JPS62208496A - Mos integrated circuit - Google Patents

Mos integrated circuit

Info

Publication number
JPS62208496A
JPS62208496A JP61050423A JP5042386A JPS62208496A JP S62208496 A JPS62208496 A JP S62208496A JP 61050423 A JP61050423 A JP 61050423A JP 5042386 A JP5042386 A JP 5042386A JP S62208496 A JPS62208496 A JP S62208496A
Authority
JP
Japan
Prior art keywords
circuit
chip
power source
power supply
internal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61050423A
Other languages
Japanese (ja)
Other versions
JPH0572040B2 (en
Inventor
Yasushi Sakui
康司 作井
Tatsuo Igawa
井川 立雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP61050423A priority Critical patent/JPS62208496A/en
Publication of JPS62208496A publication Critical patent/JPS62208496A/en
Publication of JPH0572040B2 publication Critical patent/JPH0572040B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To contrive a stable action by setting the low potential of an external power source to a substrate bias, boosting the low potential in a chip through a power source/voltage conversion circuit and supplying it as the source power source voltage of an internal circuit. CONSTITUTION:A VccExt directly inputs as the internal drain power source voltage 110 of the internal circuit 109 in the chip, is boosted to a 2V by the power source voltage conversion circuit 115 in the chip, and inputted to the internal circuit 109 as a VssInt. 116. The VssExt. 107 outside the chip is connected to a package seat 101 on the conductive surface, and acts as the substrate potential VBB 117. Since a Vssext. with a high power source capacity is used as a VBB, the malfunction is considerably improved, and at the time of discharging a bit line the VccExt and VssExt with high power source capacities are directly resistance-divided. Thus a Vref is stabilized, and the power source voltage conversion circuit including the substrate bias is only of one system, whereby the internal circuit 109 including an address buffer circuit main body can be resistant to noise.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は,チップ内にソース電源電圧変換回路を設けた
ダイナミックRAM C DRAM )寺に好適なMO
S集積回路に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention is directed to a dynamic RAM (CDRAM) equipped with a source power voltage conversion circuit in a chip.
Regarding S integrated circuits.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

MO8集積回路、#にメモリにおいては、その高集積化
、大容量化が急速に進んでいる。
MO8 integrated circuits and memories are rapidly becoming more highly integrated and larger in capacity.

これに伴なi,使用デバイスの微細化が行なわれている
。このためデバイスの耐圧,信頼性等が問題となってお
り、プロセス的にはLDD(LightlyDoped
 Drain)構造等の工夫が為されて米だが、デバイ
スの耐圧,信頼性には限界があり、回路設計的には低電
圧化技術が必須の技術となっている。
Along with this, the devices used are being miniaturized. For this reason, device breakdown voltage, reliability, etc. have become issues, and in terms of process, LDD (Lightly Doped)
Although improvements have been made to the drain structure, etc., there are limits to the device's withstand voltage and reliability, and low voltage technology is essential for circuit design.

例えばダイナミック[{AM( L)RAM)の場合,
外部入力の供給電圧として5Veli−電源方式が64
KDRAMから採用され,256に.lMもこの方式で
製品化されている。DRAMを使用する側のユーザーも
4M。
For example, in the case of dynamic [{AM(L)RAM),
5Veli-power supply method is 64 as external input supply voltage
Adopted from KDRAM, 256. IM has also been commercialized using this method. The number of users using DRAM is also 4M.

16Mに対してもこの5v琳一電源方式を強く希望して
いる。このため、 4IviDRAMでは前述したデノ
(イスの耐性、信頼性等を考慮してチップ内部に降圧回
路を設け、5vの外部′覗源幅圧を3v程度に降圧して
内部ドレイン幅圧としてチップ内部の各回路に供給する
方式が試されている。
I strongly hope for this 5v Rinichi power supply system for 16M as well. For this reason, in the 4Ivi DRAM, a step-down circuit is installed inside the chip in consideration of the resistance and reliability of the device mentioned above, and the external source width voltage of 5V is reduced to about 3V, and the internal drain width voltage is applied to the chip. A method of supplying power to each internal circuit is being tested.

