JPS6220887B2 - - Google Patents

Info

Publication number
JPS6220887B2
JPS6220887B2 JP6652680A JP6652680A JPS6220887B2 JP S6220887 B2 JPS6220887 B2 JP S6220887B2 JP 6652680 A JP6652680 A JP 6652680A JP 6652680 A JP6652680 A JP 6652680A JP S6220887 B2 JPS6220887 B2 JP S6220887B2
Authority
JP
Japan
Prior art keywords
hollow pipe
resin composition
molding
manufacturing
inorganic filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6652680A
Other languages
Japanese (ja)
Other versions
JPS56162621A (en
Inventor
Tetsuo Ishikawa
Shoji Motojima
Ryuichi Funada
Tsuguo Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6652680A priority Critical patent/JPS56162621A/en
Publication of JPS56162621A publication Critical patent/JPS56162621A/en
Publication of JPS6220887B2 publication Critical patent/JPS6220887B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Electric Vacuum Cleaner (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は寸法精度、特に嵌合精度にすぐれた中
空パイプの製造法に関するものである。さらに詳
しくは、結晶性ポリオレフイン樹脂に核剤を添加
し、高温でも結晶化がすすむようにし、結晶化時
間を短縮せしめ、さらに微細な無機質充てん剤を
配合して造核効果を助長することによつて、早期
に成形収縮を完結安定化する材料特性を有効に活
用した嵌合精度にすぐれた中空パイプの製造法に
関するものである。 従来電気掃除機の塵介吸引中空パイプの製造法
には、押出成形法と吹込み成形法がある。前者は
複数のパイプを連結嵌合する場合、嵌合部の異形
加工が難しく、一端押出成形したパイプを熱間塑
性加工等により2次加工する必要がある。後者は
嵌合部の異形部を一体に成形することが可能であ
る。しかしながら吹込み成形は吹込み圧力が3〜
7Kg/cm2と比較的低いため成形品の寸法精度が悪
い。また、成形品の成形収縮が徐々に長時間に渡
つて進むため、寸法精度確保がきわめて難しい。 特に、結晶性ポリオレフイン樹脂の場合、結晶
化が緩慢に進むため、成形収縮が安定するのにか
なりの時間を要する。従つて、成形後一定時間経
過後寸法をチエツクし合否の判定をしなければな
らない、歩溜りが悪いなどきわめてやつかいな問
題がある。 本発明の目的は結晶性ポリオレイン樹脂の結晶
化作用を効果的に発揮させることによつて、成形
収縮を即時的に安定化させ、寸法精度の高いかつ
機械的強度にすぐれた電気掃除機用中空パイプを
高率的に生産する製造法を提供することにある。 本発明の主眼点は結晶性ポリオレフイン樹脂と
核剤としてアルキル安息香酸の金属塩、無機質充
てん剤を配合した樹脂組成物を使用し、吹込み成
形の冷却時間および/あるいは離形後数分内に収
縮を安定化させることによつて、寸法精度の高い
嵌合性にすぐれた中空パイプを得ることにある。 本発明に用いる結晶性ポリオレフイン樹脂とし
てはポリエチレン、ポリプロピレンなどがあり、
また、ポリアミド、ポリエチレンテレフタール酸
などもあげることができる。これらのうち、本発
明においてはポリプロピレンで吹込み成形に適す
るMI=2.0以下のものを用いるのが最も好まし
い。 次に本発明に用いる核剤について説明する。 本発明の目的を達成する核剤はアルキル安息香
酸の金属塩、具体的にはP−tert−ブチル安息香
酸アルミニユウムが良い。添加量は樹脂組成物全
量に対し、0.1〜3.0重量%である。0.1重量%以下
では効果が少なく、3.0重量%以上添加しても比
例的効果がない。 また、核剤は当該化合物1種に限定するもので
はなく、飽和脂肪族のジカルボン酸、なかでも炭
素数が偶数個のコハク酸、セバシン酸などや、フ
タル酸のような芳香族ジカルボン酸、ジフエニル
酢酸、モノフエニル酢酸、フエニルジメチル酢酸
などのアリル置換酢酸および/あるいはこれらカ
ルボン酸の金属塩と併用することもできる。 次に本発明に用いる無機質充てん剤は核剤効果
と合せて成形品の機械的強度を向上させる目的で
配合するもので樹脂組成物全量に対し5〜30重量
%になるように配合したものである。無機質充て
ん剤の配合量が上記上限を越えると樹脂組成物の
伸びが低下し吹込み成形時、パリソン(樹脂溶融
円筒体)が吹込み圧縮空気によつて破れ易く、良
好な中空パイプは得られない。また、上記下限未
満の配合量では十分な効果が得られない。 また、無機質充てん剤の粒形は50μ以下の微粒
のものが好ましく、特に10μ以下が最適である。
より微細粒子である程核剤効果が期待でき、特に
前述の核剤の共存下において顕著である。 無機質充てん剤の種類としては特に制限はない
が、タルク、炭酸カルシウム、マイカ、シリカ、
珪藻土、アルミナ、酸化チタン、亜鉛華、酸化マ
グネシウム、クレー、ガラス粉などが使用でき、
好ましくは核剤効果、機械的強度を向上させるた
めに、タルクとマイカを併用するのが効果的であ
る。さらに、必要に応じて、滑剤、酸化防止剤、
紫外線防止剤、帯電防止剤、顔料等の添加剤を適
宜加えることができる。 上記各成分を適当な手段により混練して、目的
の樹脂組成物を得るかもしくは、上記各成分の中
で核剤、無機質充てん剤、添加剤をポリオレフイ
ン樹脂を基材にした濃縮マスターバツチをあらか
じめ作り、成形時に結晶性ポリオレフイン樹脂で
希釈し目的の樹脂組成物になるように調整するこ
とも可能である。この場合樹脂組成物のMIは、
中空パイプを吹込み成形に適するMI=1.5〜2.0の
範囲が好ましい。上記下限未満では組成物中の各
成分の混練、分散性、パリソン形成の変動等の問
題が残こる。また、上記上限以上では、パリソン
のドローダウン現象(パリソンの自重により局部
的にパリソン肉厚が薄くなる。)の発生が大とな
り、成形性が極端に低下する。 以上の如くして得られた樹脂組成物を使つて、
中空パイプを吹込み成形すれば、金型温度20〜30
℃、吹込み圧力3〜7Kg/cm2、冷却時間15〜30秒
の条件下で中空パイプの収縮による寸法はほゞ5
分内に安定化することができる。5分をさらに短
縮する手段としては、離形後、水冷および/ある
いは空冷により成形品の温度を40℃以下にするこ
とによつて、収縮による寸法の安定はさらに効果
的なものとなる。従つて本方法によれば、樹脂組
成物の結晶化に基因する収縮バラツキを減少し、
成形品の寸法精度を向上できる。しかも、成形後
すみやかに成形品の寸法、嵌合性等の評価が可能
となる。次に実施例を示し具体的に説明する。 実施例 1 第1図は実験に供した吹込み成形の構成図であ
る。2分割の吹込み成形金型1a,1b、吹込成
形機のダイ2、吹込成形で押出成形されたパリソ
ン3、空気吹込みのための吹込みノズル4、にお
いて、まずダイ2より押出によつてパリソン3を
形成し、次に成型金型1a,1bでパリソン3を
はさみ込む。この時の型締圧力は約10〓、次に金
型1a,1bで挾持されたパリソン3に吹込みノ
