JPS62207719A - Preparation of raw material powder of lead base perovskite type compound oxide ceramic containing niobium - Google Patents

Preparation of raw material powder of lead base perovskite type compound oxide ceramic containing niobium

Info

Publication number
JPS62207719A
JPS62207719A JP61049320A JP4932086A JPS62207719A JP S62207719 A JPS62207719 A JP S62207719A JP 61049320 A JP61049320 A JP 61049320A JP 4932086 A JP4932086 A JP 4932086A JP S62207719 A JPS62207719 A JP S62207719A
Authority
JP
Japan
Prior art keywords
precipitate
raw material
material powder
component
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61049320A
Other languages
Japanese (ja)
Other versions
JPH0432767B2 (en
Inventor
Shinichi Shirasaki
信一 白崎
Kazumitsu Abe
一允 安倍
Masashi Aoki
昌史 青木
Tadao Nakatsuji
忠夫 仲辻
Kazuhisa Hidaka
一久 日高
Kayoko Segawa
瀬川 佳代子
Yoshiyuki Kira
吉良 義行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Sakai Chemical Industry Co Ltd
Original Assignee
National Institute for Research in Inorganic Material
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material, Sakai Chemical Industry Co Ltd filed Critical National Institute for Research in Inorganic Material
Priority to JP61049320A priority Critical patent/JPS62207719A/en
Publication of JPS62207719A publication Critical patent/JPS62207719A/en
Publication of JPH0432767B2 publication Critical patent/JPH0432767B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compounds Of Iron (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain easily the sinterable titled raw material powder having high perovskite content by forming coprecipitate of a specified metallic component and Nb, adding soln. of a Pb component and liquid for forming precipitate thereto, and calcining whole precipitate formed thereby. CONSTITUTION:Liquid for forming precipitate is added to aq. or alcoholic soln. of a Nb component and component A (at least one among Fe, Co, Ni, Mg, Mn, Zn, Cd, and In) to form coprecipitate of Nb and A component. Aq. soln. of Pb component is added to the slurry of the suspension, and the liquid for forming precipitate is added to the mixture. Formed precipitate is filtered dried and calcined at 400-1,000 deg.C after mixing, if necessary, with raw materials of ceramic. By this method, raw material powder for a perovskite type compound oxide ceramic contg. Nb expressed by PbAxNb1-xO3 is obtd. In the formula, x is 1/2 or 1/3. The raw material powder is fine particle and easily sinterable having characteristically high forming rate of perovskite.

Description

【発明の詳細な説明】 この発明は、微細なサブミクロンの粒子径を有するセラ
ミクス原料粉末の製造方法に間するものである。特に、
積層キャパシターに好適な粒子径を有するとともに、易
焼結性を有するニオブ含有鉛系ペロブスカイト型複合酸
化物の原料粉末の製造方法に間する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ceramic raw material powder having a fine submicron particle size. especially,
A method for producing a raw material powder of a niobium-containing lead-based perovskite-type composite oxide having a particle size suitable for a multilayer capacitor and having easy sinterability is provided.

一般に鉛系ペロブスカイト型複合酸化物は、圧電材料と
して多用されているが、近年(1)チタン酸バリウムな
ど従来汎用されている誘電体材料に比して高誘電率であ
るため、単位体積当たりの誘電容量が高く積層キャパシ
ターの小型化に最適であり、(2)焼結温度が低いため
、内部電極として従来使用されているパラジウムよりも
安価な銀を用いることができ、(3)更に、物質の種類
も多いため、組成のバリエーションによって多くの誘電
体用新材料の開発が可能であるという事がら、盛んに誘
電体材料として研究開発されているものである。
Generally, lead-based perovskite-type composite oxides are widely used as piezoelectric materials, but in recent years (1) they have a higher dielectric constant than conventionally used dielectric materials such as barium titanate, so It has a high dielectric capacity and is ideal for miniaturizing multilayer capacitors; (2) its low sintering temperature allows the use of silver, which is cheaper than palladium, which is conventionally used for internal electrodes; Since there are many types of dielectric materials, it is possible to develop many new materials for dielectric materials by varying the composition, and it is being actively researched and developed as a dielectric material.

本発明において記述するニオブ含有鉛系ペロブスカイト
型複合酸化物(以下本発明組成物と言う)とは、この鉛
系ペロブスカイト型複合酸化物の以上の元素であり、か
つニオブな含有する一般式組成物である。
The niobium-containing lead-based perovskite-type composite oxide described in the present invention (hereinafter referred to as the composition of the present invention) is a composition with the general formula containing the above elements of this lead-based perovskite-type composite oxide and niobium. It is.

