JPS62206882A - Nonvolatile semiconductor memory and manufacture thereof - Google Patents

Nonvolatile semiconductor memory and manufacture thereof

Info

Publication number
JPS62206882A
JPS62206882A JP61049707A JP4970786A JPS62206882A JP S62206882 A JPS62206882 A JP S62206882A JP 61049707 A JP61049707 A JP 61049707A JP 4970786 A JP4970786 A JP 4970786A JP S62206882 A JPS62206882 A JP S62206882A
Authority
JP
Japan
Prior art keywords
oxide film
gate
drain
insulating film
floating gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61049707A
Other languages
Japanese (ja)
Other versions
JP2534660B2 (en
Inventor
Naotaka Sumihiro
住廣 直孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61049707A priority Critical patent/JP2534660B2/en
Publication of JPS62206882A publication Critical patent/JPS62206882A/en
Application granted granted Critical
Publication of JP2534660B2 publication Critical patent/JP2534660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Abstract

PURPOSE:To minimize additional capacitance except the capacitance of a thin gate oxide film section, and to increase working speed and reduce fluctuation while enabling stable writing and erasion by leaving a positioning-displacement margin in the periphery of the thin gate oxide film between a drain and a floating gate. CONSTITUTION:A drain region 8 extending under a field oxide film for insulating isolation is faced oppositely to a floating gate 12 through a thin second gate oxide film (a tunnel oxide film) in a section 11. The floating gate 12 is extended so as to coat the second gate oxide film 11 formed onto the drain region 8, which is shaped as an opening section formed by removing the field oxide film through etching and extends under the field oxide film, onto a first gate oxide film 10 on a semiconductor substrate 7 between a source and a drain. A control gate 14 is shaped through a third gate oxide film 13. Accordingly, a positioning-displacement margin is left around the second thin gate oxide film section, thus removing a section where the drain and the floating gate are faced oppositely through the first gate oxide film.

Description

【発明の詳細な説明】 r産業上の利用分野1 本発明は不揮発性半導体記憶装置及びその製造方法に関
し、特に浮遊ゲートを有するMIS電界効果I・ランジ
スタからなり浮遊ゲートにファウラー、ノルドハイム・
トンネリング(Fowler NordbPii Tu
nneling)による電子注入電子注出をすることで
電気的書き込み消去を行なうE2PROM(Rlect
、rical IErasable Programa
ble ROM)及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application Field 1 The present invention relates to a nonvolatile semiconductor memory device and a method for manufacturing the same, and more particularly to a non-volatile semiconductor memory device and a method for manufacturing the same, and in particular, it consists of a MIS field effect I transistor having a floating gate.
Tunneling (Fowler NordbPii Tu
E2PROM (Rlect
,rical IErasable Programa
ble ROM) and its manufacturing method.

1従来の技術〕 第11図(a>、(b)に従来のFoster Nor
dhc i+* Tunne I ingによる電子注
入注出法を用いるnチャネルE2PROMメモリI−ラ
ンジスタの模式平面図とそのA−A′断面図を示ず97
はP型半導体基板、16.15はそれぞれソース、ドレ
イン、10.13はそれぞれ第1ゲーI−酸化膜、第3
ゲート酸化膜、】4は制御ゲート電極、12は浮遊ゲー
トで1い第2ゲート酸化膜11を介して電子が注入注出
される。各電極は第12図に示す容量結合する。C3は
浮遊ゲート−制御ゲート間容量、C2は浮遊ゲート−ド
レイン間の薄い第2ゲーI〜酸化膜部の容量、C3は浮
遊ゲート−半導体基板間容量、CFS、CPDはそれぞ
れ浮遊グー1〜−ソース間、浮遊ゲート−ドレイン間の
オーバーラツプ容量である。
1 Prior Art] Figure 11 (a>, (b) shows the conventional Foster Nord
dhc i+* A schematic plan view of an n-channel E2PROM memory I-transistor using the electron injection/output method by Tunne Iing and its A-A' cross-sectional view 97
are the P-type semiconductor substrate, 16.15 are the source and drain, respectively, 10.13 are the first gate I-oxide film, and the third gate I-oxide film, respectively.
A gate oxide film, 4 is a control gate electrode, 12 is a floating gate, and electrons are injected and extracted through the second gate oxide film 11. Each electrode is capacitively coupled as shown in FIG. C3 is the capacitance between the floating gate and the control gate, C2 is the capacitance of the thin second gate I to the oxide film between the floating gate and the drain, C3 is the capacitance between the floating gate and the semiconductor substrate, and CFS and CPD are the floating gates 1 to -, respectively. This is the overlap capacitance between sources and between floating gate and drain.

書き込み動作は制御ゲート、ソース、半導体基板を接地
しドレインに正の高電圧(PAえば約20V)を印加す
ることにより前述した容量結合から薄い第2ゲート酸化
膜に電界を集中させ、Fowし「Nordheim T
unnelingにより電子が浮遊ゲートがちドレイン
に抽出されることによってなされる。
The write operation is performed by grounding the control gate, source, and semiconductor substrate and applying a high positive voltage (approximately 20 V for PA) to the drain, thereby concentrating the electric field from the capacitive coupling described above to the thin second gate oxide film, and performing FOW. Nordheim T
This is done by extracting electrons from the floating gate to the drain due to unneling.