しかし、降圧回路を組込む方式では、チップ内に降圧回
路と基板バイアス変換回路の両者を有することとなり、
高集積化を妨げ、消費電流も増大する。、更にチップ動
作時のノイズVこよって両者の出力が変動すると回路の
誤動作lこつながる恐れがろろ。この問題はメモリセル
が大容量化されるにつれ顕著となる。それは、チップ動
作時の過渡電流が大容量化に伴なって増大し、配線幅の
減少からチップ内部のインダクタンスυも南天する傾向
vcめるからである。
However, in the method of incorporating a step-down circuit, the chip has both a step-down circuit and a substrate bias conversion circuit.
This hinders high integration and increases current consumption. Furthermore, if the outputs of both circuits fluctuate due to noise during chip operation, there is a risk of circuit malfunction. This problem becomes more noticeable as the capacity of memory cells increases. This is because the transient current during chip operation increases as the capacity increases, and as the wiring width decreases, the inductance υ inside the chip also tends to decrease vc.

(発明の目的〕 本祐明は上記問題に智みてなされたもので、デバイスの
耐圧と信頼性を考、!+Jする一方、電源ノイズによる
回路誤動作が起こり価く安定した動作が可能な(イ)S
雫慣回路を提供する墨を目的とする。
(Purpose of the Invention) This Yumei was developed in consideration of the above problems, and while it improves the withstand voltage and reliability of the device, it also reduces the risk of circuit malfunction due to power supply noise and enables stable operation (I )S
The purpose of the ink is to provide a drop habit circuit.

〔発明の概遺〕[Summary of the invention]

本発明は、ソース電源電圧変換回路がチー・プ内部に内
蔵され、その出力がチップ内部のソース電源電圧とし1
入力し、チッ外部のソース電源電圧はチップの基板バイ
アスとして入カレ、チップ外部のドレイン電源電圧は、
チップ内部のドレイン輩源゛シ圧として直接用いる事を
骨子とする。
In the present invention, a source power voltage conversion circuit is built inside the chip, and its output is converted to the source power voltage inside the chip.
The source power supply voltage outside the chip is input as the chip's substrate bias, and the drain power supply voltage outside the chip is input as the chip's substrate bias.
The main idea is to use it directly as a drain source pressure inside the chip.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ソース電源電圧変換回路を用いてチッ
プ内部のソース電源電圧を例えばOvから2VIC高め
相対的にデバイスに加わる電圧が低下でき、デバイスの
耐圧、信頼性を十分保証することができる。
According to the present invention, by using a source power supply voltage conversion circuit, the source power supply voltage inside the chip can be increased by, for example, 2 VIC from Ov, and the voltage applied to the device can be relatively reduced, and the withstand voltage and reliability of the device can be sufficiently guaranteed. .

また、この様にデバイスに加れる電圧を低下させる一方
、ナツプ外部のソース電源電圧を直接チップの基板バイ
アスとして用いるため、従来チップ内部に内蔵されてい
た基板バイアス発生回路が不要となり、これによりチッ
プ面積の減少、待期時消費電流の削減が可能となる。
In addition, while reducing the voltage applied to the device in this way, the external source power supply voltage is used directly as the substrate bias for the chip, which eliminates the need for the substrate bias generation circuit that was conventionally built inside the chip. It is possible to reduce the area and the current consumption during standby.

また、 DRAMでは、アドレスバッファ回路等の参照
電位(Vrei)の変動が大きな問題であるが、基板バ
イアスの安定化を図ることができその誤動作防止に大き
な効果がある。
Furthermore, in DRAMs, fluctuations in the reference potential (Vrei) of address buffer circuits and the like are a major problem, but it is possible to stabilize the substrate bias, which is highly effective in preventing malfunctions.

〔発明の実施例〕[Embodiments of the invention]

以下不発明の実施例を図面を用いて説明する。 Embodiments of the invention will be described below with reference to the drawings.

第1図はDRAMのシスデムブロック図含蝋略的に示す
FIG. 1 schematically shows a system block diagram of a DRAM.