他のpb系ペロブスカイト型複合酸化物とは、一般式P
bAxB1−xoa  (ただしA=前記A成分B=W
、Nb、Taから選ばれた1種及び2種以上)で表され
るものであり、通常本発明組成物セラミクスと固溶化さ
せて実用に供されるものである。本発明は、この固溶化
物の前駆体としても用いることができる。
Other pb-based perovskite complex oxides have the general formula P
bAxB1-xoa (where A=the above A component B=W
, Nb, and Ta (one or more selected from Ta, Nb, and Ta), and is usually put into practical use by being made into a solid solution with the ceramic composition of the present invention. The present invention can also be used as a precursor of this solid solution.

従来の鉛系ペロブスカイト型複合酸化物セラミクス原料
粉末の製造方法としては、乾式法と湿式法が知られてい
る。
Conventional methods for producing lead-based perovskite composite oxide ceramic raw material powder include a dry method and a wet method.

乾式法は構成成分の酸化物の粉末をその構成割合に応じ
て混合し、これを仮焼する方法である。
The dry method is a method in which powders of oxides as constituent components are mixed according to their composition ratios, and this is calcined.

しかしこの方法では、均一な組成の原料粉末が得難く、
またパイロクロア相が多い。
However, with this method, it is difficult to obtain raw material powder with a uniform composition;
There are also many pyrochlore phases.

ペロブスカイト相の生成率を高めるために仮焼温度を高
くする必要があるため、このことにより粒子が粗大化し
、易焼結性になりにくい欠点がある。
Since it is necessary to increase the calcination temperature in order to increase the production rate of the perovskite phase, this causes the particles to become coarser, which has the drawback of making it difficult to easily sinter.

湿式法としては、構成成分の全てを含む混合溶液を作り
、これにアルカリ等の沈殿形成液を添加して共沈させ、
乾燥仮焼する方法が一般的である。しかし、この方法は
均一性の優れた粉末が得やすいが、その均一性なるが故
に沈殿生成時、乾燥時、また仮焼時に凝結して二次粒子
を形成して粒子が粗大化し、易焼結性となりにくい欠点
があるまたこの方法では、沈殿形成液の濃度が一定であ
るため、各構成成分の沈殿形成能が異なる場合には、例
えばある成分は100%沈殿を生成するが、他の成分は
100%沈殿は生成しない場合があり、所望組成のもの
となり難い欠点がある。
In the wet method, a mixed solution containing all of the constituent components is prepared, and a precipitate forming liquid such as an alkali is added to this to co-precipitate.
A common method is dry calcining. However, although this method makes it easy to obtain powder with excellent uniformity, due to its uniformity, it tends to coagulate during precipitate formation, drying, and calcination to form secondary particles, making the particles coarser and making them easier to burn. In addition, in this method, the concentration of the precipitate-forming solution is constant, so if the precipitate-forming ability of each component differs, for example, one component will form 100% precipitate, but other components will not. There are cases where 100% of the components do not precipitate, which has the disadvantage that it is difficult to obtain the desired composition.

これらの従来技術による原料粉末を用い“て得られるセ
ラミクスのグレインサイズは10μ以上になるため、特
に積層キャパシターに実用する場合には、層の厚みの制
約を与えるため小型大容量化に対して限界をきたす所と
なる。
The grain size of ceramics obtained using these raw material powders using these conventional techniques is 10μ or more, so when used in multilayer capacitors in particular, there is a limit to miniaturization and large capacity due to restrictions on layer thickness. This is where things happen.

更に、鉛系ペロブスカイト型複合酸化物セラミクスの原
料粉末の製造に際し、一般的には組成構成成分化合物の
均一混合に注力している。しかしながら、鉛成分につい
ては固相反応で比較的低温で移動しNbと反応する非常
に活性な元素であることから、均一□混合を重視する必
要があるのはA成分とNb成分の沈殿物なのである。
Furthermore, when producing raw material powder for lead-based perovskite composite oxide ceramics, efforts are generally made to uniformly mix the constituent compounds. However, since the lead component is a very active element that moves at a relatively low temperature and reacts with Nb in a solid-phase reaction, it is necessary to place emphasis on uniform □ mixing because the precipitates of the A component and the Nb component. be.

鉛成分の沈殿物は、このAおよびNb成分の均一な沈殿
物の混合状態を破壊しない程度において混合されていれ
ば、仮焼工程において固相間を活発に移動するので、全
構成成分の十分な均一化が可能となるのである。
If the lead component precipitate is mixed to the extent that it does not destroy the uniform precipitate mixture of A and Nb components, it will actively move between the solid phases during the calcination process, so that all the components will be sufficiently mixed. This makes it possible to achieve uniformity.

従来技術では、固相反応間の各成分の挙動に関する知見
に対する配慮を欠いた原料粉末の製造方法を採り、全構
成成分の均一混合になっている為、鉛とニオブとの化合
物であるパイロクロア相の生成率が高くなり、ペロブス
カイト相の生成が抑制されていた。このことに基因して
、ペロブスカイト相の生成を高めるのに仮焼i度を高温
にせざるをえず、従って原料粉末の粒子も粗大化すると
いう悪循環になフていたのである。
In conventional technology, the manufacturing method of the raw material powder lacks consideration for the behavior of each component during solid phase reaction, and all the components are uniformly mixed, resulting in a pyrochlore phase, which is a compound of lead and niobium. The production rate of perovskite was increased, and the production of perovskite phase was suppressed. Due to this, the calcination degree must be increased to a high temperature in order to increase the formation of the perovskite phase, resulting in a vicious cycle in which the particles of the raw material powder also become coarse.