電子の抽出は結果的に浮遊ゲートに正の電荷を蓄積させ
メモリトランジスタのしきい値は低Fし、いわゆるデプ
レッション動作する。消去動作はドレイン、ソース、半
導体基板を接地し、制御ゲートに正の高電圧(例えば約
20V)を印加することにより、容量結合から薄い第2
ゲート酸化膜に電界を集中させる。この場合電界の向き
は書き込み動作を逆方向で電子はドレインから浮遊ゲー
トに注入される。その結果浮遊ゲートには負の電荷が蓄
茫されメモリトランジスタのしきい値は高くなる。書き
込み情報の読み出しは読み出し時の制御グー1〜電圧を
適当にえらぶことにより、−1モリトランジスタのオン
(ON>、オフ(OFF)を判断することによりなされ
る。
Extraction of electrons results in the accumulation of positive charges in the floating gate, and the threshold value of the memory transistor becomes low F, resulting in so-called depletion operation. The erase operation is performed by grounding the drain, source, and semiconductor substrate, and applying a high positive voltage (for example, about 20 V) to the control gate to remove the thin second electrode from capacitive coupling.
Concentrate the electric field on the gate oxide film. In this case, the direction of the electric field is opposite to that of the write operation, and electrons are injected from the drain to the floating gate. As a result, negative charges are accumulated in the floating gate, and the threshold value of the memory transistor becomes high. Reading of the written information is performed by appropriately selecting the control voltage at the time of reading and determining whether the -1 memory transistor is ON (ON> or OFF).

以下、第13図(a)〜(e)の断面図に従い製造方法
を説明する。第13図(a)〜(e)は従来の製造方法
を説明するために工程順に示した断面図である。
The manufacturing method will be described below with reference to the cross-sectional views of FIGS. 13(a) to 13(e). FIGS. 13(a) to 13(e) are cross-sectional views shown in order of steps to explain a conventional manufacturing method.

まず、p型半導体基板7上に選択的に絶縁分離用フィー
ルド酸化1模9を形成する。
First, a field oxide 1 for insulation isolation 9 is selectively formed on the p-type semiconductor substrate 7. As shown in FIG.

次に、第13図(’b)に示すように、例えばAsのイ
オン注入法により選択的にソース16゜ドレイン15を
形成する。次に、第13図(c)に示すように、約80
0人の第1のゲー)・酸化膜10を熱酸化法により形成
する。次に、第13図(d>に示すように、PR工程に
よりドレイン16上の一部の第1ゲート酸化[10をエ
ツチング除去し、ドレインの半導体面を露出させ、フォ
トレジスト ゲート酸化膜11を熱酸化法により形成する。次にn型
にドープされた第1の多結晶シリコン膜を形成しバター
ニングをほどこし浮遊ゲート12を形成する。このとき
浮遊ゲートは薄い第2のゲート酸化1模11を完全にお
おう如くソースドレイン間第1のゲート酸化股上から延
在している。次に、第13図(e)に示すように、熱酸
化法により浮遊ゲート上に約800人の第3のゲート酸
化膜13を形成し、次いで、n型にドープされた第2の
多結晶シリコン膜を形成、バターニングし、制御ゲート
14を形成する。
Next, as shown in FIG. 13('b), the source 16° and drain 15 are selectively formed by, for example, As ion implantation. Next, as shown in FIG. 13(c), about 80
0 first game) - An oxide film 10 is formed by a thermal oxidation method. Next, as shown in FIG. 13 (d), a part of the first gate oxide [10] on the drain 16 is etched away by a PR process to expose the semiconductor surface of the drain, and a photoresist gate oxide film 11 is removed. It is formed by a thermal oxidation method.Next, a first polycrystalline silicon film doped with n-type is formed and buttered to form a floating gate 12.At this time, the floating gate is formed by a thin second gate oxide film 11. The gate oxide extends from the first gate oxide ridge between the source and drain so as to completely cover the floating gate.Next, as shown in FIG. A gate oxide film 13 is formed, and then a second n-type doped polycrystalline silicon film is formed and patterned to form a control gate 14.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のE” FROMメモリトランジスタは以
下に述べる特性上の不安定要素が大きいという欠点があ
った。
The above-mentioned conventional E'' FROM memory transistor has a drawback in that there are large unstable factors in the characteristics described below.

