JPS62206891A - Magnetoresistance effect element - Google Patents

Magnetoresistance effect element

Info

Publication number
JPS62206891A
JPS62206891A JP61049750A JP4975086A JPS62206891A JP S62206891 A JPS62206891 A JP S62206891A JP 61049750 A JP61049750 A JP 61049750A JP 4975086 A JP4975086 A JP 4975086A JP S62206891 A JPS62206891 A JP S62206891A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive element
magnetoresistive
ferrite
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61049750A
Other languages
Japanese (ja)
Inventor
Mitsuaki Ikeda
満昭 池田
Kenji Hara
賢治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP61049750A priority Critical patent/JPS62206891A/en
Publication of JPS62206891A publication Critical patent/JPS62206891A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Hall/Mr Elements (AREA)

Abstract

PURPOSE:To increase an effective magnetic field, and to improve the sensitivity of regeneration by continuously juxtaposing a thin-film consisting of an insulating ferromagnetic material on one side or both sides in the width direction of a circuit pattern for a magneto-resistance effect element. CONSTITUTION:The upper section of a glass substrate 1 is coated with an Ni-Zn ferrite film 2 as an insulating ferromagnetic material. An Fe-Ni alloy thin-film 3 is shaped in the Ni-Zn ferrite film 2, and the Ni-Zn ferrite film 2 is juxtaposed continuously on both sides of the Fe-Ni alloy thin-film 3 having the magnetoresistance effect. Accordingly, an effective magnetic field is increased, thus improving the magnetoresistance effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気センサとして用いられる磁気抵抗効果素
子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetoresistive element used as a magnetic sensor.

〔従来の技術〕[Conventional technology]

Fe−NiやNi−Co合金等の強磁性体の有する磁気
抵抗効果を利用した磁気−電気変換素子は、信号磁界に
対する再生感度が高い素子として位置検出器等に使用さ
れている。このような素子は、一般に第4図に示すよう
なストライブ状の薄膜パターン12を基板11上に形成
して作製される。すなわち、薄膜パターン12の長手方
向に電流■を流し、これと直角方向に外部磁場Hを印加
して、その磁場の大きさに応じた磁気抵抗の変化を電圧
又は電流の変化として外部に取り出し、これを出力信号
としている。
Magneto-electric conversion elements that utilize the magnetoresistive effect of ferromagnetic materials such as Fe-Ni and Ni-Co alloys are used in position detectors and the like as elements with high reproduction sensitivity to signal magnetic fields. Such an element is generally manufactured by forming a striped thin film pattern 12 on a substrate 11 as shown in FIG. That is, a current (2) is passed in the longitudinal direction of the thin film pattern 12, an external magnetic field (H) is applied in a direction perpendicular to this, and a change in magnetic resistance corresponding to the magnitude of the magnetic field is extracted to the outside as a change in voltage or current. This is used as the output signal.

近年、検出器の高分解能化が進むなかで、磁気抵抗効果
素子のパターン幅も狭くなってきた。ところが、パター
ン幅が狭くなると次のような問題が生じる。
In recent years, as the resolution of detectors has increased, the pattern width of magnetoresistive elements has also become narrower. However, when the pattern width becomes narrower, the following problems occur.

すなわち、有限の長さをもつ磁性体を長手方向に磁化す
ると、その両端部に磁極が生じ、磁性体内の磁化方向と
逆方向の磁場を生じる。この磁場を反磁場H−という、
この大きさは、パターン幅をd、膜厚をt、中心で生ず
る磁化Mとすると、H41II+4πMt/d で表される。この反磁場は、外部からの磁場H,。
That is, when a magnetic body with a finite length is magnetized in the longitudinal direction, magnetic poles are generated at both ends of the magnetic body, generating a magnetic field in the opposite direction to the magnetization direction within the magnetic body. This magnetic field is called the demagnetizing field H-.
This size is expressed as H41II+4πMt/d, where d is the pattern width, t is the film thickness, and M is the magnetization generated at the center. This demagnetizing field is an external magnetic field H,.