本発明の目的は、零発組成物の原料粉末の製法における
従来法の欠点を解消して、微粒子、易焼結性でペロブス
カイト相の生成率も高い所望の組成比を有した本発明組
成物の原料粉末を製造する方法を提供することにある。
An object of the present invention is to eliminate the drawbacks of conventional methods for producing raw material powder for a zero-start composition, and to produce a composition of the present invention having a desired composition ratio of fine particles, easy sinterability, and a high production rate of perovskite phase. The object of the present invention is to provide a method for producing raw material powder.

本発明者らは、前記目的を達成すべく鋭意研究カリなど
の沈殿形成液にて沈殿させるか、または鉛沈殿物と同等
な化合物粉末を共沈物スラリー中に添加混合するときは
、二重操作であるため、各段階で沈殿物成分形成液の濃
度を沈殿生成に適した条件となし得て、沈殿物成分の組
成を所望のものとなすことができると共に、二重沈殿で
あるため凝結による二次粒子の形成もないことを究明し
た。
In order to achieve the above object, the present inventors have conducted extensive research on the method of precipitating with a precipitate-forming liquid such as potash, or when adding and mixing a compound powder equivalent to lead precipitate into a coprecipitate slurry. Since it is a double precipitation operation, the concentration of the precipitate component forming liquid can be adjusted to the conditions suitable for precipitate formation at each stage, and the composition of the precipitate component can be made as desired. It was determined that there was no formation of secondary particles.

この様にして得られた沈殿物を仮焼するときは仮焼温度
の低温化が可能となるため、原料粉末は、サブミクロン
の微粒子であり、このことに基因して易焼結性であるこ
とから、この粉末を成形、焼成して得られるセラミクス
のグレインサイズをwI細化しうるため、円板形キャパ
シターは勿論、積層キャパシターに最適なものであるこ
とがわかった。これらの知見に基付き、本発明を完成し
た本発明の要旨は、本発明組成物の原料粉末の製造方法
において、A成分とNbの水溶液もしくはアルコール溶
液を混合し、これに沈殿形成液を加えてA成分とNbと
の共沈殿物を生成させた後、残りのpb酸成分水溶液を
加え、これに沈殿形成液を添加することによりpbの沈
殿物を生成させるかまたは、このpb沈殿物と同等のP
b化合物を共沈殿物スラリーに添加するか、いずれかの
方法によって得た全成分の沈殿物を400〜1000℃
にて仮焼することを特徴とすることにある。
When calcining the precipitate obtained in this way, it is possible to lower the calcining temperature, so the raw material powder is fine particles of submicron size, which makes it easy to sinter. From this, it was found that the grain size of ceramics obtained by molding and firing this powder can be reduced by wI, making it ideal for laminated capacitors as well as disc-shaped capacitors. Based on these findings, the present invention has been completed.The gist of the present invention is that, in the method for producing the raw material powder of the composition of the present invention, component A and an aqueous or alcoholic solution of Nb are mixed, and a precipitate forming liquid is added thereto. After producing a co-precipitate of component A and Nb, add the remaining pb acid component aqueous solution and add a precipitate forming solution to this to produce a pb precipitate, or add this pb precipitate and equivalent P
Add compound b to the coprecipitate slurry, or precipitate all components obtained by either method at 400-1000°C.
It is characterized by being calcined at

なお、このような沈殿生成によって作られた沈殿物は、
NbおよびA成分の共沈殿物にPb成分を沈殿させたも
のであるため、仮焼工程におけるペロブスカイト生成率
が高いことから、仮焼温度を低くすることができる。こ
のことにより、微粒子で易焼結性の原料粉末が得られる
In addition, the precipitate created by such precipitation is
Since the Pb component is precipitated in a coprecipitate of Nb and A components, the perovskite production rate in the calcination process is high, so the calcination temperature can be lowered. As a result, a fine-grained, easily sinterable raw material powder can be obtained.

なお、誘電体の実用材料としては、本発明組成物と他の
pb系ペロブスカイト型複合酸化物との固溶体が用いら
れることが多い。この場合、他のpb系ペロブスカイト
型複合酸化物の原料粉末は本発明組成物の沈殿物と仮焼
前に混合して仮焼することにより固溶化さぜるか、もし
くは本発明組成物の沈殿物を得る工程の途中で沈殿物を
生成させ、実用材料の全組成を含有する沈殿物を得て、
これを仮焼することにより固溶化させてもよい。
In addition, as a practical dielectric material, a solid solution of the composition of the present invention and another pb-based perovskite type composite oxide is often used. In this case, the raw material powder of the other pb-based perovskite composite oxide is mixed with the precipitate of the composition of the present invention and calcined to form a solid solution, or the precipitate of the composition of the present invention is mixed with the precipitate of the composition of the present invention. A precipitate is generated during the process of obtaining a material, and a precipitate containing the entire composition of the practical material is obtained.
This may be calcined to form a solid solution.