メモリ■・ランジスタの書き込み消去特性は、前述した
様に薄い第3のゲート酸化膜に効率よく安定に電界を集
中することにより電荷の移動が速く安定した特性が得ら
れる。書き込み動作は浮遊ゲート中の電RQFが負の状
態から電子を抽出しQ、を正の状態にし、消去動作は逆
に正の状態から浮遊ゲートに電子を注入してQpを負の
状態にする。書き込んだ状態と消去した状態との遷移状
態であるQ「が零近傍で薄い第2ゲート酸化膜にかかる
電界は書き込み時には で表わされる。ここでt2は薄い第2ゲート酸化膜、V
Oはドレインに印加する正の高電位である、消去時に薄
い第2のゲート酸化膜にかかる電界E p、は で表わされる。ここでVCtlは制御ゲートに印加する
正の電位である。書き込み、消去速度を速めるにはEV
、EEを大きくすることにより実現できき、書き込み消
去特性の安定性はEV、EEのバラツキをおさえること
で実現できる。
As described above, the write/erase characteristics of the memory transistor can be achieved by efficiently and stably concentrating the electric field on the thin third gate oxide film, thereby achieving stable characteristics in which the charge moves quickly. In a write operation, electrons are extracted from a state in which the voltage RQF in the floating gate is negative, making Q a positive state, and in an erase operation, conversely, electrons are injected into the floating gate from a positive state, making Qp a negative state. . When Q, which is the transition state between the written state and the erased state, is near zero, the electric field applied to the thin second gate oxide film during writing is expressed by t2, where t2 is the thin second gate oxide film, and V
O is a positive high potential applied to the drain, and is represented by the electric field Ep applied to the thin second gate oxide film during erasing. Here, VCtl is a positive potential applied to the control gate. EV to increase writing and erasing speed
, by increasing EE, and stability of write/erase characteristics can be achieved by suppressing variations in EV and EE.

しかしながら従来技術に依れば第2の薄いゲート酸化膜
部まわりの以下に述べる様な目ズレマージンのためCp
oが大きくならざるをえず、さらに目ズレによりCFD
が変動してしまうため書き込み消去速度が遅くしかもバ
ラツキが大きいという大きな欠点があった。絶縁分離用
フィールド酸化膜と活性領域の境界はホワイトリボン(
ナイトライドリボン)や、シリコン面の突形状等その部
位に形成し、た酸化膜の特性を悪くする要素が多く、E
2 PROMの第2の薄いゲート酸化膜がその部位にか
かることはE2 PROMメモリ特性上(主として耐久
性)好ましくない。したがって、第2の薄いゲート酸化
膜が絶縁分離用フィールド酸化膜と活性領域との境界に
かからない様目ズレマージンをとる必要がある。また第
2の薄いゲーi・酸化膜はドレインと浮遊ゲート間に存
在しその面積が変動することはC2の変動となり特性変
動を生じるため、第2の薄いゲート酸化膜部とドレイン
−チャネル部境界及び浮遊ゲート端とには各々、目ズレ
マージンが必要である。
However, according to the prior art, due to the misalignment margin as described below around the second thin gate oxide film, Cp
o has to become large, and CFD due to eye misalignment.
This has the major disadvantage that the writing/erasing speed is slow and has large variations due to fluctuations in the data. The boundary between the isolation field oxide film and the active region is a white ribbon (
There are many factors such as nitride ribbons) and protrusions on the silicon surface that deteriorate the properties of the oxide film.
It is undesirable for the second thin gate oxide film of the E2 PROM to cover that area from the viewpoint of E2 PROM memory characteristics (mainly durability). Therefore, it is necessary to provide a misalignment margin so that the second thin gate oxide film does not overlap the boundary between the isolation field oxide film and the active region. In addition, the second thin gate oxide film exists between the drain and the floating gate, and fluctuations in its area result in fluctuations in C2, resulting in characteristic fluctuations. A misalignment margin is required for each of the floating gate edge and the floating gate edge.

以上述べた様に従来技術によれば、CFDが大きくしか
も目ズレによるバラツキを含むため書き込み消去速度が
遅くしかもバラツキが大きいという欠点があった。
As described above, the conventional technology has the disadvantage that the CFD is large and includes variations due to misalignment, resulting in slow write/erase speed and large variations.

・本発明の目的は、ドレイン−浮遊ゲート間の第2の薄
いゲート酸化膜部の容量以外の付加容量を小さくし、し
かも安定して製作でき、その結果高速かつ変動が小さく
安定な書き込み消去特性を有する不揮発性半導体記憶装
置及びその製造方法を提供することにある。
・The purpose of the present invention is to reduce the additional capacitance other than the capacitance of the second thin gate oxide film between the drain and the floating gate, and to be able to manufacture it stably, resulting in high speed, stable write/erase characteristics with small fluctuations. An object of the present invention is to provide a nonvolatile semiconductor memory device and a method for manufacturing the same.

