JPS62209301A - Positioner - Google Patents

Positioner

Info

Publication number
JPS62209301A
JPS62209301A JP61036351A JP3635186A JPS62209301A JP S62209301 A JPS62209301 A JP S62209301A JP 61036351 A JP61036351 A JP 61036351A JP 3635186 A JP3635186 A JP 3635186A JP S62209301 A JPS62209301 A JP S62209301A
Authority
JP
Japan
Prior art keywords
magnetic
detector
positioner
magnetic detector
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61036351A
Other languages
Japanese (ja)
Other versions
JPH0535961B2 (en
Inventor
Akira Hirano
明 平野
Yoshiaki Fujiwara
嘉朗 藤原
Noboru Wakatsuki
昇 若月
Kazunari Yoneno
米納 和成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61036351A priority Critical patent/JPS62209301A/en
Priority to KR1019860007048A priority patent/KR900004780B1/en
Priority to US06/906,027 priority patent/US4810965A/en
Priority to EP86112639A priority patent/EP0215454B1/en
Priority to DE8686112639T priority patent/DE3668692D1/en
Publication of JPS62209301A publication Critical patent/JPS62209301A/en
Publication of JPH0535961B2 publication Critical patent/JPH0535961B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To enhance performance and to enlarge a measuring range regardless of the presence of disturbance, by a method wherein a predetermined current is made to flow to an electromagnetic coil and the leak magnetic flux in a closed magnetic circuit different depending on the distance from the coil is measured by a magnetic detector and the position of said detector is detected. CONSTITUTION:A pair of the exciting coils 15 connected to a power source 9 in series are reverse in a winding direction to each other and the output of a magnetic detector 16 extracts the same frequency component as exciting frequency through a lock-in amplifier 20. When a current is supplied to a pair of the coils 15 using the positioner 11 thus constituted, leak magnetic fluxes decreasing as it is separated from the coils 15 and right to light reversed in direction from the center in the longitudinal direction flows into a closed magnetic circuit 12. The magnetic detector 16 moving through the closed magnetic circuit 12 detects the leak magnetic flux and the position of the magnetic detector 16 is known from detection information. This leak magnetic flux can be detected regardless of disturbance, and the enhancement of performance and the enlargement of a measuring range are realized.

Description

【発明の詳細な説明】 〔概要〕 閉磁回路内の漏洩磁束を測定するポジショナ−において
、 電磁コイルにて閉磁回路を励磁し、該閉磁回路内の漏洩
磁束を磁気検出器で測定し、該検出器の位置および移動
量を検知することにより、ポジショナ−を高性能化した
ものである。
[Detailed Description of the Invention] [Summary] In a positioner that measures leakage magnetic flux in a closed magnetic circuit, the closed magnetic circuit is excited by an electromagnetic coil, the leakage magnetic flux in the closed magnetic circuit is measured by a magnetic detector, and the leakage magnetic flux in the closed magnetic circuit is measured by a magnetic detector. This is a high-performance positioner that detects the position and movement of the device.

〔産業上の利用分野〕[Industrial application field]

本発明はポジショナ−(ボテンシッメータ)、特に閉磁
回路内の漏洩磁束を磁気検出器にて測定し該検出器の位
置を検出するように構成したポジショナ−の改良に関す
る。
The present invention relates to a positioner (potentimeter), and more particularly to an improvement in a positioner configured to measure leakage magnetic flux in a closed magnetic circuit with a magnetic detector and detect the position of the detector.

〔従来の技術〕[Conventional technology]

第6図は永久磁石と磁気検出器を用いた従来のポジショ
ナ−の基本構成を示す斜視図、第7図は一対の永久磁石
を用いた閉磁回路と磁気検出器を用いた従来のポジショ
ナ−の基本構成を示す側面図である。
Fig. 6 is a perspective view showing the basic configuration of a conventional positioner that uses a permanent magnet and a magnetic detector, and Fig. 7 shows a conventional positioner that uses a closed magnetic circuit using a pair of permanent magnets and a magnetic detector. FIG. 3 is a side view showing the basic configuration.

第6図において、ポジショナ−1は自由空間に永久磁石
2と磁気検出器3を対向配置してなり、その一方が対向
方向に移動するようにした構成である。永久磁石2が発
生し自由空間を伝播する磁界の強さを磁気検出器3が検
知し、その対向間隔lを知ることができる。
In FIG. 6, a positioner 1 has a permanent magnet 2 and a magnetic detector 3 disposed facing each other in free space, one of which moves in the opposite direction. The magnetic detector 3 detects the strength of the magnetic field generated by the permanent magnet 2 and propagated in free space, and the facing distance l can be determined.