なお本発明における原料粉末を製造するに際しこれを用
いて得られるセラミクスの焼結性や電気特性を制御する
ために、微量成分例えばMn02S 102 + B 
i 203等の化合物を添加してもよい。この場合は、
いずれかの製造工程中の水溶液に共沈させることにより
、均一に添加することも可能である。このほか、本発明
による原料粉末の作成後乾式または湿式によ)て添加し
てもよい。
In addition, in order to control the sinterability and electrical properties of ceramics obtained using the raw material powder when producing the raw material powder in the present invention, trace components such as Mn02S 102 + B are added.
Compounds such as i203 may also be added. in this case,
It is also possible to add it uniformly by coprecipitating it into an aqueous solution during any manufacturing process. In addition, it may be added by a dry or wet method after preparing the raw material powder according to the present invention.

本発明において溶液を調製するために用いる成分化合物
としては、構成成分の水酸化物、オキシ塩化物、炭酸塩
、オキシ硝酸塩、硫酸塩、硝酸塩、酢酸塩、ぎ酸塩、蓚
酸塩、塩化物、酸化物、アンモニウム塩、ナトリウム塩
などが挙げられる。
In the present invention, the component compounds used for preparing the solution include component hydroxides, oxychlorides, carbonates, oxynitrates, sulfates, nitrates, acetates, formates, oxalates, chlorides, Examples include oxides, ammonium salts, and sodium salts.

これらが水に可溶でない場合は、有機酸、鉱酸アルカリ
などを添加して可溶性とすることができる沈殿形成液と
しては、例えばアンモニア、炭酸アンモニウム、苛性ア
ルカリ、炭酸ソーダ、蓚酸蓚酸アンモニウムおよびオキ
シンやアミンなどの有機試薬などの溶液が挙げられる。
If these are not soluble in water, examples of precipitate-forming liquids that can be made soluble by adding organic acids, mineral alkalis, etc. include ammonia, ammonium carbonate, caustic alkali, soda carbonate, ammonium oxalate, and oxalate. Examples include solutions of organic reagents such as and amines.

これらから、選定すればよい。You can choose from these.

構成成分の沈殿を生成するには、液を撹拌しながら行う
ことが好ましい。
In order to generate precipitation of the constituent components, it is preferable to perform the precipitation while stirring the liquid.

また、ある沈殿の生成後ろ液を除き、沈殿形成液の種類
や濃度を残り成分に適したものに変えて沈殿させてもよ
い。
Alternatively, the liquid after the formation of a certain precipitate may be removed, and the type and concentration of the precipitate forming liquid may be changed to those suitable for the remaining components before precipitation.

沈殿物の洗浄に際して、通常水を用いるが、エタノール
などのアルコール類を用いると、以後の乾燥、仮焼工程
で沈殿の凝結が抑制されて好結果が得られる。
Water is usually used to wash the precipitate, but if an alcohol such as ethanol is used, good results can be obtained by suppressing the coagulation of the precipitate in the subsequent drying and calcination steps.

本発明は、次のような優れた効果を有する。The present invention has the following excellent effects.

(1)A成分とNb成分との均一な共沈殿物の中に、p
b沈殿物を分散させる構造をとっているため、Bサイ)
 (A成分、Nb成分)の均一性がAサイ)(Pb成分
)よりも高くなるので、仮焼時のペロブスカイト相の生
成率が高い。このことによって、仮焼温度を低くするこ
とができるので、微粒子の原料粉末が得られるとともに
これを焼結することによって得られるセラミクスのグレ
インサイズが微細であることから積層キャパシターに最
適なものとなし得る。
(1) In the uniform coprecipitate of A component and Nb component, p
B) Because it has a structure that disperses precipitates,
Since the uniformity of (A component, Nb component) is higher than that of A (Pb component), the production rate of perovskite phase during calcination is high. By doing this, the calcination temperature can be lowered, so that a fine particle raw material powder can be obtained, and the grain size of the ceramic obtained by sintering this is fine, making it ideal for multilayer capacitors. obtain.

(2)構成成分の全部を共沈させないで、二重沈殿を生
成させるため、これらの沈殿は相互分散された状態とな
り、従来の共沈におけるような乾燥仮焼時に二次粒子の
形成が少ない。従って、高嵩密度の易焼結性のものが得
られる。
(2) Since double precipitates are generated without co-precipitating all of the constituent components, these precipitates are in a mutually dispersed state, and there is less formation of secondary particles during dry calcination as in conventional coprecipitation. . Therefore, a material with high bulk density and easy sinterability can be obtained.