1゛問題点を解決するための手段〕 本発明の第1の発明の不揮発性半導体記憶装置は、一導
電型半導体基板の一主面に設けられた該半導体基板と逆
導電型のソース及びドレイン領域と、該両領域間半導体
基板上に第1のゲート絶縁膜を介して形成されかつ前記
ドレイン領域のすくなくとも一部の領域で薄い第2のゲ
ート絶縁膜を介して該ドレイン領域と対向するが如く形
成された浮遊ゲートと、該浮遊ゲート上に第3のゲート
絶縁膜を介して形成された制御ゲートとを有する不揮発
性半導体記憶装置において、前記ドレイン領域が絶縁分
離用フィールド絶縁膜下に延在し、該絶縁分離用フィー
ルド絶縁膜下に延在するドレイン領域の一部の領域と前
記浮遊ゲートが前記絶縁分離用フィールド絶縁膜を工・
ソチング除去して形成された開孔部で薄い第2のゲート
絶縁膜を介して対向して構成される。
1゛Means for Solving the Problems] A nonvolatile semiconductor memory device according to the first aspect of the present invention has a source and a drain of a conductivity type opposite to that of the semiconductor substrate, which are provided on one main surface of a semiconductor substrate of one conductivity type. and a first gate insulating film formed on the semiconductor substrate between the two regions, and facing the drain region through a thin second gate insulating film in at least a part of the drain region. In a nonvolatile semiconductor memory device having a floating gate formed as shown in FIG. A part of the drain region extending under the field insulating film for isolation and the floating gate are formed under the field insulating film for isolation.
The openings formed by soching removal are arranged to face each other with a thin second gate insulating film interposed therebetween.

また、本発明の第2の発明の不揮発性半導体記憶装置の
製造方法は、一導電型半導体基板主面上に該半導体基板
と逆導電型の拡散層領域を形成する工程と、該拡散層領
域の一部が活性化領域へ延在するが如く絶縁分離用フィ
ールド絶縁膜を形成する工程と、前記活性化領域の前記
拡散層領域上及び半導体基板上に第1のゲート絶縁膜を
形成する:[程と、前記拡散層領域、ヒの一部の領域で
前記絶縁分離用フィールド絶縁膜をエツチング除去し前
記拡散層領域を露出させた後、該拡散層領域−Eに第2
のゲート絶縁膜を形成する工程と、該第2のグー1−絶
縁膜を覆いかくしかつ前記活性化領域上の前記第1のゲ
ート酸化股上から延在する浮遊ゲートを形成する工程と
、前記半導休店板と逆導電型のソース、ドレイン領域を
活性化領域に延在1−た前記拡散層領域とドレイン領域
が接続されるが如く形成する工程とを含んで構成される
Further, the method for manufacturing a nonvolatile semiconductor memory device according to the second aspect of the present invention includes the steps of forming a diffusion layer region of a conductivity type opposite to that of the semiconductor substrate on the main surface of a semiconductor substrate of one conductivity type; forming a field insulating film for isolation so that a part of the field insulating film extends to the active region; and forming a first gate insulating film on the diffusion layer region of the active region and on the semiconductor substrate: [Then, after etching and removing the field insulating film for insulation isolation in a part of the diffusion layer region E to expose the diffusion layer region, a second layer is etched in the diffusion layer region E.
forming a floating gate covering and concealing the second goo insulating film and extending from the first gate oxide ridge above the active region; The method includes a step of forming source and drain regions of opposite conductivity types to the active region so that the diffusion layer region and the drain region are connected to each other.

1、実施例〕 次に5本発明の実施例について図面を9照して説明する
。第1図(a)は本発明の第1の発明の−・実施例の平
面図、第1図(b)および第1図(c)はそれぞれ第1
(a〉のA−A’断面図及びB −B ′断面図である
。第1図(a>、(h>。
1. Embodiments] Next, five embodiments of the present invention will be described with reference to the drawings. FIG. 1(a) is a plan view of the first embodiment of the present invention, and FIG. 1(b) and FIG. 1(c) are the plan view of the first embodiment of the present invention.
FIG. 1 (a>, (h>).

