JPS62205684A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JPS62205684A
JPS62205684A JP4884586A JP4884586A JPS62205684A JP S62205684 A JPS62205684 A JP S62205684A JP 4884586 A JP4884586 A JP 4884586A JP 4884586 A JP4884586 A JP 4884586A JP S62205684 A JPS62205684 A JP S62205684A
Authority
JP
Japan
Prior art keywords
light emitting
type
emitting device
layer
crystal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4884586A
Other languages
Japanese (ja)
Inventor
Yoshiyasu Sugano
菅野 好泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP4884586A priority Critical patent/JPS62205684A/en
Publication of JPS62205684A publication Critical patent/JPS62205684A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0262Photo-diodes, e.g. transceiver devices, bidirectional devices
    • H01S5/0264Photo-diodes, e.g. transceiver devices, bidirectional devices for monitoring the laser-output

Landscapes

  • Semiconductor Lasers (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain a compact semiconductor light emitting device, by forming a semiconductor light emitting element and a detecting element, which monitors the light emitted from the light emitting element, as a unitary body. CONSTITUTION:On an N-type GaAs substrate 21, an N-type GaAlAs crystal layer 22, a GaAlAs active layer 23, a P-type GaAlAs crystal layer 24 and a P-type GaAs crystal layer 25 are formed. An electrode 31 is formed on the bottom part of the substrate 21, and an electrode 32 is formed on the upper part of the crystal layer 25. Insulating films 26 comprising SiO2, Al2O3 and the like are formed on laser-light emitting end surfaces 41 and 42. On one end surface 41, an alphaSiGe layer 27, in which P-type impurity atoms of B are added, and an amorphous (alphaSi) layer 28, in which N-type impurity atoms of P are added, are formed. A part of the N-type alphaSi layer 28 is removed, and electrodes 29 and 30 are formed. Thus a monitor diode, which has a hetero P-N junction of the alphaSi 28 and the alphaSiGe 27, is formed as a unitary body together with a semiconductor laser element.

Description

【発明の詳細な説明】 〔概要〕 半導体レーザ素子のような半導体発光装置であ −って
、レーザ素子のような半導体発光素子より出射される光
をモニタするホトダイオードを、レーザ素子の出射端面
の片側に絶縁膜を介してアモルファスシリコン(αSi
)のPN接合、或いはαSiとアモルファスシリコンゲ
ルマニウム(α5iGe)とのへテロPN接合でレーザ
素子と一体的に成るように形成し、形成される発光装置
の小型化、低コスト化を図るようにする。
[Detailed Description of the Invention] [Summary] In a semiconductor light-emitting device such as a semiconductor laser element, a photodiode for monitoring light emitted from the semiconductor light-emitting element such as a laser element is connected to the output end face of the laser element. Amorphous silicon (αSi) is placed on one side through an insulating film.
) or a hetero PN junction of αSi and amorphous silicon germanium (α5iGe) to be formed integrally with the laser element, thereby reducing the size and cost of the formed light emitting device. .

〔産業上の利用分野〕[Industrial application field]

本発明は半導体発光装置、特に発光素子より出射される
モニタ光を測定するホトダイオードを発光素子と一体的
に形成した半導体発光装置に関する。
The present invention relates to a semiconductor light emitting device, and more particularly to a semiconductor light emitting device in which a photodiode for measuring monitor light emitted from a light emitting element is integrally formed with the light emitting element.

光通信システムの光源として用いる半導体レーザ素子等
は益々小型化する事が、形成される電子機器の小型化を
図るために要望されている。
BACKGROUND OF THE INVENTION It is desired that semiconductor laser elements used as light sources in optical communication systems be made smaller and smaller in order to miniaturize the electronic devices formed thereon.

このような光通信システムに於いては、光源となる半導
体レーザ素子より集光レンズを透過して光ファイバ等に
出射されるレーザ光の強度を1jlJ整するために、集
光レンズに対する側と反対側に照射されるレーザ光の強
度をホトダイードを用いてモニタ光として検出し、この
モニタ光の強度を検知してレーザ素子に印加される電流
を調節してレーザ素子より照射される光の強度を制御す
る方法が採られている。
In such an optical communication system, in order to adjust the intensity of the laser light transmitted from the semiconductor laser element serving as the light source through the condensing lens and emitted to the optical fiber, etc. by 1JlJ, the side opposite to the condensing lens is The intensity of the laser light irradiated to the side is detected as monitor light using a photodiode, and the intensity of the monitor light is detected and the current applied to the laser element is adjusted to adjust the intensity of the light irradiated from the laser element. A method of control is being adopted.