(3)二重沈殿生成を行うため、各成分に適した沈殿剤
の種類及び濃度を選択できるので、目的組成物の原料粉
末が容易に得られる。
(3) Since double precipitation is performed, the type and concentration of the precipitant suitable for each component can be selected, so that the raw material powder of the desired composition can be easily obtained.

実施例1 N b 20 s ・X H20(三井金属鉱業’)0
.04モルおよびFe(NOa)a”9H20(和光紬
薬)O,Oaモルを蓚酸(宇部興産)0.32モルの水
溶液300−に溶解させ、このFe−Nb混合液を20
0−の水中へ、窒素−アンモニアガス(1: 1)をi
f/ginで注入して、PH8〜8.5に保ちつつ、撹
拌下約2時間かけ徐々に滴下した。得られた沈殿物をろ
過水法し、その沈殿を水500 dに分散させPbO(
大日本塗料)0.16モルを加え混合撹拌した。ついで
ろ過乾燥し、アルミナルツボ中で700℃、2時間加熱
して仮焼した。この仮焼物を純水と共にジルコニアボー
ルを入れたポリエチレン製ボールミルにて湿式粉砕した
。得られた仮焼粉末は、X線回折によりペロブスカイト
結晶を有する Pb (Fe+Nb、)03であること
が示された。
Example 1 N b 20 s ・X H20 (Mitsui Metal Mining Co., Ltd.') 0
.. 04 mol and Fe(NOa) a"9H20 (Wako Tsumugi Yakuhin) O, Oa mol were dissolved in an aqueous solution of 0.32 mol of oxalic acid (Ube Industries), and this Fe-Nb mixture was dissolved in 20
Add nitrogen-ammonia gas (1:1) into 0-water
The mixture was injected at a rate of f/gin and gradually added dropwise over about 2 hours with stirring while maintaining the pH at 8 to 8.5. The obtained precipitate was subjected to the filtered water method, and the precipitate was dispersed in 500 d of water to obtain PbO (
0.16 mol of Dainippon Paint) was added and mixed and stirred. It was then filtered and dried, and calcined by heating at 700° C. for 2 hours in an aluminum crucible. This calcined product was wet-pulverized with pure water in a polyethylene ball mill containing zirconia balls. The obtained calcined powder was shown to be Pb(Fe+Nb,)03 having perovskite crystals by X-ray diffraction.

又平均粒子径は電子顕微鏡写真より0.2IImと微細
であった。X線回折図を図−1に示す。
Further, the average particle diameter was as fine as 0.2 IIm as seen from an electron micrograph. The X-ray diffraction diagram is shown in Figure 1.

比較例1 市販のPbO(大日本塗料)、Fe203(利根産業)
、Nb20g  (三井金属鉱1りの各粉末をPb (
Fe + Nb + ) Oa  の組成になるように
配合し、アセトン中ジルコニアボールを入れたボールミ
ルで一夜湿式混合後乾燥した。以下実施例1と同様にし
て仮焼した。得られた仮焼粉末はX線回折によりペロブ
スカイト結晶とパイロクロア結晶の混合物であることが
わかった。X線回折図を図−2に示す。
Comparative Example 1 Commercially available PbO (Dainippon Toyo), Fe203 (Tone Sangyo)
, 20g of Nb (1 liter of each powder of Mitsui Metal Mine) was
They were blended to have a composition of Fe + Nb + ) Oa, wet mixed overnight in a ball mill containing zirconia balls in acetone, and then dried. Thereafter, calcining was performed in the same manner as in Example 1. The obtained calcined powder was found to be a mixture of perovskite crystals and pyrochlore crystals by X-ray diffraction. The X-ray diffraction diagram is shown in Figure 2.

実施例2,3 NbC1g0.08モル及びCoC12o、04モル(
和光紬薬)ttエタノール300 dに溶解させ、この
Nb−Coエタノール溶液を200ttの水中へ、3N
−NaOHを注入してPH8〜9に保ちながら、撹拌下
約2時間かけて滴下し、NbとCoの共沈物を作った。
Examples 2, 3 NbC1g0.08mol and CoC12o,04mol (
Wako Tsumugi) Dissolve in 300 d of tt ethanol, and add this Nb-Co ethanol solution to 200 tt of water, 3N
-NaOH was injected and added dropwise over about 2 hours while stirring while maintaining the pH at 8 to 9 to form a coprecipitate of Nb and Co.