((〜)において、15はドレイン領域、16はソース
領域、12は浮遊ゲート、14は制御ゲートを示す。8
は絶縁分離用フィールド酸化膜下に延在するドレイ〉・
領域で浮遊ゲート12と11の部位で薄い第2のゲー)
−酸化膜(1−ンネル酸化膜)を介して対向する。7は
p型半導体基板、15゜16はそれぞれn型のドレイン
ソース領域、8は絶縁分離用フィールド酸化膜(厚さ約
1.0μm〉下に延在するドレイン領域である。]2は
浮遊ゲートでソースドレイン間半導体基板トの約500
〜800人厚さの第1ゲーI−酸化1模10−Fに在り
フィールド酸化膜をエツチング除去して形成された開孔
部で、フィールド酸化膜下に延在するドレイン領域8L
に形成された約100〜150人厚さの第2のゲート酸
化膜をおおいかくず様に延在している。、14は制御ゲ
ートで約500〜800人厚さの第3のゲート酸化膜1
3を介して形成されている。これらに示す本発明による
メモリトランジスタ構造の最も特徴とする所は、従来技
術で見た様な第2の薄いゲート酸化1模部まわりで目ズ
レマージンをとったためドレインと浮遊ゲートが第1の
デー1−酸化膜を介して対向していた部分が、存在しな
くなったことである。ドレイン領域と第2のゲート酸化
膜部の目ズレマージンとなる部分はドレイン8と浮遊デ
ー1−12間がフィールド酸化膜9で約1.0μmと厚
いためCooは無視できる程十分に小さい。
(In (~), 15 is a drain region, 16 is a source region, 12 is a floating gate, and 14 is a control gate.8
is a drain extending under the field oxide film for insulation isolation.
(The second gate is thinner at the floating gates 12 and 11 in the area)
- Opposing each other via an oxide film (1-channel oxide film). 7 is a p-type semiconductor substrate, 15° and 16 are n-type drain and source regions, 8 is a field oxide film for insulation isolation (drain region extending below with a thickness of about 1.0 μm), and 2 is a floating gate. Approximately 500 mm of semiconductor substrate between source and drain
A drain region 8L extending under the field oxide film is an opening formed by etching and removing the field oxide film in the first gate I-oxide 1 pattern 10-F with a thickness of ~800 mm.
A second gate oxide film having a thickness of about 100 to 150 nm is formed on the second gate oxide film and extends like a scrap. , 14 is a control gate, and the third gate oxide film 1 is about 500 to 800 thick.
3. The most characteristic feature of the memory transistor structure according to the present invention shown in the above is that a misalignment margin is provided around the second thin gate oxide 1 pattern as seen in the prior art, so that the drain and floating gate are aligned with the first data. 1- The portions that were facing each other through the oxide film no longer exist. The field oxide film 9 between the drain region 8 and the floating data 1-12 is about 1.0 .mu.m thick, which is the misalignment margin between the drain region and the second gate oxide film, so that Coo is sufficiently small to be ignored.

第2図(a)、(b)乃至第7図(a>、(b)は本発
明の第2の発明の一実施例を説明するために工程順に示
した素子のA−A’ 、B−B”線それぞれの断面図で
ある。本実施例ではメモリトランジスタの製造方法につ
き説明する。
FIGS. 2(a), (b) to FIG. 7(a>, (b) show elements A-A', B shown in order of steps to explain an embodiment of the second invention of the present invention. -B'' line. In this embodiment, a method for manufacturing a memory transistor will be explained.

まず、第2図(a)、(1))に示すように、p型半導
体基板7の表面近傍に選択的に、例えばAsイオン注入
によりn型拡散層領域8を形成する。
First, as shown in FIGS. 2(a) and (1), an n-type diffusion layer region 8 is selectively formed near the surface of a p-type semiconductor substrate 7 by, for example, As ion implantation.

次に、第3図(a)、(b)に示すように、Locos
法によ厚さ約1.0μmの絶縁分離用フィールド酸化g
9を形成する。このときn型拡散層領域8を活性化領域
からフィールド酸化膜9下に延在している。
Next, as shown in FIGS. 3(a) and (b), Locos
Field oxidation g for insulation isolation with a thickness of approximately 1.0 μm
form 9. At this time, n-type diffusion layer region 8 extends from the activation region to below field oxide film 9.

次に、第4図(a)、(b)に示すように、約500〜
800人の゛第1のゲート酸化II!10を熱酸化法に
より形成する。次いで、フィールド酸化y!A9下に延
在しているn型拡散層領域8の一部の領域上のフィール
ド酸化膜をフォトレジスト工程によりエツチング除去し
、rl型拡散層領域を露出させる。
Next, as shown in FIGS. 4(a) and (b), about 500~
800 people's 1st Gate Oxidation II! 10 is formed by a thermal oxidation method. Then, field oxidation y! The field oxide film on a part of the n-type diffusion layer region 8 extending below A9 is removed by etching by a photoresist process to expose the rl-type diffusion layer region.

次に、第5図(、:t)、(1:))に示すように、熱
酸化法により約100〜150人の第2ゲート酸化膜1
1を露出したn型拡散層領域上に形成した後、n型にド
ープされた多結晶シリコンからなる浮遊ゲート12を形
成する。
Next, as shown in FIG.
1 is formed on the exposed n-type diffusion layer region, and then a floating gate 12 made of n-type doped polycrystalline silicon is formed.

次に、第6図(a>、(b)に示すように、ASイオン
注入法により、n型のソース領域16、ドレイン領域1
5を形成する。このときフィールド酸化膜9下に延在す
るn型拡散領域8とドレイン領域15は接続される。ま
た、このときチャネル長となるソース・ドレイン間距離
は浮遊ゲート長と整合されるため、浮遊グー1−−ドレ
インオーバーラ11部はドレイン不純物Asの横°方向
拡散によるX、のみで、従来技術に見たドレインと浮遊
ゲート間の目ズレマージン分のオーバーラツプ部及び目
ズレによるオーバーラツプ部の変動はない。したがって
CPDは小さくおさえられる。
Next, as shown in FIGS. 6(a) and 6(b), an n-type source region 16, a drain region 1
form 5. At this time, n-type diffusion region 8 extending below field oxide film 9 and drain region 15 are connected. In addition, since the distance between the source and drain, which is the channel length, is matched with the floating gate length, the floating goose 1--drain over 11 portion is only X due to the lateral diffusion of the drain impurity As, and the conventional technology There is no variation in the overlap area due to the misalignment margin between the drain and floating gate, and there is no variation in the overlap area due to the misalignment. Therefore, CPD can be kept small.