ズル4により圧縮空気(約5Kg/cm2)を吹込み、
パリソン3を膨張させ、金型1a,1bに加工さ
れたキヤビテイ面に密着させる。その状態で冷却
し、中空体の空気抜きを行つて、目的の成形品を
得た。金型1a,1bの温度は20℃に制御、冷却
時間は20秒とした。 第2図は実験に供した中空パイプの形状を示す
部分断面図である。第1図の説明で得た成形品の
両端に発生するバリを切断したもので両端が逆テ
ーパを有する直管の中空パイプである。中空パイ
プ5aの一端(オス)と同じ中空パイプ5bの一
端(メス)を嵌合し連結延長する中空パイプであ
る。 次に、成形に使用した樹脂組成物は核剤を使用
しないポリプロピレン樹脂(MI=0.8)と添加剤
である。組成表を表1に、成形した中空パイプの
収縮の経時変化図を第3図に示す。 実施例 2 成形方法は実施例1に同じである。使用した樹
脂組成物は核剤P−tert−ブチル安息香酸アルミ
ニユウムを樹脂組成物全量に対し0.3重量%添加
したものである。組成表を表1、成形した中空パ
イプの収縮変化図を第3図に示す。 実施例 3 成形方法は実施例1に同じである。使用した樹
脂組成物は樹脂組成物全量に対しP−tert−ブチ
ル安息香酸アルミニユウム0.3重量%、タルク8.3
重量%、マイカ1.7重量%を配合したものであ
る。組成表を表1、成形した中空パイプの収縮変
化図を第3図に示す。 実施例 4 実施例3で得た中空パイプを離型30秒後に0℃
の恒温槽に2分間投入した。収縮変化図を第3図
に示す。
The present invention relates to a method for manufacturing a hollow pipe with excellent dimensional accuracy, especially fitting accuracy. More specifically, a nucleating agent is added to the crystalline polyolefin resin to promote crystallization even at high temperatures, shortening the crystallization time, and a fine inorganic filler is added to promote the nucleation effect. In particular, the present invention relates to a method for manufacturing a hollow pipe with excellent fitting precision that effectively utilizes the material properties of completing and stabilizing molding shrinkage at an early stage. Conventional methods for manufacturing dust suction hollow pipes for vacuum cleaners include extrusion molding and blow molding. In the case of the former, when connecting and fitting a plurality of pipes, it is difficult to process the fitting part into a different shape, and it is necessary to perform secondary processing such as hot plastic working on a pipe whose one end is extruded. The latter allows the irregularly shaped portion of the fitting portion to be integrally molded. However, in blow molding, the blowing pressure is 3~
The dimensional accuracy of the molded product is poor because it is relatively low at 7Kg/ cm2 . Furthermore, since the molded product shrinks gradually over a long period of time, it is extremely difficult to ensure dimensional accuracy. In particular, in the case of crystalline polyolefin resin, since crystallization proceeds slowly, it takes a considerable amount of time for molding shrinkage to stabilize. Therefore, there are extremely troublesome problems such as having to check the dimensions after a certain period of time has elapsed after molding to determine whether the product is acceptable or not, resulting in poor yield. The purpose of the present invention is to immediately stabilize molding shrinkage by effectively exerting the crystallization effect of crystalline polyolein resin, and to provide a vacuum cleaner with high dimensional accuracy and excellent mechanical strength. The object of the present invention is to provide a manufacturing method for producing hollow pipes at high efficiency. The main point of the present invention is to use a resin composition containing a crystalline polyolefin resin, a metal salt of alkylbenzoic acid as a nucleating agent, and an inorganic filler, and to improve the cooling time of blow molding and/or within several minutes after mold release. The object of the present invention is to obtain a hollow pipe with high dimensional accuracy and excellent fitability by stabilizing shrinkage. Crystalline polyolefin resins used in the present invention include polyethylene, polypropylene, etc.