さらに、PHを8〜9に保ちつつPb (NOs) 2
0.12モル(和光紬薬)水溶液100 dを1時間か
けて滴下し、ニオブ−コバルト−鉛の混合沈殿物を得た
。以下実施例1と同様にして、 P b (CO+ Nb + ) Oa  を得た。こ
のX線回折図はペロブスカイト結晶構造を示し、又平均
粒子径は、電子顕微鏡より0.157mであフた。
Furthermore, while keeping the pH at 8 to 9, Pb (NOs) 2
100 d of a 0.12 mol (Wako Tsumugi) aqueous solution was added dropwise over 1 hour to obtain a mixed precipitate of niobium-cobalt-lead. Thereafter, P b (CO+ Nb + ) Oa was obtained in the same manner as in Example 1. This X-ray diffraction diagram showed a perovskite crystal structure, and the average particle diameter was found to be 0.157 m by electron microscopy.

実施例4 実施例1と同様の方法でNbとFeの共沈物を得た(N
b0.28モル、Fed、28モル)、さらに、この沈
殿をろ過水洗後水500dに分散させ、PbO粉末0.
56モルを加え混合撹拌した0次いでろ過乾燥してPb
:Fe:Nb=2: 1 : 1なる混合沈殿乾燥物を
得た。別C(タングステン酸アンモニウム水溶液 (H
2WOa (和光紬薬)0.1モルに対し水80献に分
散させ、煮沸時に4.2%NH,水(和光紬薬)200
■λを添加して調製したもの(以下AT溶液という)3
00d(0,08モルasW)  に、撹拌下、硝酸鉛
(和光紬薬)水溶液240++Ij(0,24モルas
Pb)  を滴下し、pbwo、を沈殿せしめる。次い
で重炭酸アンモニウム(和光紬薬)水溶液260献(0
,38モル)を滴下して残りのPb2+を沈殿せしめる
。この反応スラリー中に撹拌下、硝酸第二鉄(和光紬薬
、特級)水溶液(以下Fe(NOa)s水溶液とする)
 、550 d(0,16モルasFe)と4.2%N
H3水240献を同時に滴下し、PH7〜8でFe(O
H)3を沈殿せしめる。沈殿生成終了後30分閏撹拌し
、ろ過してケーキを水洗する。このケーキを100℃で
乾燥してPb :Fe :W =3 :2: 1なる混
合沈殿物を得た。この両者をアセトンと共にボールミル
にて湿式混合した後、700℃で2時間仮焼した。仮焼
物をボールミルにて湿式粉砕してP b  (Fe、 
Nb、)0.7  (Fe、W、)0.3 03粉末を
得た。このX線回折図はペロブスカイト構比較例2 PbOO,3モル、Fe2030.165モル、Nb2
060.0525モル、WO30,03モルをボールミ
ルで24時間アセトン中で湿式混合した。ろ過後100
℃で一夜乾燥し、800℃で2時間仮焼した後、さらに
ボールミルにて湿式粉砕してPb  (Fe+Nt)t
)0.7  (Fe+W、)o、30  aの化合物を
得た。このX線回折図は、ペロブスカイト構造とパイロ
クロア構造の混合体を示し、平均粒子径は電子顕微鏡よ
り1.3.であった。
Example 4 A coprecipitate of Nb and Fe was obtained in the same manner as in Example 1 (N
b0.28 mol, Fed, 28 mol), and further, this precipitate was filtered and washed with water, dispersed in 500 d of water, and PbO powder 0.
56 mol was added, mixed and stirred. Then filtered and dried to remove Pb.
:Fe:Nb=2:1:1 mixed precipitate dried product was obtained. Separate C (ammonium tungstate aqueous solution (H
Disperse 0.1 mol of 2WOa (Wako Tsumugi) in 80 parts of water, and when boiling, give 4.2% NH and 200 parts of water (Wako Tsumugi)
■Prepared by adding λ (hereinafter referred to as AT solution) 3
00d (0.08 mol as W), under stirring, add lead nitrate (Wako Tsumugi) aqueous solution 240++Ij (0.24 mol as
Pb) is added dropwise to precipitate pbwo. Next, 260 parts (0
, 38 mol) to precipitate the remaining Pb2+. Aqueous solution of ferric nitrate (Wako Tsumugi, special grade) (hereinafter referred to as Fe(NOa)s aqueous solution) was added to this reaction slurry under stirring.
, 550 d (0,16 mol asFe) and 4.2% N
At the same time, 240 ml of H3 water was added dropwise, and Fe(O
H) Precipitate 3. After the completion of precipitation, the mixture was stirred for 30 minutes, filtered, and the cake was washed with water. This cake was dried at 100° C. to obtain a mixed precipitate of Pb:Fe:W=3:2:1. After wet mixing the two together with acetone in a ball mill, the mixture was calcined at 700° C. for 2 hours. The calcined product is wet-pulverized in a ball mill and P b (Fe,
Nb, ) 0.7 (Fe, W, ) 0.3 03 powder was obtained. This X-ray diffraction diagram shows perovskite structure comparative example 2 PbOO, 3 mol, Fe2030.165 mol, Nb2
060.0525 mol and WO 30.03 mol were wet mixed in acetone for 24 hours in a ball mill. 100 after filtration
℃ overnight, calcined at 800℃ for 2 hours, and wet-pulverized in a ball mill to obtain Pb (Fe+Nt)t.
)0.7 (Fe+W, )o, 30a compound was obtained. This X-ray diffraction diagram shows a mixture of perovskite structure and pyrochlore structure, and the average particle diameter is 1.3. Met.