次に、第7図(a)、(b)に示すように、浮遊ゲート
上に約500〜800人の第3ゲート酸化膜13を熱酸
化法により形成し、その上にn型にドープされた多結晶
シリコンからなる制御ゲート14を形成する。
Next, as shown in FIGS. 7(a) and 7(b), a third gate oxide film 13 of approximately 500 to 800 layers is formed on the floating gate by thermal oxidation, and an n-type doped film is formed on the third gate oxide film 13 by thermal oxidation. A control gate 14 made of polycrystalline silicon is formed.

以上により第1図(a>、(b)、(c)に示した本発
明の一実施例のメモリI・ランジスタ構造が得られる。
As a result of the above, the memory I/transistor structure of one embodiment of the present invention shown in FIGS. 1(a>, (b), and (c)) is obtained.

また、第8図(a)、(b)乃至第10図(a)(b)
は、上記実施例の第5図(a>、(b)乃至第7図(a
>、(b)に示した工程の他の実施例である。
Also, FIGS. 8(a), (b) to 10(a)(b)
5(a>, (b) to FIG. 7(a) of the above embodiment).
This is another example of the process shown in >, (b).

すなわち、第8図(a>、(b)に示すように、浮遊ゲ
ート12を形成するn型にドープされた多結晶シリコン
層を第9図(a)、(b)に示すように、n型の多結晶
シリコンからなる制御ゲート14に整合させてエツチン
グ除去した後、第10図(a)、(b)に示すように、
Asイオン注入法によりソース領域16、ドレイン領域
15を形成し、このときフィールド酸化膜9下のn型拡
散領域8とドレイン領域15を接続させても本発明の効
果をそこなうことはない。
That is, as shown in FIGS. 8(a) and (b), the n-type doped polycrystalline silicon layer forming the floating gate 12 is After etching and removing it in alignment with the control gate 14 made of polycrystalline silicon, as shown in FIGS. 10(a) and 10(b),
Even if the source region 16 and drain region 15 are formed by the As ion implantation method and the n-type diffusion region 8 under the field oxide film 9 is connected to the drain region 15 at this time, the effects of the present invention will not be impaired.

