生じて冷却水漏れ
を招く恐れがある。
In order to solve the technical problem of the present invention, it is possible to use only an electromagnetic coupling and control the pump rotation speed according to the cooling water temperature, but in this case, the electromagnetic coupling is inactive during cold conditions. At the time of , the pump rotation speed is O (rpm), so there is no cooling water flowing in the engine cooling circuit, so the engine is cooled by heat conduction to the stationary cooling water, and the engine side Heat spots appear on the
This may cause distortion in the cylinder head and the like, leading to cooling water leakage.

そこが本発明は、冷間時には、粘性流体継手を介してプ
ーリーからシャフトへ動力を伝えてインペラを低速回転
さセ4、暖機特性の向上及び、中。
Therefore, the present invention transmits power from the pulley to the shaft through the viscous fluid coupling to rotate the impeller at low speed when the engine is cold.

高速域の損失馬力の低減を図り、温間時には、電磁継手
によりプーリーからシャフトを直結させ動力を伝え、高
速時の冷却に必要な流量を確保することができる構成と
したことにより、前記したヒートスポットがエンジン側
に生じることはない。
In order to reduce horsepower loss in the high-speed range, when the temperature is warm, the shaft is directly connected to the pulley using an electromagnetic coupling to transmit power, and by ensuring the flow rate necessary for cooling at high speed, the above-mentioned heat is reduced. No spots will occur on the engine side.

また、本発明に於いては、温間時に於いて電磁継手によ
りプーリーからシャフトへ直結して動力を伝えるため、
インペラ径を小さくしても、高速時の冷却に必要な流量
を確保することができる。
In addition, in the present invention, in order to transmit power by directly connecting the pulley to the shaft using an electromagnetic coupling during warm conditions,
Even with a small impeller diameter, the flow rate necessary for cooling at high speeds can be secured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に従ったウォータポンプの一実施例を示
す断面図、第2図は本発明のウォータポンプに於ける流
it (ji’)とウォータポンプ回転数Dpm)関係
を表した特性図、第3図は本発明の他の実施例を示した
断面図、第4図は従来のウオークポンプの断面図、第5
図は従来のウォータポンプに於ける流it (1)とウ
ォータポンプ回転数(rpm)の関係を表した特性図で
ある。 10・・・ウォータポンプ、11・・・ポンプボデー、
12.17.18.24・・・ベアリング、13・・・
シャフト、14・・・インペラ。 15・・・ポンプ室、16・・・メカニカルシール、1
9・・・第1ハウジング、20・・・第2ハウジング、
22・・・ロータ、23・・・トルク伝達面、25・・
・プーリー、27・・・ソレノイドコイル、30・・・
ホルダー、31・・・アーマチュア、32・・・スプリ
ングシート、33・・・リベット 実用新案登録出願人 1イレンH4ξ2林式盲仕 代表者  伊 藤   清 第2[& 那5図 ■ (r、p、m)
FIG. 1 is a sectional view showing an embodiment of a water pump according to the present invention, and FIG. 2 is a characteristic showing the relationship between flow it (ji') and water pump rotational speed Dpm) in the water pump of the present invention. Fig. 3 is a sectional view showing another embodiment of the present invention, Fig. 4 is a sectional view of a conventional walk pump, and Fig. 5 is a sectional view showing another embodiment of the present invention.
The figure is a characteristic diagram showing the relationship between flow it (1) and water pump rotation speed (rpm) in a conventional water pump. 10...Water pump, 11...Pump body,
12.17.18.24...Bearing, 13...
Shaft, 14...impeller. 15...Pump chamber, 16...Mechanical seal, 1
9... first housing, 20... second housing,
22... Rotor, 23... Torque transmission surface, 25...
・Pulley, 27...Solenoid coil, 30...
Holder, 31... Armature, 32... Spring seat, 33... Rivet Utility model registration applicant 1 Iren H4 ξ 2 Hayashi style blind service Representative Kiyoshi Ito 2 [& Na 5 Fig. ■ (r, p, m)

Claims (1)

【特許請求の範囲】[Claims] ポンプボデー、該ボデー内に軸受を介して回転自在に支
承されるシャフト、該シャフトの一端に固定されるイン
ペラ及び、該インペラが収容されるポンプ室を密封する
メカニカルシールを備え、前記シャフトの他端に粘性流
体継手を介してプーリーからの動力が伝達されるウォー
タポンプに於いて、前記プーリーと前記シャフトとの伝
達手段として、温間時に作動し前記プーリーと前記シャ
フトを直結する電磁継手を有したウォータポンプ。
A pump body, a shaft rotatably supported within the body via a bearing, an impeller fixed to one end of the shaft, and a mechanical seal that seals a pump chamber in which the impeller is housed, In a water pump in which power is transmitted from a pulley via a viscous fluid coupling at the end thereof, an electromagnetic coupling that operates when warm and directly connects the pulley and the shaft is provided as a transmission means between the pulley and the shaft. water pump.
JP5391186A 1986-03-12 1986-03-12 Water pump Pending JPS62210287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5391186A JPS62210287A (en) 1986-03-12 1986-03-12 Water pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5391186A JPS62210287A (en) 1986-03-12 1986-03-12 Water pump

Publications (1)

Publication Number Publication Date
JPS62210287A true JPS62210287A (en) 1987-09-16

Family

ID=12955896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5391186A Pending JPS62210287A (en) 1986-03-12 1986-03-12 Water pump

Country Status (1)