に対して減磁作用を及ぼす。したがって、有効磁場H1
1,は、 )(4g g −)16 X −H4 となる。この式かられかるように、パターン幅が狭くな
るとH4が増し、He f fが減少するため、効率が
悪くなる。すなわち、磁気抵抗効果は第5図に示すよう
にパターン幅が狭くなるに従って小さくなる。
exerts a demagnetizing effect on Therefore, the effective magnetic field H1
1 becomes )(4g g −)16 X −H4. As can be seen from this equation, as the pattern width becomes narrower, H4 increases and He f f decreases, resulting in poor efficiency. That is, as shown in FIG. 5, the magnetoresistive effect becomes smaller as the pattern width becomes narrower.

このような欠点を小さくする方法として、特開昭56−
90577号公報記載のものがある。この方法は、第6
図に示すようにストライブ状磁気抵抗効果素子21の幅
方向すなわち検出磁界方向の片側又は画側に、有限長の
ギャップGを隔てて、同一平面上に薄膜状高透磁率磁性
体22^、22Bを磁気抵抗効果素子21と隣接並置す
る構成である。すなわち、隣接並置した薄膜状高透磁率
磁性体22^、22Bによってストライブ状磁気抵抗効
果素子21に生じる反磁界を小さくし、再生感度を高め
るものである。
As a method to reduce such drawbacks, Japanese Patent Application Laid-open No. 1986-
There is one described in 90577 publication. This method is the sixth
As shown in the figure, on one side or image side in the width direction of the striped magnetoresistive element 21, that is, in the direction of the detected magnetic field, a thin film-like high permeability magnetic material 22^ is placed on the same plane with a finite length gap G separated. 22B is arranged adjacent to the magnetoresistive element 21. That is, the demagnetizing field generated in the striped magnetoresistive element 21 by the thin film-like high permeability magnetic bodies 22^ and 22B arranged adjacent to each other is reduced, thereby increasing the reproduction sensitivity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような構成の磁気抵抗効果素子においては、ギャッ
プGが小さいほど効果が出る。すなわち、ギャップGを
1〜2μm以下に設定することが望まルいが、現状の技
術ではきわめて困難である。
In the magnetoresistive element having such a configuration, the smaller the gap G, the more effective it is. That is, it is desirable to set the gap G to 1 to 2 μm or less, but this is extremely difficult with the current technology.

したがって従来の方法によっては、磁気抵抗効果素子の
再生感度を現状に比べて大きく向上させることはできな
かった。
Therefore, depending on the conventional methods, it has not been possible to significantly improve the reproduction sensitivity of the magnetoresistive element compared to the current situation.

本発明は、上記欠点を解消し、従来より再生感度を大き
く向上させた磁気抵抗効果素子を提供することを目的と
する。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetoresistive element that eliminates the above-mentioned drawbacks and has greatly improved reproduction sensitivity compared to the prior art.

C問題点を解決するための手段〕 この目的を達成するため、本発明では、磁気抵抗効果を
有する強磁性材料からなる薄膜により絶縁性基板の主面
上に回路パターンを形成した磁気抵抗効果素子において
、 該磁気抵抗効果素子の回路パターンの幅方向の片側又は
画側に該磁気抵抗効果素子と連続して絶縁性強磁性材料
からなる薄膜を並置したことを特徴とする。
Means for Solving Problem C] To achieve this object, the present invention provides a magnetoresistive element in which a circuit pattern is formed on the main surface of an insulating substrate using a thin film made of a ferromagnetic material having a magnetoresistive effect. A thin film made of an insulating ferromagnetic material is disposed continuously with the magnetoresistive element on one side in the width direction or on the image side of the circuit pattern of the magnetoresistive element.

〔実施例〕〔Example〕

、  以下、本考案を図面に示す実施例に基づいて具体
的に説明する。
, Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings.

第1図は本発明の第1の実施例を示す斜視図である0図
において、1はガラス基板、2は絶縁性強磁性材料であ
るNt−Znフェライト皮膜、3は磁気抵抗効果を有す
るre−Ni合金薄膜である。このPe−Ni合金薄膜
3の画側には、Ni−Znフェライト皮膜2が連続して
並置されている。
FIG. 1 is a perspective view showing the first embodiment of the present invention. In FIG. -Ni alloy thin film. On the image side of this Pe--Ni alloy thin film 3, a Ni--Zn ferrite film 2 is continuously juxtaposed.