r発明の効果〕 以北説明した様に本発明は、従来技術に見た様な第2の
薄いグーl−酸化膜まわりで目ズレマージンをとったた
めドレインと浮遊ゲートが第1のゲ−+−酸化膜を介し
て対向していた部分が存在せず、ドレイン領域と第2の
ゲート酸化膜部の目ズレマージンとなる部分はドレイン
と浮遊ゲート間が約1.0μmのフィールド酸化膜で十
分に厚いためCFDは十分に小さい。さらにソースドレ
インは浮遊ゲートに整合されるためドレインと浮遊ゲー
ト間に従来技術に見た様なドレインと浮遊ゲート間の目
ズレマージ2分のオーバーラツプ部及び目ズレによるオ
ーバーラツプ部の変動はなくオーバーラツプ部はドレイ
ン不純物の横方向拡散によるXノのみである。以上述べ
た様に本発明によるメモリトランジスタはドレイン−浮
遊ゲート間の第2の薄いゲート酸化膜部の容量C2以外
の付加容量CPDを最も小さく、しがも目ズレによるバ
ラツキを含まないため安定に小さくできる。その結果と
してI−ンネル酸化膜に安定がっ効率よく電界を集中さ
せることができ、高速かつ変動が小さく安定な書き込み
消去特性が得られる。
[Effects of the Invention] As explained above, the present invention provides a misalignment margin around the second thin glue oxide film as seen in the prior art, so that the drain and floating gate are aligned with the first gate. -A field oxide film with a thickness of about 1.0 μm between the drain and floating gate is sufficient for the part where there is no part facing each other with an oxide film interposed therebetween, and which becomes the misalignment margin between the drain region and the second gate oxide film part. Since it is thick, the CFD is sufficiently small. Furthermore, since the source drain is aligned with the floating gate, there is no overlap between the drain and the floating gate, and there is no variation in the overlap area due to misalignment, as seen in the prior art. The only difference is X due to lateral diffusion of drain impurities. As described above, the memory transistor according to the present invention has the smallest additional capacitance CPD other than the capacitance C2 of the second thin gate oxide film between the drain and the floating gate, and is stable because it does not include variations due to misalignment. Can be made smaller. As a result, the electric field can be stably and efficiently concentrated on the I-channel oxide film, and stable write/erase characteristics can be obtained at high speed and with small fluctuations.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、(b)、(c)はそれぞれ本発明の第1
の発明の一実施例の模式的平面図、A−A断面図及びB
−B断面図、第2図(a)、(b)乃至第7図(a>、
(b)は本発明の第2の発明を説明するために工程順に
示したA−A’断面図及びB−B’断面図、第8図(a
)、(b)乃至第10図(a)、(b)は本発明の第2
の発明の第5図(a>、(b)乃至第7図(a)、(b
)の他の実施例を示すA−A”断面図及びB−B’断面
図、第11図(a)、(b)は従来のメモリトランジス
タの模式的平面図及びそのA−A’断面図、第12図は
第11図(a>、(b)に示すメモリトランジスタの各
電極間の容量結合を示す等価回路図、第13図(a)〜
(e)は従来のメモリトランジスタの製造方法を説明す
るために工程順に示した素子の断面図である。 7・・・p型半導体基板、8・・・絶縁分離用フィール
ド酸化膜下に延在するドレイン領域、9・・・絶縁分離
用フィールド酸化膜、10・・・第1のゲート酸化膜、
11・・・第2のゲート酸化膜、12・・・浮遊ゲート
、13・・・第3のゲート酸化膜、14・・・制御ゲー
) 、、 Cr・・・浮遊ゲート−半導体基板間容量、
C2・・・第2のゲート酸化膜部の浮遊ゲー?−−ドレ
イン間容量、C3・・・浮遊ゲーI−−制御ゲート間容
量、CFs・・・浮遊ゲート−ソース間容量、CFD・
・・C2以外の浮遊ゲート−ドレイン間容量。 1111” 艷、、/、、、。 ! ’ 71−4ド山讐化11受 lθS彎11めゲート^促化頑 た3別 豪4剖 )6把 沼7酊 予θ国 茅夕扇 第lθ回 Ylz記 茅ノ′3 耕]
FIGS. 1(a), (b), and (c) are the first embodiments of the present invention, respectively.
A schematic plan view, A-A sectional view, and B of one embodiment of the invention of
-B sectional view, Fig. 2 (a), (b) to Fig. 7 (a>,
(b) is an AA' sectional view and a BB' sectional view shown in the order of steps for explaining the second invention of the present invention, and FIG.
), (b) to FIG. 10 (a), (b) are the second embodiments of the present invention.
Figures 5 (a>, (b) to 7 (a), (b) of the invention of
11(a) and 11(b) are a schematic plan view of a conventional memory transistor and its AA' sectional view. , FIG. 12 is an equivalent circuit diagram showing the capacitive coupling between each electrode of the memory transistor shown in FIG. 11 (a>, (b)), and FIG. 13 (a) to FIG.
(e) is a cross-sectional view of an element shown in order of steps to explain a conventional method of manufacturing a memory transistor. 7... P-type semiconductor substrate, 8... Drain region extending under the field oxide film for insulation isolation, 9... Field oxide film for isolation isolation, 10... First gate oxide film,
11... Second gate oxide film, 12... Floating gate, 13... Third gate oxide film, 14... Control gate), Cr... Floating gate-semiconductor substrate capacitance,
C2...Floating game in the second gate oxide film part? --Drain capacitance, C3...Floating gate I--control gate capacitance, CFs...Floating gate-source capacitance, CFD
・Capacitance between floating gate and drain other than C2. 1111"艷、/、、、。!' 71-4 Do mountain enemy formation 11 reception lθS 彎 11th gate ᄒ promotion stubborn 3 betsugo 4 autopsy) 6 Kanuma 7 drunken θ country Kayo fan 1θ Time Ylzki Kayano'3 Kō]

Claims (2)