ICパッケージの台座101は表面に導体層がコートさ
れ、裏[10にこれが接して+JRAMチップ102が
搭載されている。チップのドレイン電源電圧パッド10
3とソース電源屯田バッド104には、チップ外部の供
給電源105からドレイン外部電源電圧(VccExt
) 106と、ソース外部′亀源電圧(Vss Ext
 )107が夫々入力する。108はブロッキングコン
デンサであり、またここではVccExtは5 V 、
 VssExtはOvである。
The surface of the pedestal 101 of the IC package is coated with a conductive layer, and the JRAM chip 102 is mounted on the back surface [10] in contact with the conductive layer. Chip drain power supply voltage pad 10
3 and the source power supply pad 104 are connected to the drain external power supply voltage (VccExt
) 106 and the source external voltage (Vss Ext
) 107 respectively. 108 is a blocking capacitor, and here VccExt is 5 V,
VssExt is Ov.

VccExt Vi直接チップ内部の内部回路109の
内部ドレイン電源電圧(Vcc Int、 ) 110
として入力する。
VccExt Vi Direct internal drain power supply voltage of internal circuit 109 inside chip (Vcc Int, ) 110
Enter as .

内部回路1()9は基本タロツク発生回路illとDt
(AM回路112≠1ら11)1イれ、 l)R,AM
回路112けボにDR川用モリセル、センスアンプ等の
コア回路113とプリチャージ回路、デコーダ回路、ア
ドレスバッファ回路、110回路等の周辺回路114か
ら構成されている。
The internal circuit 1()9 is the basic tarlock generation circuit ill and Dt.
(AM circuit 112≠1 et al. 11) 1, l) R, AM
The circuit 112 consists of a core circuit 113 such as a DR memory cell and a sense amplifier, and peripheral circuits 114 such as a precharge circuit, a decoder circuit, an address buffer circuit, and a 110 circuit.

一方s VssExtはチップ内部の電源屯田変換回路
115ニより2Vまで昇圧すf’L、 VssInt、
 116とり、テ内部回路109に入力する。また、チ
ップ外部のこ’CI) VssExt、 107は導電
性表面ノパッケーシ台座101 K接続され、チップ1
020基板7E位VBB (1)として働く。
On the other hand, sVssExt is boosted up to 2V from the power supply conversion circuit 115 inside the chipf'L, VssInt,
116 and input it to the internal circuit 109. In addition, the chip external chip (CI) VssExt, 107 is connected to the conductive surface package pedestal 101K, and the chip 1
Works as 020 board 7E VBB (1).

ソース電源電圧変換回路115は第2図に示すブロック
構成である。201は基準電位発生回路、202は誤差
増幅回路、203は内部ソース電位負荷回路である。チ
ップ内部ソース電位VssInt、  116と、基準
電位発生回路201Vこより設定された基準電位204
の電位差を誤差増幅回路202で増幅し、内部ソース電
位負荷回路203VCより、内部回路109の消費電流
を制御してチップ内部ソース電位VssInt、を安定
化している。
The source power supply voltage conversion circuit 115 has a block configuration shown in FIG. 201 is a reference potential generation circuit, 202 is an error amplification circuit, and 203 is an internal source potential load circuit. The chip internal source potential VssInt, 116 and the reference potential 204 set by the reference potential generation circuit 201V.
The error amplifier circuit 202 amplifies the potential difference, and the internal source potential load circuit 203VC controls the current consumption of the internal circuit 109 to stabilize the chip internal source potential VssInt.

i3図は第2図の実際の回路図である。即ち、VccE
xt、 、 VssF;xt、の5V、OVを抵抗R1
+ R2で分割して基準電位204が与えられる。誤差
Vθ幅回路202はp −c h K)SFFW Q 
1〜Q a及びn −ch MO8FE″rQ4 、Q
sであり、カレントミラー型の誤差増幅回路を(4収し
ている。Q6はチップ内部ソース電位出力負荷用のn 
−chMO8FETである。
Figure i3 is the actual circuit diagram of Figure 2. That is, VccE
xt, , VssF; xt, 5V, OV is connected to resistor R1
+R2 and a reference potential 204 is provided. The error Vθ width circuit 202 is p −ch K) SFFW Q
1~Q a and n-ch MO8FE″rQ4, Q
Q6 is a current mirror type error amplification circuit (4).
-chMO8FET.

第3図ではCMO8fN成であるが 、)g 4図に示
すようにn −chMO8FETで構成する事も可能で
ある。
In Fig. 3, the CMO8fN configuration is shown, but it is also possible to configure it with n-chMO8FETs as shown in Fig. 4).