このような構成の磁気抵抗効果素子を製造する工程を第
2図に基づいて説明する。
The process of manufacturing a magnetoresistive element having such a configuration will be explained based on FIG. 2.

(al  ガラス基板l上に、高周波スパッタ法を用い
ることにより300人の厚さにNi−Znフェライト皮
皮膜を被覆する(第2図(ml)。
(A Ni--Zn ferrite film is coated on a glass substrate l to a thickness of 300 mm by using a high-frequency sputtering method (Fig. 2 (ml).

山) フォトリンにより、Ni−Znフェライトl上に
幅lOμmのレジストパターン4を形成する(第2図(
bl)。
A resist pattern 4 with a width of 10 μm is formed on the Ni-Zn ferrite 1 using photorin (see Fig. 2).
bl).

(el  イオンエツチングにより、レジストパターン
4を形成した部分を残して、Ni−Znフェライト皮膜
2の層を除去する(第2図(C))。
(el) The layer of the Ni--Zn ferrite film 2 is removed by ion etching, leaving the portion where the resist pattern 4 is formed (FIG. 2(C)).

(dl  レジスト4を溶剤で除去する(第2図ff1
)。
(dl Remove resist 4 with solvent (Fig. 2 ff1
).

(61真空蒸着法により、ガラス基板1及びNi −Z
nフェライト皮膜2の表面に、Fs−Ni合金薄膜3を
500人の厚さに形成する(第2図(1り)。
(Glass substrate 1 and Ni-Z
A Fs-Ni alloy thin film 3 is formed on the surface of the n-ferrite film 2 to a thickness of 500 mm (FIG. 2 (1)).

(f)  フォトリンにより、Fe−Ni合金薄膜3上
におけるNi−Znフェライト皮膜2の間の部分にレジ
ストパターン5を形成する(第2図ff1)。
(f) A resist pattern 5 is formed on the Fe--Ni alloy thin film 3 between the Ni--Zn ferrite films 2 using photorin (FIG. 2 ff1).

(g)  レジストパターン5を形成した部分を除き、
Fe−Ni合金薄M3を酸により溶解し、除去する(第
2図(gl)。
(g) Except for the part where resist pattern 5 was formed,
The Fe--Ni alloy thin M3 is dissolved with acid and removed (Fig. 2 (gl)).

(N レジスト5を除去して第2図(幻に示すように、
Ni−Znフェライト皮膜2の間にFe−Ni合金薄膜
3を形成した本発明の磁気抵抗効果素子を得る。
(N After removing the resist 5, as shown in Figure 2 (phantom),
A magnetoresistive element of the present invention is obtained in which a Fe--Ni alloy thin film 3 is formed between a Ni--Zn ferrite film 2.

このような工程により、作製した磁気抵抗効果素子につ
いて磁気抵抗効果を、外部磁界300eの条件で調べた
ところ、2.5%の向上結果が得られた。この値はフェ
ライトがない場合の1.5%に比べて大きいことがわか
る。
When the magnetoresistive effect of the magnetoresistive element produced through such a process was examined under the condition of an external magnetic field 300e, an improvement of 2.5% was obtained. It can be seen that this value is larger than 1.5% in the case without ferrite.

これは、外部磁場がかかると磁極がフェライトパターン
の画側にできる。したがって、Fe−Niバターンの反
磁場H4は、フェライトの幅をDとすると、 H4−4πMt/(D+d) となる。しかもフェライトは絶縁物であるので、磁気抵
抗効果には無関係である。この結果、Hdはフェライト
がないときより小さくなり、有効磁場が増えるため磁気
抵抗効果が大きくなるのである。
This is because when an external magnetic field is applied, a magnetic pole is formed on the image side of the ferrite pattern. Therefore, the demagnetizing field H4 of the Fe-Ni pattern becomes H4-4πMt/(D+d), where D is the width of the ferrite. Moreover, since ferrite is an insulator, it has no relation to the magnetoresistive effect. As a result, Hd becomes smaller than when there is no ferrite, and the effective magnetic field increases, so the magnetoresistive effect becomes larger.