【特許請求の範囲】[Claims] (1)一導電型半導体基板の一主面に設けられた該半導
体基板と逆導電型のソース及びドレイン領域と、該両領
域間半導体基板上に第1のゲート絶縁膜を介して形成さ
れかつ前記ドレイン領域のすくなくとも一部の領域で薄
い第2のゲート絶縁膜を介して該ドレイン領域と対向す
るが如く形成された浮遊ゲートと、該浮遊ゲート上に第
3のゲート絶縁膜を介して形成された制御ゲートとを有
する不揮発性半導体記憶装置において、前記ドレイン領
域が絶縁分離用フィールド絶縁膜下に延在し、該絶縁分
離用フィールド絶縁膜下に延在するドレイン領域の一部
の領域と前記浮遊ゲートが前記絶縁分離用フィールド絶
縁膜をエッチング除去して形成された開孔部で薄い第2
のゲート絶縁膜を介して対向していることを特徴とする
不揮発性半導体記憶装置。
(1) Source and drain regions of a conductivity type opposite to that of the semiconductor substrate provided on one main surface of the semiconductor substrate of one conductivity type, and a first gate insulating film formed on the semiconductor substrate between the two regions; a floating gate formed in at least a part of the drain region so as to face the drain region with a thin second gate insulating film interposed therebetween; and a third gate insulating film formed on the floating gate with a third gate insulating film interposed therebetween. In a nonvolatile semiconductor memory device having a control gate, the drain region extends under a field insulating film for isolation, and a part of the drain region extends under the field insulating film for isolation. The floating gate is formed by etching away the field insulating film for isolation, and forming a thin second
A nonvolatile semiconductor memory device characterized in that two gates are opposed to each other with a gate insulating film interposed therebetween.
(2)一導電型半導体基板主面上に該半導体基板と逆導
電型の拡散層領域を形成する工程と、該拡散層領域の一
部が活性化領域へ延在するが如く絶縁分離用フィールド
絶縁膜を形成する工程と、前記活性化領域の前記拡散層
領域上及び半導体基板上に第1のゲート絶縁膜を形成す
る工程と、前記拡散層領域上の一部の領域で前記絶縁分
離用フィールド絶縁膜をエッチング除去し前記拡散層領
域を露出させた後、該拡散層領域上に第2のゲート絶縁
膜を形成する工程と、該第2のゲート絶縁膜を覆いかく
しかつ前記活性化領域上の前記第1のゲート酸化膜上か
ら延在する浮遊ゲートを形成する工程と、前記半導体基
板と逆導電型のソース、ドレイン領域を活性化領域に延
在した前記拡散層領域とドレイン領域が接続されるが如
く形成する工程とを含むことを特徴とする不揮発性半導
体記憶装置の製造方法。
(2) A step of forming a diffusion layer region of a conductivity type opposite to that of the semiconductor substrate on the main surface of a semiconductor substrate of one conductivity type, and an insulating isolation field such that a part of the diffusion layer region extends to the activation region. forming an insulating film; forming a first gate insulating film on the diffusion layer region of the activation region and on the semiconductor substrate; after etching away the field insulating film to expose the diffusion layer region, forming a second gate insulating film on the diffusion layer region; covering the second gate insulating film and exposing the diffusion layer region; a step of forming a floating gate extending from above the first gate oxide film; and a step of forming a floating gate extending from above the first gate oxide film; 1. A method of manufacturing a nonvolatile semiconductor memory device, the method comprising: forming a nonvolatile semiconductor memory device as if it were connected.
JP61049707A 1986-03-06 1986-03-06 Method of manufacturing nonvolatile semiconductor memory device Expired - Lifetime JP2534660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61049707A JP2534660B2 (en) 1986-03-06 1986-03-06 Method of manufacturing nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61049707A JP2534660B2 (en) 1986-03-06 1986-03-06 Method of manufacturing nonvolatile semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS62206882A true JPS62206882A (en) 1987-09-11
JP2534660B2 JP2534660B2 (en) 1996-09-18

Family

ID=12838661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61049707A Expired - Lifetime JP2534660B2 (en) 1986-03-06 1986-03-06 Method of manufacturing nonvolatile semiconductor memory device

Country Status (1)

Country Link
JP (1) JP2534660B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105957806A (en) * 2016-06-08 2016-09-21 天津大学 Method for reducing data remanence in nonvolatile memory

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834979A (en) * 1981-08-27 1983-03-01 Nec Corp Nonvolatile semiconductor memory unit and manufacture thereof
JPS58130571A (en) * 1982-01-29 1983-08-04 Hitachi Ltd Semiconductor device
JPS6114766A (en) * 1984-06-27 1986-01-22 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834979A (en) * 1981-08-27 1983-03-01 Nec Corp Nonvolatile semiconductor memory unit and manufacture thereof
JPS58130571A (en) * 1982-01-29 1983-08-04 Hitachi Ltd Semiconductor device
JPS6114766A (en) * 1984-06-27 1986-01-22 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105957806A (en) * 2016-06-08 2016-09-21 天津大学 Method for reducing data remanence in nonvolatile memory

Also Published As

Publication number Publication date
JP2534660B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US5812449A (en) Flash EEPROM cell, method of manufacturing the same, method of programming and method of reading the same
TW302549B (en)
US5710735A (en) EEPROM and method for fabricating the same
JP2939537B2 (en) Flash memory and manufacturing method thereof
JPS62291180A (en) Electrically variable memory holding floating gate memory device
US6410957B1 (en) Method of forming poly tip to improve erasing and programming speed in split gate flash
KR970003845B1 (en) Eeprom flash memory cell, memory device and manufacturing method thereof
US6121087A (en) Integrated circuit device with embedded flash memory and method for manufacturing same
JPH04211177A (en) Nonvolatile semiconductor storage device and its manufacture
JPH11307656A (en) Flash memory device and manufacture thereof
JPH02308571A (en) Semiconductor memory device
JPS6178169A (en) Semiconductor memory
US6849499B2 (en) Process for flash memory cell
JPS62206882A (en) Nonvolatile semiconductor memory and manufacture thereof
JPH0476955A (en) Nonvolatile semiconductor memory
JPH0640586B2 (en) Method of manufacturing nonvolatile semiconductor memory device
JPH0139664B2 (en)
JPS62205665A (en) Nonvolatile semiconductor memory
JP2797466B2 (en) Nonvolatile semiconductor memory device
KR100214516B1 (en) Eeprom cell and manufacturing method thereof
KR100214470B1 (en) Fabrication method of a eeprom cell
KR20010004963A (en) Method of manufacturing a stack gate flash EEPROM cell
JP3439073B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JPS61174774A (en) Manufacture of non-volatile semiconductor memory device
KR100246193B1 (en) A method of fabricating eeprom cell