ここで、Ql−Q3はDタイプ、Q4〜Q6はEタイプ
のMOSFETである。
Here, Ql-Q3 are D type MOSFETs, and Q4 to Q6 are E type MOSFETs.

第3図、第4図では抵抗分割によりチップ内部ソース基
準t、を泣204を設定したが、第5図に示す様に、例
えばn−ch八り5FET Q7〜Qtoを用いても良
い。
In FIGS. 3 and 4, the chip internal source reference t is set to 204 by resistor division, but as shown in FIG. 5, for example, n-channel 5FETs Q7 to Qto may be used.

第6図は上述したアドレスバッファ回路の回路図を示し
ている。即ち、T’rLレベルの微小振幅のアドレス入
力信号Ainを抵抗分割で得た前記眼幅の中間Tff、
位に設定された参照′電位Vrefと比較してAinが
Hかしかを検知し、これを増幅して内部アドレス信号A
o u ts これと相補信号のAoutを得るもので
ある。
FIG. 6 shows a circuit diagram of the address buffer circuit described above. That is, the middle of the interpupillary distance Tff obtained by resistance-dividing the address input signal Ain of minute amplitude at the T'rL level,
Ain detects whether it is high by comparing it with the reference potential Vref set at
o u ts A complementary signal Aout is obtained.

従来、基板バイアス回路を用いたものでは、ビット線光
放電FRfrcビット線にコンタクトするメモリセルの
拡散層の接合容量により基板電位VnBが変動し易く、
これと基板表面の酸化膜を介して対向する、Vrefラ
インに変動を与え、アドレスバッファ回路が誤動作する
という問題があった。
Conventionally, in a circuit using a substrate bias circuit, the substrate potential VnB tends to fluctuate due to the junction capacitance of the diffusion layer of the memory cell that contacts the bit line photodischarge FRfrfrc bit line.
This causes a problem in that the Vref line, which is opposite to this via the oxide film on the surface of the substrate, fluctuates, causing the address buffer circuit to malfunction.

第7図は第6図のアドレスバッファ回路の動作波形図を
示すもので以下、動作を簡牢vC説明する。
FIG. 7 shows an operational waveform diagram of the address buffer circuit of FIG. 6, and the operation will be briefly explained below.

まずクロック信号φ1.φ2.φ3.φ4がそすLぞれ
H”’f(”L’″L”とすると(”f(”=5V 、
 ”L”=2V)、MO8FETQl 3 、Ql4は
導通状態になり、ノードNlはアドレス入力端子レベル
に、ノードN2は参照電位に光゛tされる。−万、Nυ
斗’h’T Q211Q221Q23も導通状態になり
ノードN5 +N6は″[(”に光電されN’tosF
h、’T Qly+Qts*Qza+Qz7も導通状態
ic fxす、φ3.φ4が”L”のため、 N3.N
4.Aout、Aoutはすべて+LHとなる。
First, clock signal φ1. φ2. φ3. If φ4 moves each L H"'f("L'"L", then ("f("=5V,
"L"=2V), the MO8FETs Ql 3 and Ql4 become conductive, the node Nl is brought to the address input terminal level, and the node N2 is brought to the reference potential. - 10,000, Nυ
Do'h'T Q211Q221Q23 also becomes conductive, and the node N5 +N6 is photoelectronized to ``[('' and N'tosF
h, 'T Qly+Qts*Qza+Qz7 is also in the conductive state ic fx, φ3. Since φ4 is “L”, N3. N
4. Aout and Aout are all +LH.

次にクロック信号φ1.φ2が′″H’H’レベルL”
レベルVC変化し、引続いてクロック(Fj号φ3がL
”からH”になる。すると、MOSFET Q t y
 、Q t s Ic 夫にノードN3 rN4へφ3
のレベルを転送しようとする。
Next, clock signal φ1. φ2 is ``H'H' level L''
The level VC changes, and then the clock (Fj signal φ3 becomes L)
"to H". Then, MOSFET Q ty
, Q t s Ic husband to node N3 rN4 to φ3
Try to transfer the level of.