従ってこのような半導体レーザ素子と、照射される光を
モニタするホトダイオードとを一体化した小型の半導体
発光装置が要望されている。
Therefore, there is a need for a compact semiconductor light emitting device that integrates such a semiconductor laser element and a photodiode that monitors the emitted light.

〔従来の技術〕[Conventional technology]

第3図は従来の半導体発光装置のうちの半導体レーザ素
子の一例を示す斜視図で、例えばN型のガリウム−砒素
(GaAs)基板1にV字溝2が形成された後、その上
にN型のGaAs結晶層3が液相エピタキシャル成長法
で形成された後、レーザ発光する活性領域4のガリウム
−アルミニウムー砒素(GaAIAs)結晶層5が、液
相エピタキシャル成長法で形成されている。
FIG. 3 is a perspective view showing an example of a semiconductor laser element in a conventional semiconductor light emitting device. After the GaAs crystal layer 3 is formed by the liquid phase epitaxial growth method, the gallium-aluminum-arsenide (GaAIAs) crystal layer 5 of the active region 4 that emits laser light is formed by the liquid phase epitaxial growth method.

更にその上には、P型のGaAlAs結晶層6とP型の
GaAs結晶層7が順次積層形成された後、その上に金
を主体とする合金が電極8としてスパッタ法等を用いて
形成されている。
Furthermore, a P-type GaAlAs crystal layer 6 and a P-type GaAs crystal layer 7 are sequentially laminated thereon, and then an alloy mainly composed of gold is formed as an electrode 8 using a sputtering method or the like. ing.

更にこの基板1の底部にも電極9が形成されている。Furthermore, an electrode 9 is also formed on the bottom of this substrate 1.

そして矢印へに示すようにレーザ光が出射される素子の
端面ばへき関されて鏡面を呈している。
As shown by the arrow, the end face of the element from which the laser beam is emitted is connected to form a mirror surface.

ところで、このような半導体レーザ素子を光通信システ
ムに用いようとすると、第2図に示すようにステム11
に設置されたヒートシンク】2にこの素子13を設置し
、集光レンズ14を透過して光ファイバ15に導入され
る光と反対側に照射される光をモニタするホトダイオー
ド16を設け、このホトダイオード16で検知したモニ
タ光を用いてレーザ素子13に印加される電流を制御し
てレーザ素子13より照射される光の強度を調節してい
る。
By the way, when trying to use such a semiconductor laser element in an optical communication system, the stem 11 as shown in FIG.
This element 13 is installed on the heat sink installed in the heat sink] 2, and a photodiode 16 is provided to monitor the light that is irradiated on the opposite side of the light that passes through the condenser lens 14 and is introduced into the optical fiber 15. The intensity of the light emitted from the laser element 13 is adjusted by controlling the current applied to the laser element 13 using the monitor light detected by the laser element 13.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し、上記したようにモニタダイオードを別個に設ける
半導体発光装置の構成では、この発光装置が大型化する
問題点がある。
However, in the structure of a semiconductor light emitting device in which a monitor diode is separately provided as described above, there is a problem that the light emitting device becomes large.

またこのレーザ素子13は、GaAlAsの結晶層5.
6のように大気中で酸化しやすい〜が用いられており、
その結晶層5,6の表面を大気より保護することが望ま
れている。
This laser element 13 also has a GaAlAs crystal layer 5.
6, which is easily oxidized in the atmosphere, is used,
It is desired to protect the surfaces of the crystal layers 5 and 6 from the atmosphere.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記した問題点を解決し、モニタダイオードと
レーザ素子のような発光素子とを一体化した小型の半導
体発光装置を提供するのを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a compact semiconductor light emitting device that integrates a monitor diode and a light emitting element such as a laser element.

本発明の半導体発光装置は、第1図に示すように半導体
発光素子の光出射端面41,42の片方の端面41に絶
縁膜26を設け、該絶縁膜26上にα5i28によるホ
モPN接合、或いはα5i28とα5iGe27による
ヘテロPN接合のモニタ用ホトダイオードを設けて形成
されている。
The semiconductor light emitting device of the present invention, as shown in FIG. It is formed by providing a monitoring photodiode of a hetero PN junction of α5i28 and α5iGe27.

〔作用〕[Effect]

GaAsを用いた半導体レーザ素子は、第1図に示すよ
うに、0.78〜0.89μmの範囲の波長で発振して
おり、この発振波長の近傍の波長に高感度を有するα5
i28、或いはα5iGe27の材料を用いて、α5i
28のPN接合、或いはα5i28とα5iGe27と
のへテロPN接合を有するモニタダイオードを、前記し
た半導体レーザ素子と一体的に形成することでモニタダ
イオードを別個に設けることを必要とせず、従って装置
の小型化が図れる。
As shown in Figure 1, a semiconductor laser device using GaAs oscillates at a wavelength in the range of 0.78 to 0.89 μm, and α5 has high sensitivity to wavelengths near this oscillation wavelength.
Using i28 or α5iGe27 material, α5i
By integrally forming a monitor diode having a PN junction of 28 or a hetero PN junction of α5i28 and α5iGe27 with the semiconductor laser element described above, it is not necessary to separately provide a monitor diode, and the device can therefore be made smaller. can be achieved.

〔実施例〕〔Example〕

以下、図面を用いて本発明の一実施例につき詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

本発明の半導体発光装置の横断面図を第1図に示し、第
1図の要部の斜視図を第2図に示す。
A cross-sectional view of the semiconductor light emitting device of the present invention is shown in FIG. 1, and a perspective view of the main part of FIG. 1 is shown in FIG.

第1図および第2図に示すように、N型のGaAs基板
21上には、図示しないが7字溝が形成され、その上に
はN型のGaAlAs結晶層22が液相エピタキシャル
法で形成され、その上にはGaAlAsの結晶層が活性
層23として液相エピタキシャル法で形成され、更にそ
の上にはP型のGaAlAs結晶層24、およびP型の
GaAs結晶N25が順次液相エピタキシャル成長法で
形成されている。
As shown in FIGS. 1 and 2, a 7-shaped groove (not shown) is formed on an N-type GaAs substrate 21, and an N-type GaAlAs crystal layer 22 is formed thereon by a liquid phase epitaxial method. On top of that, a GaAlAs crystal layer is formed as an active layer 23 by liquid phase epitaxial growth, and further above that, a P-type GaAlAs crystal layer 24 and a P-type GaAs crystal N25 are sequentially grown by liquid phase epitaxial growth. It is formed.

このような基板21および結晶層のレーザ光が出射され
る出射端面41,42にはスパッタ法等を用いて二酸化
シリコン(SiO2)膜、窒化珪素膜、酸化アルミニウ
ム(AO203) MtA等の絶縁膜26が形成されて
いる。
An insulating film 26 of silicon dioxide (SiO2) film, silicon nitride film, aluminum oxide (AO203), MtA, etc. is formed on the substrate 21 and the output end faces 41 and 42 of the crystal layer from which laser light is emitted by using a sputtering method or the like. is formed.

この絶縁膜26の厚さは、従来の装置に於けるへき開面
と同様な光学的特性を有するように、所定の厚さに形成
されている。
This insulating film 26 is formed to have a predetermined thickness so as to have optical characteristics similar to those of the cleavage plane in a conventional device.

次いでレーザ光が出射する出射端面41,42のうちの
片方の端面41に、スパッタ法、或いはプラズマCVD
を用いてP型の不純物原子の硼素(B)が添加されたα
5iGe層27を形成し、その上にN型の不純物原子の
燐(P)が添加されたアモルファスシリコン(αSi)
層28を形成する。
Next, one end face 41 of the emission end faces 41 and 42 from which the laser beam is emitted is processed by sputtering or plasma CVD.
α to which boron (B) as a P-type impurity atom is added using
Amorphous silicon (αSi) on which a 5iGe layer 27 is formed and phosphorus (P), which is an N-type impurity atom, is added.
Form layer 28.

次いでこのN型のαSiSi3O4部が除去された後、
P型のα5iGe層27にはチタンと金を主体とする電
極29が形成され、N型のαSiSi層上8上チタンと
金−ゲルマニウムを主体とする電極30が形成され、α
SiによるPN接合ダイオードが形成されている。
Then, after this N-type αSiSi3O4 part is removed,
An electrode 29 mainly made of titanium and gold is formed on the P-type α5iGe layer 27, and an electrode 30 mainly made of titanium and gold-germanium is formed on the N-type αSiSi layer 8.
A PN junction diode made of Si is formed.

またN型のGaAs基板21の底部には、このレーザ素
子を動作させるためのチタンと金−ゲルマニウムを主体
とする電極31が蒸着等を用いて形成され、P型のGa
^S結晶層25の上部にはチタンと金を主体とせる電極
32が形成されている。
Further, on the bottom of the N-type GaAs substrate 21, an electrode 31 mainly made of titanium and gold-germanium for operating this laser element is formed by vapor deposition or the like.
An electrode 32 mainly made of titanium and gold is formed on the top of the ^S crystal layer 25.

このような本発明の半導体発光装置によれば、レーザ素
子より出射される光をモニタするモニタダイオードがレ
ーザ素子と一体的に形成されているため、形成される装
置が小型となり、光通信システム等の電子装置に本発明
の発光装置を用いれば、電子装置が小型なものとなる。
According to the semiconductor light emitting device of the present invention, the monitor diode that monitors the light emitted from the laser element is formed integrally with the laser element, so the formed device can be miniaturized and can be used in optical communication systems, etc. If the light emitting device of the present invention is used in an electronic device, the electronic device can be made smaller.

また大気中に曝すと酸化しやすい八Ωを含んだGaAI
ASの結晶層が、絶縁膜で被覆されるため、発光素子の
劣化するのを防ぐことができる。
Also, GaAI containing 8Ω is easily oxidized when exposed to the atmosphere.
Since the AS crystal layer is covered with an insulating film, deterioration of the light emitting element can be prevented.

尚、本実施例ではαSiとα5iGeとのへテロPN接
合を用いてモニタダイオードを形成したが、αSiどう
しのPN接合ダイオードをモニタダイオードとして設け
ても良い。
In this embodiment, the monitor diode is formed using a hetero PN junction of αSi and α5iGe, but a PN junction diode of αSi may be provided as the monitor diode.

また本実施例に於けるように、GaAsを主材料として
用いた半導体レーザ素子以外の発光波長の異なる発光素
子を用いる場合は、その半導体発光素子の発光波長によ
ってαSi、或いはα5iGeの混晶比を制御すること
で、これ等の材料のハンド幅を変化させ、レーザ素子よ
り出射される光に対して感度を高めたモニタダイオード
形成すると、より高信頼度の半導体発光装置が得られる
Furthermore, as in this example, when using a light emitting element with a different emission wavelength other than a semiconductor laser element using GaAs as the main material, the mixed crystal ratio of αSi or α5iGe may be adjusted depending on the emission wavelength of the semiconductor light emitting element. By controlling the hand width of these materials and forming a monitor diode with increased sensitivity to the light emitted from the laser element, a more reliable semiconductor light emitting device can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の半導体発光装置によれば、レ
ーザ素子のような半導体発光素子とこの素子より出射さ
れる光をモニタする検知素子が一体的に形成されるため
、小型の半導体発光装置が得られる効果がある。
As described above, according to the semiconductor light emitting device of the present invention, since the semiconductor light emitting device such as a laser device and the detection element that monitors the light emitted from this device are integrally formed, the semiconductor light emitting device is small. There is an effect that can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体発光装置の横断面図、第2図は
第1図の要部を示す斜視図、 第3図は従来の半導体発光装置の斜視図、第4図は従来
の発光装置を電子機器装置に取りつけた断面図である。 図に於いて、 21はN型GaAs基板、22はN型GaAlAs結晶
層、23は活性層、24はP型GaAlへs結晶層、2
5はGaAs結晶層、26は絶縁膜、27はP型α5i
Ge層、28はN型αSi層、29.30.31 、3
2は電極、41.42は出射端面を示す。 滓発明41、特伴T育戎口 @ 2図 第 3 図
FIG. 1 is a cross-sectional view of a semiconductor light emitting device of the present invention, FIG. 2 is a perspective view showing the main parts of FIG. 1, FIG. 3 is a perspective view of a conventional semiconductor light emitting device, and FIG. 4 is a conventional light emitting device. FIG. 2 is a cross-sectional view of the device attached to an electronic device. In the figure, 21 is an N-type GaAs substrate, 22 is an N-type GaAlAs crystal layer, 23 is an active layer, 24 is a P-type GaAl s crystal layer, 2
5 is a GaAs crystal layer, 26 is an insulating film, 27 is a P-type α5i
Ge layer, 28 is N-type αSi layer, 29.30.31, 3
Reference numeral 2 indicates an electrode, and reference numerals 41 and 42 indicate an output end face. Slag Invention 41, Special Ban T Education Ebisuguchi @ Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 半導体発光素子の光出射端面(41、42)の片方に絶
縁膜(26)を設け、該絶縁膜(26)上にアモルファ
スシリコン(28)によるPN接合、或いはアモルファ
スシリコン(28)とアモルファスシリコンゲルマニウ
ム(27)によるヘテロPN接合を形成し、該PN接合
を用いたモニタ用ホトダイオードを前記発光素子と一体
的に設けたことを特徴とする半導体発光装置。
An insulating film (26) is provided on one of the light emitting end faces (41, 42) of the semiconductor light emitting device, and a PN junction made of amorphous silicon (28) is formed on the insulating film (26), or a PN junction made of amorphous silicon (28) and amorphous silicon germanium is formed on the insulating film (26). A semiconductor light emitting device characterized in that a hetero PN junction according to (27) is formed, and a monitoring photodiode using the PN junction is provided integrally with the light emitting element.
JP4884586A 1986-03-05 1986-03-05 Semiconductor light emitting device Pending JPS62205684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4884586A JPS62205684A (en) 1986-03-05 1986-03-05 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4884586A JPS62205684A (en) 1986-03-05 1986-03-05 Semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JPS62205684A true JPS62205684A (en) 1987-09-10