しかしながら、このようなポジショナ−1は測定範囲が
狭い、即ち、磁気力が8000eの永久磁石2と強磁性
金属薄膜にてなる磁気抵抗検出素子を収容した磁気検出
器3とを組み合わせたポジショナ−1において、リニア
特性が得られる測定範囲が4〜30mm程度である。
However, such a positioner 1 has a narrow measurement range, that is, a positioner 1 that combines a permanent magnet 2 with a magnetic force of 8000e and a magnetic detector 3 containing a magnetoresistive detection element made of a ferromagnetic metal thin film. In this case, the measurement range in which linear characteristics can be obtained is about 4 to 30 mm.

第7図において、ポジショナ−4は一対の永久磁石5と
、永久磁石5を端部に挟んで対向する一対の磁性板6と
、磁性板6の対向間で磁性板6の長さ方向に移動可能な
磁気検出器7を具えてなり、一対の永久磁石5は極性が
逆方向を向くように挿着しである。
In FIG. 7, the positioner 4 moves in the length direction of the magnetic plates 6 between a pair of permanent magnets 5, a pair of magnetic plates 6 facing each other with the permanent magnets 5 at their ends, and the opposing magnetic plates 6. A pair of permanent magnets 5 are inserted so that their polarities face in opposite directions.

このように構成したポジショナ−4は、磁気力が800
0eの永久磁石5を使用したとき、その測定範囲が20
0mm以上であり、ポジショナ−1の7倍程度に測定範
囲が拡大可能である。
The positioner 4 configured in this way has a magnetic force of 800
When using a permanent magnet 5 of 0e, the measurement range is 20
It is 0 mm or more, and the measurement range can be expanded to about 7 times that of positioner 1.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上に説明したように、永久磁石と磁気検出器を用いた
従来のポジショナ−は、永久磁石と磁性板とでなる閉磁
回路を構成し測定範囲を拡大したが、測定値が外部磁界
(外乱)に影響されるという問題点があった。
As explained above, conventional positioners using permanent magnets and magnetic detectors have expanded the measurement range by constructing a closed magnetic circuit made up of permanent magnets and magnetic plates, but the measurement range is limited by the external magnetic field (disturbance). There was a problem that it was influenced by

そのため例えば、数mVを検出可能な磁気検出器を使用
しても、ポジショナ−の検出出力を数十mV/mmとし
て使用するが如く、ポジショナ−の高性能化および測定
範囲の拡大が妨げられていた。
Therefore, for example, even if a magnetic detector capable of detecting several mV is used, it is difficult to improve the performance of the positioner and expand the measurement range, as when using a positioner with a detection output of several tens of mV/mm. Ta.

なお、本願のポジショナ−に競合するものとしてリニア
スケールがある。そして、該リニアスケールには磁気記
憶媒体と磁気検出器とを組み合わせたマグネットスケー
ルと、光を利用したリニアエンコーダ等があるが、マグ
ネットスケールは磁気検出器の移動距離を容易に検知で
きる反面、停止する磁気検出素子の位置検知ができない
、または停止位置検知用に煩わしい手段を必要とする欠
点があり、リニアエンコーダは多数の微細溝を形成した
プレートを必要とし、該プレートの高精度な製造が困難
であるという欠点がある。
Note that there is a linear scale that competes with the positioner of the present application. There are two types of linear scales: a magnetic scale that combines a magnetic storage medium and a magnetic detector, and a linear encoder that uses light. However, while the magnetic scale can easily detect the distance traveled by the magnetic detector, it stops Linear encoders have the drawback of not being able to detect the position of the magnetic sensing element, or of requiring cumbersome means to detect the stop position.Linear encoders require a plate with many fine grooves, making it difficult to manufacture the plate with high precision. It has the disadvantage of being.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の第1の実施例になるポジショナ−の概
略を示す模式側面図であり、ポジショナ−は側面視長方
形をした閉磁回路12と、閉磁回路12の左端および右
端に巻回した一対の電磁コイル15と、磁気検出器16
と、一対の電磁コイル15を直列に接続した電源19を
具えてなる。一対の電磁コイル15は、それぞれ逆極性
になるように巻回されている。
FIG. 1 is a schematic side view showing an outline of a positioner according to a first embodiment of the present invention. A pair of electromagnetic coils 15 and a magnetic detector 16
and a power source 19 having a pair of electromagnetic coils 15 connected in series. The pair of electromagnetic coils 15 are wound so as to have opposite polarities.