ところがノードNl 、N2 tj力SF’ET Qt
 l+Qt 2を導1!!1させるのに充分なレベルで
おり、また、ノードN1ト/−)’N21Ci vベル
差y)=;p)る7’c メML)SFET Qt t
とQtzにコンダクタンスの差が生ずるためノードN3
とN4 vcはレベル差が生じる。ここではA1n=″
H”のためN4″′H”+N3″′L″となる。この電
位差をMO8F’E’r Qt s +Qt aからな
るフリーラグフロッグが増fill、それと同時iCM
OSFET Ql91Q20がノードN5eN6ヘノー
ドN3 +N4の状態を転送する。N4@H”。
However, the nodes Nl, N2 tj force SF'ET Qt
l + Qt 2 leads to 1! ! 1, and the level is sufficient to cause the node N1t/-)'N21Ci v level difference y)=;p) 7'c MEML) SFET Qt t
Since there is a difference in conductance between Qtz and Qtz, node N3
There is a level difference between N4 VC and N4 VC. Here A1n=″
N4'''H'' + N3'''L'' because of H''.This potential difference is increased by the free lag frog consisting of MO8F'E'r Qt s +Qt a, and at the same time the iCM
OSFET Ql91Q20 transfers the state of node N3 +N4 to node N5eN6. N4@H”.

N3 ”L”であるから%t)SFET(h 9は非導
通、Q20は導通し、ノードNs”H”のまま、ノード
N6−IH#からL#となる。ノードN5 wN6はそ
れぞれQt s IQI 7のゲートに夫々接続されて
いるため、ノードN6″′L”となると■5FETQ1
7のコンダクタンスが下がりN3”L”+N4“H”の
レベル差が大きくなるのを助長する。以上の様なフィー
ドバック系によりN3* Nsは″L’レベルとなりN
 4 + N5は′″H”となる。
Since N3 is "L", %t) SFET (h 9 is non-conductive, Q20 is conductive, node Ns remains "H", and becomes L# from node N6-IH#. Nodes N5 and wN6 are respectively Qt s IQI Since they are connected to the gates of 7 and 7, when the node N6'''L'' becomes ■5FETQ1
This reduces the conductance of N3 and increases the level difference between N3"L" and N4"H". Due to the above feedback system, N3*Ns becomes "L" level and N
4 + N5 becomes ``H''.

次VCクロック4m号φ4が”L”からI(”へと変化
するとNs J6が夫々″″H” 、 ”L”であるた
めM)SF胛Q26は導通、Q27は非導通であるため
Aoutへφ4のレベルが転送され、更にAoutが”
f(”であるためMOSFET Q 1sが導通状態と
なりAousは@L#となり、アドレス信号Aout”
H’ 、Aout″L#が出力される。
When the next VC clock No. 4m φ4 changes from "L" to I(", Ns J6 is "H" and "L" respectively, so M) SF wire Q26 is conductive, and Q27 is non-conductive, so it goes to Aout. The level of φ4 is transferred, and Aout is
f(", MOSFET Q 1s becomes conductive, Aous becomes @L#, and the address signal Aout"
H', Aout''L# are output.

参照電位Vrofは基準電位発生回路601で作られる
Reference potential Vrof is generated by reference potential generation circuit 601.

この基準電位発生回路601は、ポリシリコン膜による
抵抗体R3+ R4を用いた抵抗分割回路で構成され、
また、各アドレスバッファに入力するまでに長いVre
fAJ配線があり、半導体基板との間で大きい容量結合
がある。この値は配線同志の容量より一般に大きい。従
って従来の如く基板バイアス発生回路を用いたものでは
前記ピッ)Dの充放電時ic VBBがゆらぐ問題があ
り、これがVrefの変動をもたらしてマージンの小さ
いアドレスバッファ回路の誤動作を引起す問題があった
。これはビット線充放電後、カラムアドレスやロウアド
レス指定のためのAin入力入力誤動作として表われる
ものである。
This reference potential generation circuit 601 is composed of a resistance divider circuit using resistors R3+R4 made of polysilicon film,
Also, it takes a long time to input Vre to each address buffer.
There is fAJ wiring, and there is large capacitive coupling between it and the semiconductor substrate. This value is generally larger than the capacitance between interconnects. Therefore, in a conventional circuit using a substrate bias generation circuit, there is a problem in that the IC VBB fluctuates during charging and discharging of the pin D, which causes fluctuations in Vref and causes a malfunction of the address buffer circuit with a small margin. Ta. This appears as a malfunction of the Ain input for specifying column addresses and row addresses after bit line charging and discharging.