Other examples include polyamide and polyethylene terephthalic acid. Among these, in the present invention, it is most preferable to use polypropylene with an MI of 2.0 or less, which is suitable for blow molding. Next, the nucleating agent used in the present invention will be explained. The nucleating agent that achieves the object of the present invention is preferably a metal salt of alkylbenzoic acid, specifically aluminum P-tert-butylbenzoate. The amount added is 0.1 to 3.0% by weight based on the total amount of the resin composition. If it is less than 0.1% by weight, there is little effect, and if it is added more than 3.0% by weight, there is no proportional effect. Nucleating agents are not limited to one type of compound, but include saturated aliphatic dicarboxylic acids, especially those with an even number of carbon atoms such as succinic acid and sebacic acid, aromatic dicarboxylic acids such as phthalic acid, and diphenyl It can also be used in combination with allyl-substituted acetic acids such as acetic acid, monophenylacetic acid, phenyldimethylacetic acid, and/or metal salts of these carboxylic acids. Next, the inorganic filler used in the present invention is blended for the purpose of improving the mechanical strength of the molded product as well as having a nucleating agent effect, and is blended in an amount of 5 to 30% by weight based on the total amount of the resin composition. be. If the blending amount of the inorganic filler exceeds the above upper limit, the elongation of the resin composition will decrease, and during blow molding, the parison (resin melted cylinder) will be easily torn by the blown compressed air, making it impossible to obtain a good hollow pipe. do not have. Further, if the amount is less than the above lower limit, sufficient effects cannot be obtained. Further, the particle shape of the inorganic filler is preferably fine particles of 50 μm or less, particularly 10 μm or less.
The finer the particles, the more effective the nucleating agent effect can be expected, and this is particularly noticeable in the coexistence of the above-mentioned nucleating agent. There are no particular restrictions on the type of inorganic filler, but examples include talc, calcium carbonate, mica, silica,
Diatomaceous earth, alumina, titanium oxide, zinc oxide, magnesium oxide, clay, glass powder, etc. can be used.
Preferably, in order to improve the nucleating agent effect and mechanical strength, it is effective to use talc and mica in combination. In addition, lubricants, antioxidants,
Additives such as ultraviolet inhibitors, antistatic agents, pigments, etc. can be added as appropriate. Either the above-mentioned components are kneaded by appropriate means to obtain the desired resin composition, or the nucleating agent, inorganic filler, and additives are prepared in advance into a concentrated master batch using polyolefin resin as the base material. It is also possible to dilute with a crystalline polyolefin resin during molding to obtain a desired resin composition. In this case, the MI of the resin composition is
MI is preferably in the range of 1.5 to 2.0, which is suitable for blow molding hollow pipes. Below the above lower limit, problems such as variations in kneading, dispersibility, and parison formation of each component in the composition remain. Moreover, if it exceeds the above-mentioned upper limit, the drawdown phenomenon of the parison (the thickness of the parison locally becomes thinner due to its own weight) will increase, and the moldability will be extremely reduced. Using the resin composition obtained as above,