Country Link
JP (1) JPS62210287A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952314A1 (en) 1998-04-23 1999-10-27 Aisin Seiki Kabushiki Kaisha A cooling device of an engine
DE10057098C1 (en) * 2000-11-17 2002-03-28 Geraete & Pumpenbau Gmbh Regulated cooling medium pump, for internal combustion engine, uses magnetic coil and cooperating armature disc for disengaging pump drive for rapid heating of engine to its required running temperature
DE10128059C1 (en) * 2001-06-09 2002-11-28 Geraete & Pumpenbau Gmbh Variable cooling pump, for internal combustion engine, has rotor of electric motor carried by sleeve fitted over reverse rotation blocking device for pump wheel shaft
WO2004007923A1 (en) * 2002-07-12 2004-01-22 Behr Gmbh & Co. Kg Device for driving a coolant pump
WO2007071217A1 (en) * 2005-12-23 2007-06-28 Geräte-und Pumpenbau GmbH Dr. Eugen Schmidt Controllable coolant pump
DE102007004187A1 (en) 2007-01-27 2008-07-31 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Adjustable coolant pump
JP2010106663A (en) * 2008-10-28 2010-05-13 Hitachi Automotive Systems Ltd Water pump for automobile
JP2012525527A (en) * 2009-04-30 2012-10-22 ゲレーテ−ウント・プンペンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ドクトル・オイゲン・シュミット Switchable coolant pump
JP2014526660A (en) * 2011-09-13 2014-10-06 ピールブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Switchable mechanical coolant pump

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6199518B1 (en) 1998-04-23 2001-03-13 Aisin Seiki Kabushiki Kaisha Cooling device of an engine
EP0952314A1 (en) 1998-04-23 1999-10-27 Aisin Seiki Kabushiki Kaisha A cooling device of an engine
DE10057098C1 (en) * 2000-11-17 2002-03-28 Geraete & Pumpenbau Gmbh Regulated cooling medium pump, for internal combustion engine, uses magnetic coil and cooperating armature disc for disengaging pump drive for rapid heating of engine to its required running temperature
DE10128059C1 (en) * 2001-06-09 2002-11-28 Geraete & Pumpenbau Gmbh Variable cooling pump, for internal combustion engine, has rotor of electric motor carried by sleeve fitted over reverse rotation blocking device for pump wheel shaft
EP1275850A2 (en) 2001-06-09 2003-01-15 Geräte- und Pumpenbau GmbH, Dr. Eugen Schmidt Adjustable coolant pump for motor vehicles
US7475764B2 (en) 2002-07-12 2009-01-13 Behr Gmbh & Co. Kg Device for driving a coolant pump
WO2004007923A1 (en) * 2002-07-12 2004-01-22 Behr Gmbh & Co. Kg Device for driving a coolant pump
JP2006502333A (en) * 2002-07-12 2006-01-19 ベール ゲーエムベーハー ウント コー カーゲー Device for driving the coolant pump
CN1323229C (en) * 2002-07-12 2007-06-27 贝洱两合公司 Device for driving a coolant pump
WO2007071217A1 (en) * 2005-12-23 2007-06-28 Geräte-und Pumpenbau GmbH Dr. Eugen Schmidt Controllable coolant pump
US8038419B2 (en) 2005-12-23 2011-10-18 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Controllable coolant pump
DE102007004187A1 (en) 2007-01-27 2008-07-31 Geräte- und Pumpenbau GmbH Dr. Eugen Schmidt Adjustable coolant pump
JP2010106663A (en) * 2008-10-28 2010-05-13 Hitachi Automotive Systems Ltd Water pump for automobile
JP2012525527A (en) * 2009-04-30 2012-10-22 ゲレーテ−ウント・プンペンバウ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ドクトル・オイゲン・シュミット Switchable coolant pump
JP2014526660A (en) * 2011-09-13 2014-10-06 ピールブルグ パンプ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Switchable mechanical coolant pump
US9689394B2 (en) 2011-09-13 2017-06-27 Pierburg Pump Technology Gmbh Switchable mechanical coolant pump

Similar Documents

Publication Publication Date Title
US4271945A (en) Electrically actuated viscous fan clutch
US6644933B2 (en) Water pump with electronically controlled viscous coupling drive
US20070022979A1 (en) Coolant pump for internal combustion engine
JPH02246823A (en) Heating system for vehicle
JPH09136530A (en) Vehicle warming up system
JPS62210287A (en) Water pump
EP1845259B1 (en) Magnetic drive pump
EP1270892B1 (en) Water pump with electronically controlled viscous coupling drive
JPH0357877A (en) Room heating device for vehicle
JP4332873B2 (en) Magnetic fan clutch heater system
JP2712516B2 (en) Vehicle heating system
WO2020199374A1 (en) Electromagnetic silicone oil water pump clutch and working method thereof
JP2002254936A (en) Cooling system for vehicle
CN216240915U (en) Multistage-rotating-speed silicone oil fan clutch
JP2000280728A (en) Magnet type heater
JPH022448B2 (en)
CN111852642A (en) Electrically-controlled silicon oil-water pump clutch and working method thereof
JPS6022019A (en) Water temperature response type water supply control pump in internal-combustion engine
JP2002054440A (en) Cooling control device of internal combustion engine
JPH082423Y2 (en) Driving force transmission device for water pump for automobile engine
JPH0352980Y2 (en)
CN216555053U (en) Oil control mechanism of electric control silicon oil-water pump clutch
CN212838041U (en) Electric control silicone oil fan oil return device
JP3304528B2 (en) Viscous fluid coupling device
JPS6226585Y2 (en)