上記問題点は第1図によれば、一対の磁性板14が対向
する閉磁回路12と、磁性板14の対向間を磁性板14
と平行方向に移動する磁気検出器16と、閉磁回路12
を励磁する電磁コイル15と、コイルに15に通電する
電源19とを具えてなることを特徴としたポジショナ−
により解決し、 さらに、電源19が交流電源または直流バイアスされた
交流電源であることおよび、磁気検出器16が対向する
磁性板14の内面に磁気検出器16の移動方向と交差す
る方向の多数の凹凸を形成してなることを特徴とするポ
ジショナ−により、効果が増大される。
According to FIG.
a magnetic detector 16 that moves in a direction parallel to the closed magnetic circuit 12;
A positioner comprising: an electromagnetic coil 15 that excites the coil; and a power source 19 that energizes the coil 15.
In addition, the power source 19 is an AC power source or a DC biased AC power source, and a large number of electrodes are provided on the inner surface of the magnetic plate 14 facing the magnetic detector 16 in a direction crossing the moving direction of the magnetic detector 16. The effect is enhanced by a positioner characterized by forming unevenness.

〔作用〕[Effect]

上記手段によれば、電磁コイルに所定の電流を流し、該
コイルからの距離によって異なる閉磁回路内の漏洩磁束
を磁気検出器で測定し該検出器の位置を検知するが、こ
の漏洩磁束は外乱の有無に係わらず検出可能、即ち外乱
があってもそれを含まない測定が可能であり、ボジシラ
ナーの高性能化と測定範囲の拡大が実現される。
According to the above means, a predetermined current is passed through the electromagnetic coil, and a magnetic detector measures the leakage magnetic flux in the closed magnetic circuit, which varies depending on the distance from the coil, and detects the position of the detector. Detection is possible regardless of the presence or absence of disturbances, that is, measurements can be made without including disturbances, and the performance of bosisilana can be improved and the measurement range expanded.

〔実施例〕〔Example〕

第2図は本発明の第1の実施例になるポジショナ−の主
要構成を示す側面図、第3図は該ポジショナ−の出力特
性図、第4図は本発明の第2の実施例になるポジショナ
−に係わる磁性板の一部分を拡大した側面図、第5図は
該磁性板を具えたポジショナ−の出力特性図である。
FIG. 2 is a side view showing the main structure of a positioner according to a first embodiment of the present invention, FIG. 3 is an output characteristic diagram of the positioner, and FIG. 4 is a second embodiment of the present invention. FIG. 5 is an enlarged side view of a part of the magnetic plate related to the positioner, and is an output characteristic diagram of the positioner equipped with the magnetic plate.

第1図と共通部分に同一符号を使用した第2図において
、ポジショナ−11は高透磁率材料を側面視長方形に形
成した閉磁回路12と、閉磁回路12の左端および右端
に巻回した一対の励磁コイル15と、左右動自在な軸1
7と、軸17の中間部に固着した駆動体1Bと、駆動体
18の一方の端部(上端部)に固着した磁気検出器16
と、一対のコイル15を直列に接続した交流電源19と
、ロックインアンプ20を具えてなる。
In FIG. 2, in which the same reference numerals are used for parts common to those in FIG. Excitation coil 15 and shaft 1 that can move left and right
7, a drive body 1B fixed to the middle part of the shaft 17, and a magnetic detector 16 fixed to one end (upper end) of the drive body 18.
, an AC power source 19 having a pair of coils 15 connected in series, and a lock-in amplifier 20.

磁性体12は上下方向に対向する一対の板部工4を具え
、軸17は板部14と平行方向に移動自在であり、磁気
検出器16は上方の磁性体板部14の内面と適宜の間隙
で対向している。
The magnetic body 12 includes a pair of plate parts 4 facing each other in the vertical direction, the shaft 17 is movable in a direction parallel to the plate part 14, and the magnetic detector 16 is connected to the inner surface of the upper magnetic plate part 14 as appropriate. They face each other with a gap.