しかして本発明では* VBBは電源容量の太きいVi
sext、をVnBとして用いるのでかかる問題が大幅
に改善される。−また、ビット線充放電時には。
However, in the present invention, *VBB is Vi, which has a large power supply capacity.
This problem can be greatly improved by using ``sext'' as VnB. -Also, when charging and discharging the bit line.

その過大な電流によりVcc、Vssが変動するという
問題もあるが、f2Wt図、第6図に示すように、電源
8にの大きイVccE:<t 、VssExtを直接抵
抗分割すれば良いのでVref (D i走化:/i著
しく1成される。
There is also the problem that Vcc and Vss fluctuate due to the excessive current, but as shown in the f2Wt diagram and Figure 6, there is a large current in the power supply 8. D i Chemotaxis: /i is significantly produced.

また、基板バイアスも含めて“L源電圧変洪回路はl系
統でめるので、アドレスバッファ回路本体を含め内部回
路109はノイズに対して噛い。
In addition, since the L source voltage changing circuit, including the substrate bias, is set in one system, the internal circuit 109, including the address buffer circuit itself, is sensitive to noise.

第1図に2いて、602はAinの信号人力パッドであ
る。尚、基準゛4位発生回路601は縞5図に示した様
にMOSFETで遺戒してもよい。
2 in FIG. 1, 602 is Ain's signal human power pad. Incidentally, the reference 4th position generating circuit 601 may be replaced by a MOSFET as shown in Fig. 5.

以上説明した様に1本発明によれば、デバイス耐圧、信
頼性向上を図ると共に、電源回路の小型化、低消費電力
化力E iJ能となり、まだ、チップのノイズ誤動作を
大幅に改善する事ができるものである。
As explained above, according to the present invention, it is possible to improve device breakdown voltage and reliability, downsize the power supply circuit, reduce power consumption, and significantly improve chip noise malfunction. It is something that can be done.

その他事発明は上記実施例に限定されることなく、種々
変形して実施する事ができる。
Other aspects of the invention are not limited to the above embodiments, and can be implemented with various modifications.

【図面の簡単な説明】[Brief explanation of drawings]

=a を図は本発明の実柿例を示すシステムブロック図
、第2図はソース電源、t+、圧変換回路のブロック図
、第3図、第41凶、第5図はその回路図、第6図はア
ドレスバッファ回路の回路図、第7図はその動作のタイ
ミングチャート図である。図において、 105・・・外部電源、115・・・ソース電圧変換回
路、109・・・内部回路。 代理人 弁理士 則 近 憲 佑 同    竹 花 番久男 第  1 図 第    図 一1町 第  7 図
=a The figure is a system block diagram showing an actual example of the present invention, Figure 2 is a block diagram of the source power supply, t+, and pressure conversion circuit, Figures 3 and 41 are block diagrams, and Figure 5 is its circuit diagram. FIG. 6 is a circuit diagram of the address buffer circuit, and FIG. 7 is a timing chart of its operation. In the figure, 105... external power supply, 115... source voltage conversion circuit, 109... internal circuit. Agent Patent Attorney Noriyuki Ken Yudo Takehana Bank Hisao No.1 Figure No.11 Town No.7

Claims (5)

【特許請求の範囲】[Claims] (1)外部電源の高電位をチップの内部回路のドレイン
電源電圧とし、外部電源の低電位を基板バイアスとする
と共に該低電位を電源電圧変換回路を介してチップ内で
昇圧して前記内部回路のソース電源電圧として供給する
様にしたことを特徴とするMOS集積回路。
(1) The high potential of the external power supply is used as the drain power supply voltage of the internal circuits of the chip, and the low potential of the external power supply is used as the substrate bias, and the low potential is boosted within the chip via the power supply voltage conversion circuit to boost the internal circuits. 1. A MOS integrated circuit characterized in that the source voltage is supplied as a source power supply voltage.
(2)ダイナミックRAMチップである事を特徴とする
前記特許請求の範囲第1項記載のMOS集積回路。
(2) The MOS integrated circuit according to claim 1, which is a dynamic RAM chip.
(3)外部電源は夫々5V、0V、電源電圧変換回路の
出力が2Vである事を特徴とする前記特許請求の範囲第
1項記載のMOS集積回路。
(3) The MOS integrated circuit according to claim 1, wherein the external power supplies are 5V and 0V, respectively, and the output of the power supply voltage conversion circuit is 2V.
(4)アドレスバッファ回路を備えてなる事を特徴とす
る前記特許請求の範囲第1項又は第2項記載のMOS集
積回路。
(4) The MOS integrated circuit according to claim 1 or 2, characterized in that it comprises an address buffer circuit.
(5)アドレスバッファ回路の参照電位が外部電源の電
源電圧と分割して得られる事を特徴とする前記特許請求
の範囲第4項記載のMOS集積回路。
(5) The MOS integrated circuit according to claim 4, wherein the reference potential of the address buffer circuit is obtained by dividing the power supply voltage of an external power supply.
JP61050423A 1986-03-10 1986-03-10 Mos integrated circuit Granted JPS62208496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61050423A JPS62208496A (en) 1986-03-10 1986-03-10 Mos integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61050423A JPS62208496A (en) 1986-03-10 1986-03-10 Mos integrated circuit