実施例5 実施例1,4及び比較例1.2で得られた化合物にボー
ルミルを用いてMnO□を0.25wt%添加混合した
後それぞれ化合物に対し5wt%のポリビニルアルコー
ル水溶液(8w t%ポリビニルアルコール)を添加し
顆粒した。得られた顆粒物を1ton/c+/の圧力で
加圧成形してグリーン成形体とし、次にグリーン成形体
を電気炉中400℃で3時間ポリビニルアルコールを熱
分解させた後、ひきつづき所定温度 (700〜110
0)まで昇温し2時間焼成して焼結体を得た。この焼結
体の重量、寸法を測定して所定の温度における焼結密度
を求めた。又、光学顕微鏡により表面のグレイン径を測
定した。得られた結果をl!15゜6に示した0図5,
6より本発明の化合物は、比較例と比べて焼結性に優れ
、かつ同じレベルの焼結度に対して微細なグレインを有
することがわかる。次に上記焼結体サンプルの内、焼結
密度が飽和し始めた温度における電気特性を表1に示す
、電気特性は、焼結体を厚み1■に研暦した後銀をイオ
ンコーターにて両面コートしたものについて、室温から
150℃までの静電容量の温度変化の測定によりキュリ
一点及びキュリ一点における比誘電率を測定した。静電
容量、比誘電率、及び誘電正接は、横河ヒューレットパ
ッカード社製LFインピーダンスアナライザー(419
2A)を用いてlKH2で測定し、抵抗率は横河ヒュー
レットバッカード社製ピコアンメーター(414OB)
を用いてDC25V印加1分後の電流値より求めた。表
1より本発明より得られた化合物は酸化物仮焼物と比べ
て、低い焼結温度、V&細ダグレイン性質を有し、かつ
同等の電気特性を有することがわかる。
Example 5 After adding and mixing 0.25 wt% MnO□ to the compounds obtained in Examples 1, 4 and Comparative Example 1.2 using a ball mill, a 5 wt% polyvinyl alcohol aqueous solution (8 wt% polyvinyl alcohol) was added and granulated. The obtained granules were press-molded at a pressure of 1 ton/c+/ to form a green molded body, and then the green molded body was subjected to thermal decomposition of polyvinyl alcohol at 400°C for 3 hours in an electric furnace, and then heated to a predetermined temperature (700°C). ~110
0) and fired for 2 hours to obtain a sintered body. The weight and dimensions of this sintered body were measured to determine the sintered density at a predetermined temperature. In addition, the grain diameter of the surface was measured using an optical microscope. Check out the results! 0 Figure 5 shown in 15°6,
6 shows that the compound of the present invention has excellent sinterability compared to the comparative example and has fine grains for the same level of sintering degree. Next, Table 1 shows the electrical properties of the above sintered body sample at the temperature at which the sintered density begins to saturate. For those coated on both sides, the dielectric constant at one Curie point and at one Curie point was measured by measuring the temperature change in capacitance from room temperature to 150°C. The capacitance, dielectric constant, and dielectric loss tangent were measured using the Yokogawa Hewlett-Packard LF Impedance Analyzer (419).
2A) using lKH2, and the resistivity was measured using a Yokogawa Hewlett-Buckard Picoammeter (414OB).
It was determined from the current value after 1 minute of application of DC 25V. It can be seen from Table 1 that the compound obtained according to the present invention has a lower sintering temperature, V & fine dagrain properties, and equivalent electrical properties than the oxide calcined product.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1により、第31!Iは実施例4により
得られた本発明法により生成されたニオブ含有鉛系ペロ
ブスカイト型複合酸化物のX線回折図である。第2図は
比較例1により、第4図は比較例2により得られたニオ
ブ含有鉛系ペロブスカイト型複合酸化物のX線回折図で
ある。第5図は実施例5における実施例1と比較例1の
焼結温度と焼結密度及びグレイン径の関係を示す。第6
図は実施例5における実施例4と比較例2の焼結温度と
焼結密度及びグレイン径の関係を示す。 λθ 第31図 箋ツ[株] 匙脱息た(=C) 第1.、lz
FIG. 1 is based on Example 1, and the 31st! I is an X-ray diffraction diagram of a niobium-containing lead-based perovskite type composite oxide produced by the method of the present invention obtained in Example 4. FIG. 2 is an X-ray diffraction diagram of a niobium-containing lead-based perovskite-type composite oxide obtained in Comparative Example 1 and FIG. FIG. 5 shows the relationship between the sintering temperature, sintered density, and grain diameter of Example 1 and Comparative Example 1 in Example 5. 6th
The figure shows the relationship between the sintering temperature, sintered density, and grain diameter of Example 4 and Comparative Example 2 in Example 5. λθ 31st drawing paper [stock] Spoon breather (=C) 1st. ,lz