この検討結果に基づいて、第3図ial〜+dlに示す
各種の構成からなる磁気抵抗効果素子を作り、同様に磁
気抵抗効果を調べた。第3図+alは、Fe−Ni合金
薄膜3の外側にNi−Znフェライト皮膜2を並置した
例を示している。第3図山)は、隣接するFe−Ni合
合金1膜3の間にNi−Znフェライト皮膜2を充填形
成した例を示している。さらに第3図(C1は、Fe−
Ni合金薄膜3の内側にNi−Znフェライト皮膜2を
それぞれ形成した例を示している。なお、使用した強磁
性絶縁物は、Ni−Znフェライトの他にガーネット、
Mn −Znフェライトであり、いずれも高周波スパッ
タ法で膜を形成した。磁気抵抗効果は、第1図に示した
実施例と同様に大きく、いずれも2.5%以上の出力増
加を示した。
Based on the results of this study, magnetoresistive elements having various configurations shown in FIG. 3 ial to +dl were fabricated, and the magnetoresistive effect was similarly investigated. FIG. 3+al shows an example in which a Ni--Zn ferrite film 2 is juxtaposed on the outside of a Fe--Ni alloy thin film 3. 3) shows an example in which a Ni--Zn ferrite film 2 is filled and formed between adjacent Fe--Ni alloy 1 films 3. Furthermore, in FIG. 3 (C1 is Fe-
An example is shown in which a Ni--Zn ferrite film 2 is formed on the inside of a Ni alloy thin film 3. In addition to Ni-Zn ferrite, the ferromagnetic insulators used were garnet,
They are Mn-Zn ferrite, and both films were formed by high-frequency sputtering. The magnetoresistive effect was as large as in the example shown in FIG. 1, and both showed an increase in output of 2.5% or more.

なお実施例では強磁性磁気抵抗効果膜としてFe−Ni
合金だけを示しているが、Ni−Co合金や他の磁気抵
抗効果を示す材料でも同様の効果を期待することができ
る。
In the example, Fe-Ni was used as the ferromagnetic magnetoresistive film.
Although only alloys are shown, similar effects can be expected with Ni-Co alloys and other materials exhibiting magnetoresistive effects.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、本発明においては、磁気抵抗効
果素子のパターンの幅方向の片側又は画側に該磁気抵抗
効果素子と連続して絶縁性絶縁性強磁性材料からなる薄
膜を並置した構成としてい゛る。このような構成にする
ことにより、外部磁界がかかると磁気抵抗効果素子に対
する有効磁場が増加し、これにより、従来より極めて再
生感度の高い磁気抵抗効果素子を簡単な工程で得ること
ができる。
As explained above, in the present invention, a thin film made of an insulating ferromagnetic material is juxtaposed continuously with the magnetoresistive element on one side in the width direction or on the image side of the pattern of the magnetoresistive element. I'm standing there. With such a configuration, when an external magnetic field is applied, the effective magnetic field for the magnetoresistive element increases, thereby making it possible to obtain a magnetoresistive element with significantly higher reproduction sensitivity than before with a simple process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す磁気抵抗効果素子の斜視
図、第2図は本発明に係る磁気抵抗効果素子を製作する
ための工程の例を示す説明図、第3図は本発明の他の各
種の例を示す断面図、第4図は従来の磁気抵抗効果素子
の斜視図、第5図は磁気抵抗効果に及ぼす外部磁界とパ
ターン幅の影響を表すグラフ、第6図は先に提案された
従来の磁気抵抗効果素子の構成を示す斜視図である。 1ニガラス基板 2:Ni−Znフェライト皮膜 3:Fe−Ni合金薄膜
FIG. 1 is a perspective view of a magnetoresistive element showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an example of a process for manufacturing the magnetoresistive element according to the present invention, and FIG. 3 is a perspective view of a magnetoresistive element according to an embodiment of the present invention. 4 is a perspective view of a conventional magnetoresistive effect element, FIG. 5 is a graph showing the influence of external magnetic field and pattern width on the magnetoresistive effect, and FIG. 6 is a graph showing the influence of the external magnetic field and pattern width on the magnetoresistive effect. 1 is a perspective view showing the configuration of a conventional magnetoresistive element proposed in 2003. 1 Glass substrate 2: Ni-Zn ferrite film 3: Fe-Ni alloy thin film