Publications (2)

Publication Number Publication Date
JPS62208496A true JPS62208496A (en) 1987-09-12
JPH0572040B2 JPH0572040B2 (en) 1993-10-08

Family

ID=12858456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61050423A Granted JPS62208496A (en) 1986-03-10 1986-03-10 Mos integrated circuit

Country Status (1)

Country Link
JP (1) JPS62208496A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5687123A (en) * 1993-10-14 1997-11-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
USRE37593E1 (en) 1988-06-17 2002-03-19 Hitachi, Ltd. Large scale integrated circuit with sense amplifier circuits for low voltage operation
USRE40132E1 (en) 1988-06-17 2008-03-04 Elpida Memory, Inc. Large scale integrated circuit with sense amplifier circuits for low voltage operation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131617A (en) * 1984-11-30 1986-06-19 Toshiba Corp Mos type semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61131617A (en) * 1984-11-30 1986-06-19 Toshiba Corp Mos type semiconductor device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37593E1 (en) 1988-06-17 2002-03-19 Hitachi, Ltd. Large scale integrated circuit with sense amplifier circuits for low voltage operation
USRE40132E1 (en) 1988-06-17 2008-03-04 Elpida Memory, Inc. Large scale integrated circuit with sense amplifier circuits for low voltage operation
US5687123A (en) * 1993-10-14 1997-11-11 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
US5943273A (en) * 1993-10-14 1999-08-24 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
US6272055B1 (en) 1993-10-14 2001-08-07 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
US6414883B2 (en) 1993-10-14 2002-07-02 Mitsubishi Denki Kabushiki Kaisha Semiconductor memory device
US6859403B2 (en) 1993-10-14 2005-02-22 Renesas Technology Corp. Semiconductor memory device capable of overcoming refresh disturb

Also Published As

Publication number Publication date
JPH0572040B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
JP3085782B2 (en) Semiconductor storage device
US4780854A (en) Semiconductor integrated circuit device
JP3759758B2 (en) Semiconductor memory device
US6366506B1 (en) Semiconductor device operating by receiving a plurality of operating voltages
US6703891B2 (en) Charge pump with improved reliability
US4455628A (en) Substrate bias generating circuit
JPH0614529A (en) Stepped-up potential generating circuit
JPH0817941A (en) Semiconductor integrated circuit device
KR940010104A (en) Voltage generator and internal step-down converter
JP3186034B2 (en) Reference voltage generation circuit
US4695746A (en) Substrate potential generating circuit
JPH0488518A (en) Semiconductor device
JPS62208496A (en) Mos integrated circuit
JP2820910B2 (en) Internal voltage booster circuit of semiconductor integrated circuit
JPH11111946A (en) Semiconductor memory
JPS60189965A (en) Metal-oxide film-semiconductor (mos) memory
TW565849B (en) Semiconductor device
JP4127452B2 (en) Semiconductor integrated circuit device
Schrader et al. A new circuit configuration for a static memory cell with an area of 880/spl mu/m/sup 2
JPH0785664A (en) Dynamic type mos memory
JPH0713875B2 (en) Semiconductor integrated circuit
JPS60165756A (en) Dynamic random access memory
JPH05103463A (en) Circuit for generating voltage
JPS6383994A (en) Semiconductor integrated circuit
JP2000134079A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees