JPS6220610B2 - - Google Patents

Info

Publication number
JPS6220610B2
JPS6220610B2 JP55024591A JP2459180A JPS6220610B2 JP S6220610 B2 JPS6220610 B2 JP S6220610B2 JP 55024591 A JP55024591 A JP 55024591A JP 2459180 A JP2459180 A JP 2459180A JP S6220610 B2 JPS6220610 B2 JP S6220610B2
Authority
JP
Japan
Prior art keywords
magnetic
slider
embedded
core
magnetic gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55024591A
Other languages
Japanese (ja)
Other versions
JPS56119919A (en
Inventor
Hiroaki Hatsuta
Hisashi Matsumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2459180A priority Critical patent/JPS56119919A/en
Publication of JPS56119919A publication Critical patent/JPS56119919A/en
Publication of JPS6220610B2 publication Critical patent/JPS6220610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/29Structure or manufacture of unitary devices formed of plural heads for more than one track
    • G11B5/295Manufacture

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Adjustment Of The Magnetic Head Position Track Following On Tapes (AREA)

Description

【発明の詳細な説明】 本発明は磁気デイスク装置に使用する埋込みコ
ア型コアスライダの製造方法に係わり、特に磁気
ギヤツプが形成されていない磁性体を非磁性体に
埋込み、溶着ガラスによつて接合し一体化して磁
気ギヤツプを後で形成する製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an embedded core type core slider used in a magnetic disk device, and in particular, a method for manufacturing a core slider of an embedded core type used in a magnetic disk device, and in particular, a magnetic material without a magnetic gap is embedded in a non-magnetic material and bonded by welding glass. The present invention relates to a manufacturing method in which the magnetic gap is later formed by integrating the magnetic gap.

電子計算機の高性能化及び普及に伴い磁気デイ
スク装置についても、高密度記録への要求が強く
なつている。特に磁気ヘツドについては高密度化
の手段として、狭トラツク化及び記録波長の短波
長化に伴う狭ギヤツプ化という寸法上の小型化が
進められている。従来、磁気デイスクヘツドに使
用される埋込みコア型コアスライダはスライダ材
に非磁性体としてセラミツクを使用し、埋込みす
るコアにフエライト(Mn−Zn系もしくはNi−Zn
系)を使用して、溶着ガラスによつて接合し、そ
の後、種々機械加工を施して磁気ヘツドを形成す
る。
As the performance of electronic computers increases and becomes more widespread, demands for high-density recording of magnetic disk devices are becoming stronger. In particular, as a means of increasing density, magnetic heads are being made smaller in size by narrowing tracks and narrowing gaps due to shorter recording wavelengths. Conventionally, embedded core sliders used in magnetic disk heads use ceramic as a non-magnetic material for the slider material, and ferrite (Mn-Zn or Ni-Zn) for the embedded core.
A magnetic head is formed by bonding with welded glass and then performing various machining processes.

以下に従来方法を説明する。第1図a〜dは埋
込みコア型コアスライダを示す構造図であり、そ
れぞれ平面図、正面図、側面図及び第1図bのA
部拡大図を示している。更に、第2図a,bは磁
気ギヤツプ形成済コアを示す構造図、第3図a,
bは従来方法のスライダ材を示す構造図、第4図
aは従来方法の欠点を示す説明図で、第3図aの
A−A′面矢視図、第4図bは第4図aのB−
B′面矢視図である。
The conventional method will be explained below. Figures 1a to d are structural diagrams showing an embedded core type core slider, and are a plan view, a front view, a side view, and A of Figure 1b, respectively.
An enlarged view of the part is shown. Furthermore, FIGS. 2a and 2b are structural diagrams showing the core with a magnetic gap formed, and FIGS.
4b is a structural diagram showing the slider material of the conventional method, FIG. B-
It is an arrow view of B' plane.

第1図において、埋込みコア型コアスライダ1
には非磁性体2に溶着ガラス3を介して、磁気ギ
ヤツプ形成済のコア4が埋込みされている。この
埋込みに使用のコア4は第1図b,d、第2図
a,bに示す如く、コア4a,4bとが溶着ガラ
ス5a,5bによつて接合され、磁気ギヤツプgl
が形成されている。コア4a,4b間には空隙が
設けられ捲線窓6として読出しコイルあるいは書
込みコイルがコア4b部に捲き付けられるように
なつている。捲線窓6の上部で両コア4a,4b
が平行に接している部分が一般に磁気ギヤツプ・
デイプスgdと呼ばれているもので、例えば15±
3.0ミクロン程度の寸法及び精度のものが製造さ
れている。また、この平行部分のコア4a,4b
間の距離は前述の磁気ギヤツプglであり、例えば
1±0.2ミクロン程度の寸法及び精度のものが製
造されている。
In Fig. 1, an embedded core type core slider 1
A core 4 with a magnetic gap formed therein is embedded in a non-magnetic material 2 via a welded glass 3. As shown in FIGS. 1b and d and 2a and b, the core 4 used for this embedding is bonded to the cores 4a and 4b by welding glasses 5a and 5b, and the magnetic gap gl
is formed. A gap is provided between the cores 4a and 4b, and a winding window 6 allows a read coil or a write coil to be wound around the core 4b. Both cores 4a and 4b are connected at the top of the winding window 6.
Generally, the part where the two are in parallel contact is the magnetic gap.
It is called depth GD, for example 15±
Products with dimensions and precision of about 3.0 microns are manufactured. In addition, the cores 4a and 4b of this parallel part
The distance between them is the above-mentioned magnetic gap gl, which is manufactured with dimensions and accuracy of, for example, about 1±0.2 microns.

これらの磁気ギヤツプgl、及び磁気ギヤツプ・
デイプスgdは共に、高密度化記録を実現するた
めに、更に微小寸法化が図られている。溶着ガラ
ス5aは図示の点Pから下方に拡がつている。こ
の部分は磁気ギヤツプgl、磁気ギヤツプ・デイプ
スgdが微小寸法化する為に弱くなるコア4a,
4bの接合する強度を補強する部分である。
These magnetic gap GL and magnetic gap
In order to achieve high-density recording, the depth gd is further miniaturized. The welded glass 5a extends downward from the illustrated point P. This part is the core 4a, which becomes weak due to the miniaturization of the magnetic gap GL and the magnetic gap depth GD.
This is a part that reinforces the joining strength of 4b.

ここで、溶着ガラス5a,5bには高融点ガラ
スが用いられ、一体成形されたコア4は、第3図
に示す如くスライダ材7に埋込みされ低融点の溶
着ガラス3によつて接合される。その後一点鎖線
の部分から切断加工され、第1図に示すような外
形加工が機械的切断、研削あるいは研摩加工、例
えばダイヤモンド砥石やワイヤソーを用いた切
断、砥粒やダイヤモンド・ペーストを用いた研摩
などが施されている。ここで、第1図cに示すコ
ア4先端部の幅Tは磁気記録媒体上のトラツク巾
の間隔を決定する寸法である。ところで、従来方
法では第3図、第4図に示すように、スライダ材
7の基準面Sに対して埋込コア4の位置が揃えら
れず僅かずつ偏差を生じ、磁気ギヤツプ・デイプ
スgd″が図示の如くgd1″、あるいはgd2″のよう
に一定にならない。これはそれぞれ個別に形成さ
れたコアであること及び個別に埋込みされる関係
上調整作業上の限界から生じてしまう問題であ
る。このため、従来は繁雑な調整手段が必要であ
つた。本発明の目的は従来の繁雑な調整手段と、
個別に埋込みコアを作成する機械加工を不要とし
て、磁気ギヤツプ及び磁気ギヤツプ・デイプスの
寸法、精度が均一で高精度な高密度記録を可能と
する埋込みコア型コアスライダの製造方法を提供
することにある。本発明によれば直方体を構成す
る非磁性体スライダ材の一面に、櫛状溝を設け、
磁気ギヤツプが形成されていない磁性体を前記櫛
状溝に埋込み、高融点の溶着ガラスによつて非磁
性体スライダ材に接合した接合体とし、該接合体
を埋込みされた磁性体部分を非磁性体を含んで、
磁性体埋込み方向と直角に切断し、2個の切片を
得て、磁性体埋込み側切片の切断面に捲線窓を加
工し、前記切断によつて生じた切断面を鏡面に研
摩し、その後、両研摩面を対向させ磁性体同士が
合うように位置合せして、前記高融点に比較して
低融点を有する溶着ガラスによつて接合し、磁気
ギヤツプを形成する埋込みコア型コアスライダの
製造方法が得られる。
Here, high melting point glass is used for the welding glasses 5a and 5b, and the integrally molded core 4 is embedded in a slider material 7 and bonded with the welding glass 3 having a low melting point, as shown in FIG. After that, cutting is performed from the part indicated by the dashed-dotted line, and the external shape shown in Figure 1 is processed by mechanical cutting, grinding, or abrasive processing, such as cutting using a diamond whetstone or wire saw, or polishing using abrasive grains or diamond paste. is applied. Here, the width T of the tip of the core 4 shown in FIG. 1c is a dimension that determines the track width spacing on the magnetic recording medium. By the way, in the conventional method, as shown in FIGS. 3 and 4, the position of the embedded core 4 is not aligned with respect to the reference surface S of the slider material 7, and a slight deviation occurs, resulting in the magnetic gap depth gd'' As shown in the figure, gd1'' or gd2'' is not constant. This is a problem that arises from the limitations in adjustment work because the cores are individually formed and embedded individually. Therefore, in the past, complicated adjustment means were required.An object of the present invention is to eliminate the conventional complicated adjustment means,
To provide a method for manufacturing an embedded core type core slider that eliminates the need for machining to create individual embedded cores, and enables high-precision, high-density recording with uniform dimensions and accuracy of the magnetic gap and magnetic gap/depth. be. According to the present invention, comb-shaped grooves are provided on one surface of the non-magnetic slider material constituting the rectangular parallelepiped,
A magnetic material without a magnetic gap is embedded in the comb-shaped groove and bonded to a non-magnetic slider material using high melting point welded glass to form a bonded body. including the body
Cut perpendicularly to the magnetic material embedding direction to obtain two sections, process a winding window on the cut surface of the magnetic material embedding side section, polish the cut surface produced by the cutting to a mirror surface, and then, A method for manufacturing a core slider of an embedded core type, in which both polished surfaces are aligned so that the magnetic bodies meet each other, and then joined by a welded glass having a melting point lower than the above-mentioned high melting point to form a magnetic gap. is obtained.

以下図面を参照して説明する。第5図〜第8図
は本発明の一実施例を示す説明図であり、第5図
a,bは磁性体の構造体、第6図a,bは磁性体
の埋込み過程の説明図、第7図a,bは磁気ギヤ
ツプ形成過程の説明図、第8図a,bは本発明の
他の利点を示す説明図、第8図cは第8図bのd
−d′面断面図である。各図において、第1図、第
3図に同じ部分には同一符号を付している。本発
明の製造方法では、まず、磁気ギヤツプの形成し
ていないフエライトよりなる磁性体9をスライダ
材7へ埋込み、高融点の溶着ガラスを各埋込み部
ギヤツプに押しあてるようにして、電気炉によつ
て700〜800℃程度に高熱処理を行なうと、スライ
ダ材7と磁性体9が溶着ガラス8を介して一体形
成させる。その後第6図において一点鎖線によつ
て示すように埋込み面に平行な面を持つように機
械的に切断して切片10を得る。
This will be explained below with reference to the drawings. 5 to 8 are explanatory diagrams showing an embodiment of the present invention, in which FIGS. 5 a and 8 are explanatory diagrams of a magnetic material structure, and FIGS. 6 a and b are explanatory diagrams of a magnetic material embedding process, Figures 7a and b are explanatory views of the magnetic gap formation process, Figures 8a and b are explanatory views showing other advantages of the present invention, and Figure 8c is d of Figure 8b.
-d' plane cross-sectional view. In each figure, the same parts as in FIGS. 1 and 3 are given the same reference numerals. In the manufacturing method of the present invention, first, a magnetic body 9 made of ferrite without a magnetic gap is embedded in the slider material 7, and a high-melting point welded glass is pressed against each embedded gap, and then the magnetic body 9 is heated in an electric furnace. Then, by performing high heat treatment at about 700 to 800°C, the slider material 7 and the magnetic body 9 are integrally formed with the welded glass 8 interposed therebetween. Thereafter, the section 10 is obtained by mechanically cutting it so as to have a plane parallel to the embedding surface as shown by the dashed line in FIG.

次に第7図に図示するような捲線窓6と磁気ギ
ヤツプ・デイプスgd″を得るために、切片10を
c−c′方向へ機械的に研削加工する。この後、切
片10を得るためにスライダ材7を切断した際に
生じた切断面を鏡面に研摩加工する。この加工後
の切片10を図示していないが、スペーサを中間
に挾むようにして、スライダ7との切断面が切断
前の位置と正確に合致するように固定する。その
後、低融点ガラスを切断面の外周に押しあてるよ
うにして、前述の電気炉によつて550〜600℃程度
の熱処理を施こす。磁性体9はスライダ7内に埋
込みされている部分と、切片10と共に切離され
た部分とが溶着ガラス11a,11bによつて接
合し、磁気ギヤツプgl及び磁気ギヤツプ・デイプ
スgd″が均一で偏差のきわめて小さいスライダ材
7が出来上る。
Next, the section 10 is mechanically ground in the direction c-c' in order to obtain the winding window 6 and the magnetic gap depth gd'' as shown in FIG. The cut surface created when cutting the slider material 7 is polished to a mirror surface. Although the section 10 after this processing is not shown, a spacer is sandwiched in the middle so that the cut surface with the slider 7 is at the position before cutting. After that, the low melting point glass is pressed against the outer periphery of the cut surface and heat treated at about 550 to 600°C in the electric furnace described above.The magnetic material 9 is attached to the slider. The part embedded in 7 and the part separated along with section 10 are joined by welded glass 11a, 11b, and the magnetic gap GL and magnetic gap depth GD'' are uniform and the slider material has an extremely small deviation. 7 is completed.

このスライダ材7の基準面Sを鏡面ないし研摩
加工することによつて、磁気ギヤツプ・デイプス
を所望の寸法(gd)に仕上げることが出来る。
By mirror-finishing or polishing the reference surface S of the slider material 7, the magnetic gap depth can be finished to a desired dimension (gd).

この完成されたスライダ材7を第1図及び第3
図について説明のように従来方法によつて機械加
工することによつて埋込みコア型コアスライダ1
が得られる。ここで、第8図aに示すように、ス
ライダ材7から斜線部12を機械加工で切除する
ようにするならば、第8図b,cに示す如く、磁
性体9の外周には溶着ガラス8を残しているた
め、捲線窓6にコイル13を通して磁性体9に捲
き付ける場合に、エナメル被覆など絶縁物が破れ
ても、磁性体9と短絡することはない。上記実施
例によつて説明のように、直方体よりなる非磁性
体の一面に櫛状溝を複数個設け、磁気ギヤツプの
形成していない磁性体を埋込み、溶着ガラスによ
つて接合し、一体化された磁性体と非磁性体と
を、埋込み面と平行な面で切断して、磁気ギヤツ
プ及び磁気ギヤツプ・デイプスを形成するように
しているので、磁気ギヤツプ及び磁気ギヤツプ・
デイプスの寸法、精度が均一で高精度な埋込みコ
ア型コアスライダが得られる。
This completed slider material 7 is shown in Figures 1 and 3.
Embedded core type core slider 1 by machining by conventional method as described with reference to the figure.
is obtained. Here, if the shaded portion 12 is machined to be cut out from the slider material 7 as shown in FIG. 8 is left in place, when the coil 13 is passed through the winding window 6 and wound around the magnetic body 9, even if an insulating material such as an enamel coating is torn, there will be no short circuit with the magnetic body 9. As explained in the above example, a plurality of comb-shaped grooves are provided on one surface of a non-magnetic material made of a rectangular parallelepiped, a magnetic material without a magnetic gap is embedded, and the material is bonded with welded glass to form an integrated structure. The magnetic material and non-magnetic material are cut along a plane parallel to the embedding surface to form a magnetic gap and magnetic gap depths.
A highly accurate embedded core type core slider with uniform depth dimensions and precision can be obtained.

更に、寸法、精度が均一に出来ることから、従
来では不可能であつた狭磁気ギヤツプあるいは磁
気ギヤツプ・デイプスのものが加工可能となる効
果を生じる。更に、従来のように個別にコア4を
作成する工程、磁気ギヤツプ・デイプスの寸法合
せのための調整、研摩加工なども不要であり、機
械加工が極めて簡略化出来る。
Furthermore, since dimensions and accuracy can be made uniform, it is possible to process narrow magnetic gaps or magnetic gap depths that were previously impossible. Furthermore, there is no need for the process of individually creating the core 4, the adjustment for dimensional matching of the magnetic gap depth, the polishing process, etc. as in the past, and the machining process can be extremely simplified.

以上本発明によつて、高密度記録を可能とする
埋込みコア型コアスライダの製造方法が提供され
る。
As described above, the present invention provides a method for manufacturing an embedded core type core slider that enables high-density recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b〜dは埋込みコア型コアスライダ
を示す構成図、第2図a,bは磁気ギヤツプ形成
済みコアを示す構造図、第3図a,bは従来方法
のスライダ材を示す構造図、第4図は従来方法の
欠点を示す説明図、第5図〜第8図は本発明の一
実施例を示す説明図であり、第5図a,bは磁性
体の構造図、第6図a,bは磁性体の埋込み過程
の説明図、第7図は磁気ギヤツプ形成過程の説明
図、第8図a,b,cは本発明の他の利点を示す
説明図である。 1……埋込みコア型コアスライダ、2……非磁
性体、3,5a,5b,8,11a,11b……
溶着ガラス、4……コア、6……捲線窓、7……
スライダ材、9……磁性体、10……切片、13
……コイル。
Fig. 1 a, b to d are configuration diagrams showing an embedded core type core slider, Fig. 2 a, b are structural diagrams showing a core with a magnetic gap formed, and Fig. 3 a, b show a slider material of the conventional method. 4 is an explanatory diagram showing the drawbacks of the conventional method, FIGS. 5 to 8 are explanatory diagrams showing an embodiment of the present invention, and FIGS. 5a and 5b are structural diagrams of the magnetic material, FIGS. 6a and 6b are explanatory views of the process of embedding the magnetic material, FIG. 7 is an explanatory view of the process of forming a magnetic gap, and FIGS. 8a, b, and c are explanatory views showing other advantages of the present invention. 1...Embedded core type core slider, 2...Nonmagnetic material, 3, 5a, 5b, 8, 11a, 11b...
Welded glass, 4... Core, 6... Winding window, 7...
Slider material, 9... Magnetic material, 10... Section, 13
……coil.

Claims (1)

【特許請求の範囲】[Claims] 1 直方体を構成する非磁性体スライダ材の一面
に、櫛状溝を設け、磁気ギヤツプが形成されてい
ない磁性体を前記櫛状溝に埋込み、高融点の溶着
ガラスによつて非磁性体スライダ材に接合した接
合体とし、該接合体に埋込みされた磁性体部分を
非磁性体を含んで、磁性体埋込み方向と直角に切
断し、2個の切片を得て、磁性体埋込み側切片の
切断面に捲線窓を加工し、前記切断によつて生じ
た切断面を鏡面に研摩し、その後、両研摩面を対
向させ磁性体同士が合うように位置合せして、前
記高融点に比較して低融点を有する溶着ガラスに
よつて接合し、磁気ギヤツプを形成することを特
徴とする埋込みコア型コアスライダの製造方法。
1. A comb-shaped groove is provided on one surface of the non-magnetic slider material constituting the rectangular parallelepiped, a magnetic material without a magnetic gap is embedded in the comb-shaped groove, and the non-magnetic slider material is bonded with high melting point welded glass. The magnetic material part embedded in the bonded material, including the non-magnetic material, is cut at right angles to the magnetic material embedding direction to obtain two sections, and the section on the side where the magnetic material is embedded is cut. A winding window is processed on the surface, the cut surface produced by the cutting is polished to a mirror surface, and then both polished surfaces are faced and aligned so that the magnetic materials match each other, and compared to the high melting point. 1. A method of manufacturing a core slider of a buried core type, characterized in that the core slider is bonded with a welded glass having a low melting point to form a magnetic gap.
JP2459180A 1980-02-28 1980-02-28 Production of embedded core type core slider Granted JPS56119919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2459180A JPS56119919A (en) 1980-02-28 1980-02-28 Production of embedded core type core slider

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2459180A JPS56119919A (en) 1980-02-28 1980-02-28 Production of embedded core type core slider

Publications (2)

Publication Number Publication Date
JPS56119919A JPS56119919A (en) 1981-09-19
JPS6220610B2 true JPS6220610B2 (en) 1987-05-08

Family

ID=12142392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2459180A Granted JPS56119919A (en) 1980-02-28 1980-02-28 Production of embedded core type core slider

Country Status (1)

Country Link
JP (1) JPS56119919A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412211A (en) * 1978-02-20 1979-01-29 Hideatsu Kaise Receiver capable of continuously varying receiving band width
JPS5522291A (en) * 1978-08-05 1980-02-16 Alps Electric Co Ltd Manufacture of magnetic head

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412211A (en) * 1978-02-20 1979-01-29 Hideatsu Kaise Receiver capable of continuously varying receiving band width
JPS5522291A (en) * 1978-08-05 1980-02-16 Alps Electric Co Ltd Manufacture of magnetic head

Also Published As

Publication number Publication date
JPS56119919A (en) 1981-09-19

Similar Documents

Publication Publication Date Title
JPS59185015A (en) Magnetic head and its manufacture
JPS6233642B2 (en)
JPS63146202A (en) Magnetic head and its production
JPS6220610B2 (en)
JPS6087409A (en) Magnetic head and its production
JPS6151335B2 (en)
JPS62222412A (en) Magnetic head and its manufacture
JPS62197908A (en) Manufacture of magnetic head
JPS61214106A (en) Magnetic head
JPS5835722A (en) Manufacture of magnetic head
JPS628315A (en) Production of composite magnetic head
JP2887204B2 (en) Method of manufacturing narrow track magnetic head
JPH01227205A (en) Manufacture of magnetic head
JPS59231726A (en) Magnetic head and manufacture thereof
JPS6151325B2 (en)
JPH0766491B2 (en) Magnetic head
JPS63279406A (en) Magnetic head
JPH0227506A (en) Composite type magnetic head and its production
JPS6259365B2 (en)
JPS63164010A (en) Manufacture of magnetic head
JPS63112813A (en) Composite magnetic head and its manufacture
JPH02260206A (en) Production of composite type hdd magnetic head
JPS63197008A (en) Magnetic head for perpendicular magnetic recording
JPH01166304A (en) Manufacture of magnetic head substrate
JPS6032106A (en) Magnetic head