直列に連結し電源19に接続された一対の励磁コイル1
5は、一方に対し他方の巻回方向が逆であり、磁気検出
器I6の出力はロックインアンプ20等を通して励磁周
波数(例えば12KHz)と同一の周波数成分を抽出す
るようになっている。
A pair of excitation coils 1 connected in series and connected to a power source 19
In No. 5, the winding direction of one winding direction is opposite to that of the other winding direction, and the output of the magnetic detector I6 is passed through a lock-in amplifier 20 or the like to extract the same frequency component as the excitation frequency (for example, 12 KHz).

このように構成したポジショナ−11において、一対の
コイル15に通電すると閉磁回路12の中には、コイル
15から離れるに従って減少し、長さ方向(左右方向)
の中心から右方と左方とで逆方曲番。二なる漏洩磁束H
が流れ、閉磁回路12の中を移動する磁気検出器16は
漏洩磁束Hを検知し、該検知情報から磁気検出器16の
位置が知られる。
In the positioner 11 configured in this manner, when the pair of coils 15 are energized, the amount of energy in the closed magnetic circuit 12 decreases as the distance from the coil 15 increases, and the magnetic field increases in the length direction (horizontal direction).
Reverse track numbers from the center to the right and left. Second leakage magnetic flux H
flows, and the magnetic detector 16 moving in the closed magnetic circuit 12 detects the leakage magnetic flux H, and the position of the magnetic detector 16 is known from the detected information.

第3図において、縦軸は磁気検出器16の出力(mV)
 、横軸は閉磁回路12の中心を原点とした磁気検出器
16の位y1(mm)であり、磁気検出器16の出力特
性Aは、コイル15に近接する端部を除いてほぼ1mV
/mmの直線になる。
In Fig. 3, the vertical axis is the output (mV) of the magnetic detector 16.
, the horizontal axis is the position y1 (mm) of the magnetic detector 16 with the center of the closed magnetic circuit 12 as the origin, and the output characteristic A of the magnetic detector 16 is approximately 1 mV except for the end near the coil 15.
/mm becomes a straight line.

第4図において、高透磁率材料にてなる閉磁回路板部2
1は前出の板部14に相当し、磁気検出器16が対向す
るその内面には、磁気検出器16の移動方向に直交する
多数の突起22、例えば高さ5μm9幅20μmの多数
の突起22をピッチ40μmで形成しである。かかる突
起22は磁束の漏洩を増加し磁気検出器16の出力効率
を高める効果がある。
In Fig. 4, a closed magnetic circuit board portion 2 made of a high magnetic permeability material is shown.
Reference numeral 1 corresponds to the above-mentioned plate part 14, and on its inner surface facing the magnetic detector 16, there are a number of protrusions 22 perpendicular to the moving direction of the magnetic detector 16, for example, a number of protrusions 22 with a height of 5 μm and a width of 20 μm. are formed at a pitch of 40 μm. Such protrusions 22 have the effect of increasing leakage of magnetic flux and increasing the output efficiency of the magnetic detector 16.

第5図において、縦軸は磁気検出器16の出力(mV)
、横軸は板部21を具えた閉磁回路の中心を原点とした
磁気検出器16の位置(mm)でありそのときの出力特
性Bは点線で示す前記出力特性Aに正弦波を重ねた形状
であり、該正弦波が特性Aより突出する量に相当し磁気
検出器16の出力効率を高めることができる。
In FIG. 5, the vertical axis is the output (mV) of the magnetic detector 16.
, the horizontal axis is the position (mm) of the magnetic detector 16 with the origin at the center of the closed magnetic circuit including the plate portion 21, and the output characteristic B at that time has a shape in which a sine wave is superimposed on the output characteristic A shown by a dotted line. This corresponds to the amount by which the sine wave protrudes from characteristic A, and the output efficiency of the magnetic detector 16 can be increased.

なお、突起22(凹凸)は蒸着法または、塩化第二鉄と
硝酸の水溶液をエツチング液としたホトリソグラフィ技
術等で形成可能であり、突起22の断面形状は実施例の
長方形に限定されず、三角形状や台形状等にしても同様
な効果が得られる。
Note that the protrusions 22 (irregularities) can be formed by a vapor deposition method or a photolithography technique using an aqueous solution of ferric chloride and nitric acid as an etching solution, and the cross-sectional shape of the protrusions 22 is not limited to the rectangular shape of the embodiment. A similar effect can be obtained even if the shape is triangular or trapezoidal.