If you blow mold a hollow pipe, the mold temperature will be 20~30°C.
℃, blowing pressure of 3 to 7 kg/cm 2 and cooling time of 15 to 30 seconds, the shrinkage size of the hollow pipe is approximately 5.
Can be stabilized within minutes. As a means of further shortening the time to 5 minutes, the temperature of the molded product may be lowered to 40° C. or less by water cooling and/or air cooling after demolding, thereby making the dimensional stability due to shrinkage more effective. Therefore, according to the present method, shrinkage variations due to crystallization of the resin composition can be reduced,
The dimensional accuracy of molded products can be improved. Furthermore, it is possible to evaluate the dimensions, fitability, etc. of the molded product immediately after molding. Next, examples will be shown and specifically explained. Example 1 FIG. 1 is a block diagram of the blow molding used in the experiment. In the two-part blow molding molds 1a and 1b, the die 2 of the blow molding machine, the parison 3 extruded by blow molding, and the blow nozzle 4 for blowing air, first, extrusion is performed from the die 2. A parison 3 is formed, and then the parison 3 is sandwiched between molding molds 1a and 1b. The mold clamping pressure at this time was approximately 10㎓, and then compressed air (approximately 5 kg/cm 2 ) was blown into the parison 3 held between the molds 1a and 1b by the blowing nozzle 4.
The parison 3 is expanded and brought into close contact with the cavity surfaces processed into the molds 1a and 1b. The hollow body was cooled in that state and air was vented to obtain the desired molded product. The temperature of the molds 1a and 1b was controlled at 20° C., and the cooling time was 20 seconds. FIG. 2 is a partial sectional view showing the shape of the hollow pipe used in the experiment. The molded product obtained in the explanation of FIG. 1 was cut off from the burrs generated at both ends, and is a straight hollow pipe with reverse tapers at both ends. This is a hollow pipe that is connected and extended by fitting one end (male) of the hollow pipe 5a and one end (female) of the same hollow pipe 5b. Next, the resin composition used for molding was a polypropylene resin (MI=0.8) without using a nucleating agent and additives. A composition table is shown in Table 1, and a diagram of shrinkage over time of the molded hollow pipe is shown in FIG. Example 2 The molding method was the same as in Example 1. The resin composition used contained a nucleating agent, aluminum P-tert-butylbenzoate, added in an amount of 0.3% by weight based on the total amount of the resin composition. The composition table is shown in Table 1, and the shrinkage change diagram of the formed hollow pipe is shown in Fig. 3. Example 3 The molding method was the same as in Example 1. The resin composition used contained 0.3% by weight of aluminum P-tert-butylbenzoate and 8.3% by weight of talc based on the total amount of the resin composition.
% by weight, and 1.7% by weight of mica. The composition table is shown in Table 1, and the shrinkage change diagram of the formed hollow pipe is shown in Fig. 3. Example 4 The hollow pipe obtained in Example 3 was heated to 0°C after 30 seconds of release from the mold.
It was placed in a constant temperature bath for 2 minutes. A diagram of shrinkage changes is shown in Figure 3.