Family

ID=12814591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4884586A Pending JPS62205684A (en) 1986-03-05 1986-03-05 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS62205684A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1009032A1 (en) * 1998-12-11 2000-06-14 Hewlett-Packard Company System and method for the monolithic integration of a light emitting device and a photodetector using a native oxide semiconductor layer
US6633598B1 (en) * 1997-08-28 2003-10-14 Canon Kabushiki Kaisha Semiconductor laser device, and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633598B1 (en) * 1997-08-28 2003-10-14 Canon Kabushiki Kaisha Semiconductor laser device, and image forming apparatus
EP1009032A1 (en) * 1998-12-11 2000-06-14 Hewlett-Packard Company System and method for the monolithic integration of a light emitting device and a photodetector using a native oxide semiconductor layer
US6483862B1 (en) 1998-12-11 2002-11-19 Agilent Technologies, Inc. System and method for the monolithic integration of a light emitting device and a photodetector using a native oxide semiconductor layer

Similar Documents

Publication Publication Date Title
US4284884A (en) Electro-optic devices
JPH06350135A (en) Radiation emitting-diode provided with improved radiation capability
JPH0770757B2 (en) Semiconductor light emitting element
US6301279B1 (en) Semiconductor diode lasers with thermal sensor control of the active region temperature
JPS62205684A (en) Semiconductor light emitting device
JPS6432694A (en) Manufacture of semiconductor device in which laser diode and photodiode with expanded light receiving plane are unified
JP3196300B2 (en) Semiconductor laser device
JPH0459791B2 (en)
JPH07123175B2 (en) Semiconductor laser device
JPS6213088A (en) Light emitting semiconductor device
JPH0687511B2 (en) Surface emitting semiconductor laser
JPH07210893A (en) Semiconductor beam splitter and its production
JP3228585B2 (en) Lightwave rangefinder
JPS61264779A (en) Semiconductor laser device
JPS6358888A (en) Semiconductor laser device
JPS5931998B2 (en) Manufacturing method of optical semiconductor device with monitor
JPS62199084A (en) Semiconductor light emitting element
JPS605592Y2 (en) semiconductor laser equipment
JPH0582827A (en) Semiconductor light receiving element
JPS61159786A (en) Semiconductor laser device
JPS61159787A (en) Semiconductor laser device
JPS6213090A (en) Semiconductor laser
JPH04287996A (en) Semiconductor laser element
JPS63253690A (en) Optical semiconductor device
JPS63196090A (en) Semiconductor laser device