Claims (2)

【特許請求の範囲】[Claims] 1. 磁気抵抗効果を有する強磁性材料からなる薄膜に
より絶縁性基板の主面上に回路パターンを形成した磁気
抵抗効果素子において、 該磁気抵抗効果素子の回路パターンの幅方向の片側又は
画側に該磁気抵抗効果素子と連続して絶縁性強磁性材料
からなる薄膜を並置したことを特徴とする磁気抵抗効果
素子。
1. In a magnetoresistive element in which a circuit pattern is formed on the main surface of an insulating substrate using a thin film made of a ferromagnetic material having a magnetoresistive effect, the magnetoresistive element is provided with the magnetic field on one side in the width direction or on the image side of the circuit pattern of the magnetoresistive element. 1. A magnetoresistive element characterized in that a thin film made of an insulating ferromagnetic material is disposed in series with a resistive element.
2. 互いに隣接する磁気抵抗効果素子の回路パターン
が絶縁性強磁性体薄膜で連結されていることを特徴とす
る特許請求の範囲第1項記載の磁気抵抗効果素子。
2. 2. The magnetoresistive element according to claim 1, wherein circuit patterns of adjacent magnetoresistive elements are connected by an insulating ferromagnetic thin film.
JP61049750A 1986-03-06 1986-03-06 Magnetoresistance effect element Pending JPS62206891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049750A JPS62206891A (en) 1986-03-06 1986-03-06 Magnetoresistance effect element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049750A JPS62206891A (en) 1986-03-06 1986-03-06 Magnetoresistance effect element

Publications (1)

Publication Number Publication Date
JPS62206891A true JPS62206891A (en) 1987-09-11

Family

ID=12839856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049750A Pending JPS62206891A (en) 1986-03-06 1986-03-06 Magnetoresistance effect element

Country Status (1)

Country Link
JP (1) JPS62206891A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134979A (en) * 1987-11-20 1989-05-26 Japan Servo Co Ltd Magnetosensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01134979A (en) * 1987-11-20 1989-05-26 Japan Servo Co Ltd Magnetosensor

Similar Documents

Publication Publication Date Title
EP0573372B1 (en) Thin film very high sensitivity magnetoresistive magnetometer having temperature compensation and single domain stability
JP3596600B2 (en) Magnetic sensor and method of manufacturing the same
JP2004533120A (en) Method for orienting the magnetization axis of a first magnetic element with respect to a second magnetic element, a semi-finished product for implementing the sensor, and a sensor for measuring a magnetic field
US6721147B2 (en) Longitudinally biased magnetoresistance effect magnetic head and magnetic reproducing apparatus
KR100287464B1 (en) Manufacturing method of spin valve magnetoresistance effect type head and spin valve magnetoresistance effect type head manufactured by the manufacturing method
US6291993B1 (en) Magnetic field sensor and method for making same
US7201947B2 (en) CPP and MTJ reader design with continuous exchange-coupled free layer
JP3640230B2 (en) Thin film magnetic field sensor
JP4338060B2 (en) Manufacturing method of magnetic sensor
JP2000193407A (en) Magnetic positioning device
JPH0870149A (en) Magnetoresistance element
US20190302198A1 (en) Magnetic field detection device
JP4157203B2 (en) Magnetic field sensor
JPS62206891A (en) Magnetoresistance effect element
JP2012063232A (en) Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus
JPS5931771B2 (en) thin film magnetoresistive head
JP3382866B2 (en) Method of manufacturing magnetoresistive element
JPS62206890A (en) Magnetoresistance effect element
US5886523A (en) Magnetic field responsive device having giant magnetoresistive material and method for forming the same
JPS634359B2 (en)
JP2002071775A (en) Magnetometrioc sensor
JPS6028143Y2 (en) magnetoresistive element
JPH04123306A (en) Magneto-resistance effect element
JP2878738B2 (en) Recording / reproducing thin film magnetic head
JPS62259486A (en) Magnetic sensor