【表】 以上の実施例において、核剤(P−tert−ブチ
ル安息香酸アルミニウム)および無機質充てん剤
(タルク、マイカ)の配合樹脂組成物(実施例3
〜4)による吹込み成形中空パイプは早期に収縮
が安定する。 かくして、従来の成形条件変動要因による収縮
バラツキ、成形後の外的要因(成形環境温度等)
によるバラツキを排除でき、きわめて精度の高い
中空パイプの製造が可能となる。
[Table] In the above examples, a blended resin composition of a nucleating agent (P-tert-butyl aluminum benzoate) and an inorganic filler (talc, mica) (Example 3)
The shrinkage of the blow-molded hollow pipe according to 4) becomes stable at an early stage. In this way, shrinkage variations due to conventional molding condition fluctuation factors, external factors after molding (molding environment temperature, etc.)
This makes it possible to eliminate variations caused by this process, making it possible to manufacture hollow pipes with extremely high precision.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は
吹込み成形の構成図、第2図は中空パイプを示す
図、第3図は中空パイプの収縮変化図である。
The drawings show an embodiment of the present invention; FIG. 1 is a block diagram of blow molding, FIG. 2 is a diagram showing a hollow pipe, and FIG. 3 is a diagram showing changes in shrinkage of the hollow pipe.