さらに、対向する一対の板部21にそれぞれ形成した突
起22をずらす、例えば一方の磁性体21の突起22と
他方の磁性体21の凹所(隣接する突起22の中間)が
対向するようにし、各磁性体板部22に対向し一対の磁
気検出器16を具えたポジショナ−の測定精度は、対向
突起22が正対するものに比べ約2倍に向上される。
Further, the protrusions 22 formed on the pair of opposing plate parts 21 are shifted, for example, so that the protrusions 22 of one magnetic body 21 and the recesses (middle between adjacent protrusions 22) of the other magnetic body 21 face each other, The measurement accuracy of a positioner equipped with a pair of magnetic detectors 16 facing each magnetic plate portion 22 is approximately twice as high as that of a positioner in which the opposing protrusions 22 directly face each other.

また、前記実施例において交流電源または直流バイアス
された交流電源19は、外乱に影響されず検知される漏
洩磁界を得ると共に、励磁周波数と同一の周波数成分を
検出器16の出力から抽出するためであり、交流電源1
9に換えて直流電源を使用すれば、周波数成分を検出器
16の出力から抽出できないが、外乱に影響されない検
知出力が得られる効果を有すること、および、前記実施
例においては一対のコイル15を使用しているが、一方
のコイル15を無くし磁性板14 (または21)の端
部を連結し、測定範囲の狭い用途に対し外乱に影響され
ない検知出力が得られる効果を有することを付記する。
Further, in the above embodiment, the AC power supply or DC biased AC power supply 19 is used to obtain a leakage magnetic field that is detected without being affected by disturbance, and to extract the same frequency component as the excitation frequency from the output of the detector 16. Yes, AC power supply 1
If a DC power supply is used instead of the coil 15, the frequency component cannot be extracted from the output of the detector 16, but it has the effect of obtaining a detection output that is not affected by disturbances. However, it should be noted that by eliminating one of the coils 15 and connecting the ends of the magnetic plates 14 (or 21), it is possible to obtain a detection output unaffected by disturbances for applications with a narrow measurement range.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、外乱に影響されず磁
気検出器の位置を検出するため、その検出出力を高精度
にするおよび、そのことによって測定範囲の拡大が可能
であり、さらに、交流電源を使用する。閉磁回路の板部
内面に凹凸を形成することによって、前記高精度化およ
び測定範囲拡大の効果を高めることができた。
As explained above, according to the present invention, in order to detect the position of the magnetic detector without being affected by disturbance, the detection output can be made highly accurate, and thereby the measurement range can be expanded. Use power. By forming irregularities on the inner surface of the plate portion of the closed magnetic circuit, it was possible to enhance the effects of increasing precision and expanding the measurement range.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例になるポジショナ−の概
略を示す模式側面図、 第2図は本発明の第1の実施例になるポジショナ−の主
要構成を示す側面図、 第3図は該ポジショナ−の出力特性図、第4図は本発明
の第2の実施例になるポジショナ−に係わる磁性板の一
部分を拡大した側面図、 第5図はRE fa磁性板具えたポジショナ−の出力特
性図、 第6図は永久磁石と磁気検出器を用いた従来のポジショ
ナ−の基本構成を示す斜視図、第7図は一対の永久磁石
を用いた閉磁回路と磁気検出器を用いた従来のポジショ
ナ−の基本構成を示す側面図、 である。 図中において、 11はポジショナ−112は閉磁回路、14.21は磁
性板、 15は電磁コイル、16は磁気検出器、 19
は電源、 22は突起(凹凸)、 を示す。 オ碍【8月の横3fの究方芒/ダJしてり゛ろオくジj
aナーの、4日・(醒■昭竿 2 図 第4図の7社性J反色具えたポジβd−n此う臂り1図
¥!−5呂
1 is a schematic side view showing an outline of a positioner according to a first embodiment of the present invention; FIG. 2 is a side view showing the main structure of a positioner according to a first embodiment of the present invention; The figure is an output characteristic diagram of the positioner, FIG. 4 is an enlarged side view of a part of the magnetic plate related to the positioner according to the second embodiment of the present invention, and FIG. 5 is a positioner equipped with the RE fa magnetic plate. Figure 6 is a perspective view showing the basic configuration of a conventional positioner using a permanent magnet and a magnetic detector, Figure 7 is a closed magnetic circuit using a pair of permanent magnets and a magnetic detector. 1 is a side view showing the basic configuration of a conventional positioner. In the figure, 11 is a positioner, 112 is a closed magnetic circuit, 14.21 is a magnetic plate, 15 is an electromagnetic coil, 16 is a magnetic detector, 19
22 indicates a power source, and 22 indicates a protrusion (unevenness). Oka [August's horizontal 3F research method / da J
A's, 4th day (awakening ■ Showan 2 Figure 4 of the 7th society J anti-color positive βd-n this arm 1 figure ¥!-5 Lu