Claims (1)

【特許請求の範囲】[Claims] 一般式PbAxNb_1_−_xO_3で表されるニオ
ブを含有する鉛系ペロブスカイト型複合酸化物セラミク
ス(ただしX=1/2または1/3、A=Fe、Co、
Ni、Mn、Mg、Zn、Cd、Inから選ばれた1種
または2種以上)の原料粉末を製造するに際し、Nbお
よびA成分の全量を溶解した水溶液もしくはアルコール
溶液に沈殿形成液を添加してNbおよびA成分の共沈殿
物を得た後、この沈殿物を水もしくはアルコール媒体中
で懸濁させたスラリーに、鉛の水溶液を混合した液から
沈殿形成液により鉛化合物の沈殿物を生成させるか、も
しくはこの沈殿物と同等の鉛化合物粉末を混合すること
を特徴とする沈殿生成工程と、この沈殿物をろ過乾燥し
たもの単独もしくは、他の鉛系ペロブスカイト型複合酸
化物セラミクスの原料と混合したものを、400〜10
00℃で仮焼する工程とからなることを特徴とするニオ
ブ含有鉛系ペロブスカイト型複合酸化物セラミクス原料
粉末の製造方法
Lead-based perovskite-type composite oxide ceramics containing niobium represented by the general formula PbAxNb_1_-_xO_3 (where X = 1/2 or 1/3, A = Fe, Co,
When producing a raw material powder of one or more selected from Ni, Mn, Mg, Zn, Cd, and In, a precipitate forming solution is added to an aqueous or alcohol solution in which the entire amount of Nb and A components are dissolved. After obtaining a coprecipitate of Nb and A components, a slurry of this precipitate suspended in water or an alcoholic medium is mixed with an aqueous lead solution to form a precipitate of a lead compound using a precipitate forming liquid. A precipitate generation step characterized by mixing the precipitate with a lead compound powder equivalent to the precipitate, and the precipitate obtained by filtering and drying the precipitate alone or with other raw materials for lead-based perovskite-type composite oxide ceramics. The mixture is 400 to 10
A method for producing a niobium-containing lead-based perovskite-type composite oxide ceramic raw material powder, characterized by comprising a step of calcining at 00°C.
JP61049320A 1986-03-06 1986-03-06 Preparation of raw material powder of lead base perovskite type compound oxide ceramic containing niobium Granted JPS62207719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049320A JPS62207719A (en) 1986-03-06 1986-03-06 Preparation of raw material powder of lead base perovskite type compound oxide ceramic containing niobium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049320A JPS62207719A (en) 1986-03-06 1986-03-06 Preparation of raw material powder of lead base perovskite type compound oxide ceramic containing niobium

Publications (2)

Publication Number Publication Date
JPS62207719A true JPS62207719A (en) 1987-09-12
JPH0432767B2 JPH0432767B2 (en) 1992-06-01

Family

ID=12827676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049320A Granted JPS62207719A (en) 1986-03-06 1986-03-06 Preparation of raw material powder of lead base perovskite type compound oxide ceramic containing niobium

Country Status (1)

Country Link
JP (1) JPS62207719A (en)

Also Published As

Publication number Publication date
JPH0432767B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
JP3154509B2 (en) Barium titanate and method for producing the same
US20040115122A1 (en) Method for preparing high quality barium-titanate based powder
JPH0665603B2 (en) Method for producing composite oxide ceramic powder
JP4643443B2 (en) Method for producing barium titanate powder
JP2003212543A (en) Method for manufacturing barium titanate powder through oxalate
JPS62207719A (en) Preparation of raw material powder of lead base perovskite type compound oxide ceramic containing niobium
JPH0210089B2 (en)
JPH0463815B2 (en)
JPH0210091B2 (en)
JPS6363511B2 (en)
JPS6328844B2 (en)
JP3393157B2 (en) Polycrystalline semiconductor fiber and method for producing the same
JPS62230623A (en) Production of perovskite-type compound containing tungsten
JPH0556287B2 (en)
JPH0210090B2 (en)
JPS6325263A (en) Manufacture of high density bzt base ferroelectric ceramic
JPS6325223A (en) Production of ceramic raw material powder
JPS6325265A (en) Manufacture of high density bznt base ferroelectric ceramic
JPS63285147A (en) Production of niobium-containing perovskite ceramic
JP2533305B2 (en) Manufacturing method of dielectric resonator material
JPH0456777B2 (en)
Burn High performance capacitor dielectrics from chemically prepared powders
JPH03199123A (en) Production of perovskite-type multiple oxide powder
JPS6325262A (en) Manufacture of high density bbt base ferroelectric ceramic
JPH07142207A (en) Barium titanate semiconductor ceramic and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term