Claims (1)

【特許請求の範囲】 1 結晶性ポリオレフイン樹脂と、組成物の全量
を基準として、0.1〜3.0重量%のアルキル安息香
酸金属塩、5〜30重量%の無機質充てん剤を配合
してなる0.5〜2.0のメルトインデツクス=0.5〜
2.0の樹脂組成物で中空成形することを特徴とし
た電気掃除機用中空パイプの製造方法。 2 樹脂組成物中の無機質充てん剤の粒形が50μ
以下である特許請求の範囲第1項記載の中空パイ
プの製造方法。 3 樹脂組成物中の無機質充てん剤のうち、主た
る無機質充てん剤がタルクとマイカの混合成分で
ある特許請求の範囲第1項記載の中空パイプの製
造方法。 4 樹脂組成物で中空成形し、成形品を金型より
離型後5分以内に急冷することによつて、成形品
温度を40℃以下に降下せしめることを特徴とした
特許請求の範囲第1項記載の電気掃除機用中空パ
イプの製造方法。
[Claims] 1. A crystalline polyolefin resin, 0.5 to 2.0% by weight of an alkyl benzoate metal salt, and 5 to 30% by weight of an inorganic filler based on the total amount of the composition. Melt index = 0.5~
A method for manufacturing a hollow pipe for a vacuum cleaner, characterized by hollow molding a resin composition of 2.0. 2 The particle size of the inorganic filler in the resin composition is 50μ
A method for manufacturing a hollow pipe according to claim 1, which is as follows. 3. The method for manufacturing a hollow pipe according to claim 1, wherein the main inorganic filler among the inorganic fillers in the resin composition is a mixed component of talc and mica. 4 Claim 1 characterized in that the temperature of the molded product is lowered to 40°C or less by blow molding the resin composition and rapidly cooling the molded product within 5 minutes after releasing it from the mold. A method for manufacturing a hollow pipe for a vacuum cleaner as described in .
JP6652680A 1980-05-21 1980-05-21 Manufacture of hollow pipe for electric vacuum cleaner Granted JPS56162621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6652680A JPS56162621A (en) 1980-05-21 1980-05-21 Manufacture of hollow pipe for electric vacuum cleaner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6652680A JPS56162621A (en) 1980-05-21 1980-05-21 Manufacture of hollow pipe for electric vacuum cleaner

Publications (2)

Publication Number Publication Date
JPS56162621A JPS56162621A (en) 1981-12-14
JPS6220887B2 true JPS6220887B2 (en) 1987-05-09

Family

ID=13318397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6652680A Granted JPS56162621A (en) 1980-05-21 1980-05-21 Manufacture of hollow pipe for electric vacuum cleaner

Country Status (1)

Country Link
JP (1) JPS56162621A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2582006B2 (en) * 1991-05-21 1997-02-19 東洋キャップ製造株式会社 Drinking straws
JPH08191784A (en) * 1995-01-13 1996-07-30 Nippon Denki Factory Eng Kk Cleaner having fine particle collecting function

Also Published As

Publication number Publication date
JPS56162621A (en) 1981-12-14

Similar Documents

Publication Publication Date Title
EP0335873B1 (en) Nucleating system for polyamides
US3755221A (en) Fast cycling polyamide molding composition which contains a particulate nucleating agent, an alkylene diamide, and a metal salt of a monocarboxylic acid
JPS6010053B2 (en) Thermoplastic polybutylene terephthalate molding compound with improved surface leakage current resistance
US5496918A (en) Process for improving the properties of polymers
US2621161A (en) Making gas-expanded organic plastics
JPS6220887B2 (en)
US4812282A (en) Process for forming polymer container having inorganic filter and coupling agent
JP2018087280A (en) Polypropylene resin-made hollow molding and corrugated tube
JPS5883038A (en) Polypropylene resin composition
US2502371A (en) Polyvinyl chloride compositions
JPH062879B2 (en) Method for producing aromatic polysulfone resin molding material with improved releasability
JPS6390560A (en) Polyamide resin composition
JPH0345691B2 (en)
JP3463841B2 (en) Propylene polymer composition
US2502370A (en) Polyvinyl chloride compositions
JPH1110718A (en) Manufacture of hollow molded body
JPS5923346B2 (en) Resin composition for injection blow molding
JPH0443092B2 (en)
JP6348363B2 (en) Polyamide resin composition pellets and molded products
JPH0381365A (en) Polyamide resin composition
JPH08333491A (en) Thermoplastic resin composition for high-speed molding
KR100695337B1 (en) Polypropylene resin compositions with excellent flexural modulus and impact strength
JPH0422940B2 (en)
KR930001995B1 (en) Polyethylene terephthalate resin composition
JP3652399B2 (en) Extruded thick molded product and method for producing the same