Claims (3)

【特許請求の範囲】[Claims] (1)一対の磁性板(14)が対向する閉磁回路(12
)と、該磁性板(12)の対向間を該磁性板(14)と
平行方向に移動する磁気検出器(16)と、該閉磁回路
(12)を励磁する電磁コイル(15)と、該コイルに
(15)通電する電源(19)とを具えてなることを特
徴としたポジショナー。
(1) A closed magnetic circuit (12) in which a pair of magnetic plates (14) face each other
), a magnetic detector (16) that moves between opposing magnetic plates (12) in a direction parallel to the magnetic plate (14), an electromagnetic coil (15) that excites the closed magnetic circuit (12), and A positioner characterized by comprising a power source (19) for energizing a coil (15).
(2)前記電源(19)が交流電源またはバイアスされ
た交流電源であることを特徴とする前記特許請求の範囲
第1項記載のポジショナー。
(2) The positioner according to claim 1, wherein the power source (19) is an AC power source or a biased AC power source.
(3)前記磁気検出器(16)が対向する前記磁性板(
14)の内面に、前記磁気検出器移動方向と交差する方
向の多数の凹凸を形成してなることを特徴とする前記特
許請求の範囲第1項記載のポジショナー。
(3) The magnetic plate (
14) The positioner according to claim 1, wherein a large number of projections and depressions are formed on the inner surface of the magnetic detector in a direction perpendicular to the moving direction of the magnetic detector.
JP61036351A 1985-09-13 1986-02-20 Positioner Granted JPS62209301A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61036351A JPS62209301A (en) 1986-02-20 1986-02-20 Positioner
KR1019860007048A KR900004780B1 (en) 1985-09-13 1986-08-25 Phase detective apparatus using mangetic sensor
US06/906,027 US4810965A (en) 1985-09-13 1986-09-11 Position detecting apparatus using a magnetic sensor and a closed magnetic circuit with non-uniform magnetic flux distribution
EP86112639A EP0215454B1 (en) 1985-09-13 1986-09-12 Position detecting apparatus utilizing a magnetic sensor
DE8686112639T DE3668692D1 (en) 1985-09-13 1986-09-12 POSITION DETECTOR WITH MAGNETIC SENSOR.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61036351A JPS62209301A (en) 1986-02-20 1986-02-20 Positioner

Publications (2)

Publication Number Publication Date
JPS62209301A true JPS62209301A (en) 1987-09-14
JPH0535961B2 JPH0535961B2 (en) 1993-05-27

Family

ID=12467417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61036351A Granted JPS62209301A (en) 1985-09-13 1986-02-20 Positioner

Country Status (1)

Country Link
JP (1) JPS62209301A (en)

Also Published As

Publication number Publication date
JPH0535961B2 (en) 1993-05-27

Similar Documents

Publication Publication Date Title
US6160395A (en) Non-contact position sensor
JPH09508466A (en) Micro coil device made by flattening technology to detect ferromagnetic material
JPH0769130B2 (en) Magnetic displacement sensor
JPH08313295A (en) Position-detecting transducer using induced current
JPH0712586A (en) Magnetic measurement system
JP2003028605A (en) Position detector
JPS62209301A (en) Positioner
JP4541136B2 (en) Magnetic body detection sensor and magnetic body detection line sensor
JPH05264326A (en) Linear position sensor
JP4385340B2 (en) Displacement sensor using Helmholtz coil
JPH10206104A (en) Position detecting apparatus
RU2196960C2 (en) Eddy-current displacement transducer
JP2000338257A (en) Magnetic metal sensor
JPH10104044A (en) Magnetic fuel gage
JPH0213244B2 (en)
JP3626341B2 (en) Magnetic metal sensor and magnetic metal detection system
JPH03123815A (en) Cylindrical magnetic scale
JPH0739922B2 (en) Position detector for hydraulic or pneumatic cylinders
JPH11325808A (en) Displacement sensor
JPH0749245A (en) Magnetic scale device
JPH03131717A (en) Linear position detector
JPH03243801A (en) Noncontact type range finder
SU916170A1 (en) Induction sensor
JP2000249573A (en) Magnetic detector
JPH07332912A (en) Non-contact potentiometer and displacement sensor of moving body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees