JPS62205269A - Evaporation source for forming thin film - Google Patents

Evaporation source for forming thin film

Info

Publication number
JPS62205269A
JPS62205269A JP4943986A JP4943986A JPS62205269A JP S62205269 A JPS62205269 A JP S62205269A JP 4943986 A JP4943986 A JP 4943986A JP 4943986 A JP4943986 A JP 4943986A JP S62205269 A JPS62205269 A JP S62205269A
Authority
JP
Japan
Prior art keywords
thin film
ion
vapor deposition
chamber
ionized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4943986A
Other languages
Japanese (ja)
Inventor
Katsuhiro Yokota
勝弘 横田
Masato Sugio
杉生 真人
Michio Taniguchi
道夫 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP4943986A priority Critical patent/JPS62205269A/en
Publication of JPS62205269A publication Critical patent/JPS62205269A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To optionally regulate proportion of constitutional elements and also to increase the deposited amount of a film by providing an ion takeout port provided with an ion accelerating electrode between an ionization chamber and a vapor deposition chamber and accelerating the constitutional elements in an ionized or excited state and sending these to the vapor deposition chamber. CONSTITUTION:An ionization chamber 20 and a vapor deposition chamber 30 are made to an independent chamber, and an ion takeout port 29, which is a through-hole provided to an ion accelerating electrode 28, is provided between both chambers 20, 30. DC high voltage is impressed between a filament 4 of the ionization chamber 20 and the ion accelerating electrode 28. After constitutional elements for a thin film generated in a generation source 10 are made to an ionized or excited state, these are accelerated and taken out together with plasma components through the ion takeout port 29 and flown into the vapor deposition chamber 30 by accelerating these. The accelerated ions of constitutional elements for the thin film are allowed to collide against a base plate W and absorbed, and the thin film is stuck and built up thereon. In this device, strength of plasma, strength of electron shower, and proportion making the constitutional elements to the ionized or excited state can be optionally regulated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基板の表面に各種組成の薄膜を形成させる技
術または表面を改質する技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a technique for forming thin films of various compositions on the surface of a substrate or a technique for modifying the surface.

(従来の技術) 基板の表面上に薄膜を形成させるために、従来から用い
られてきた?1Jil形成のための方法としては、 (イ)真空中で薄膜の構成元素を抵抗加熱、電子衝撃加
熱、光線加熱などの方法で蒸発させて薄膜を形成するも
の、 (ロ)アルゴンなどの不活性ガスの適当な圧力の下で、
対抗するように配置された一対の電極に直流または高周
波電圧を印加して放電をおこさせて、薄膜の構成元素か
らなる一つの電極をスパッターさせて薄膜を形成するも
の、 (ハ)アルゴンなどの不活性ガスのプラズマ中で、薄膜
の構成元素を蒸発させ、同じプラズマ中に置かれた基板
上に薄膜を形成するもの、 (ニ)真空中に薄膜の構成元素の蒸気または薄膜の構成
元素を含む化合物ガスを噴射し、それらに電子を衝突さ
せイオン化し、基板に電圧を印加して薄膜を形成するも
の、 (ホ)真空中に/J膜の構成元素を分子状で噴射し、そ
れらに電子を衝突させイオン化し、基板に電圧を印加し
て薄膜を形成するもの、 (へ)アルゴンなどの不活性ガスの適当な圧力の下で、
薄膜の構成元素となる電極の放電機構部分に直流または
高周波電圧を印加して放電をおごさせて、スパッターし
た薄膜の構成元素に電子を衝突させ、ざらにイオン化し
、基板に電圧を印加して薄膜を形成するもの、 (ト)アルゴンなどの不活性ガスのイオンビームを薄膜
の構成元素となる材料に衝突させ、スパッターして薄膜
を形成するもの、 (チ)真空中で薄膜の構成元素を蒸発させ、基板の表面
に照射づ−ると共に、アルゴンなどの不活性ガスのイオ
ンビームまたは薄膜の構成元素のイオンビームを照射し
て、基板の表面に1llluを形成するもの、 (す) 1?膜の構成元素となる44 Itを一つの電
極どして、アルゴンなどの不活性ガス中で7−ク放電さ
せて、薄膜の114成元素を蒸発させ薄膜を形成1“る
もの、 09種に大別される。
(Prior art) Conventionally, it has been used to form a thin film on the surface of a substrate. Methods for forming 1Jil include (a) forming a thin film by evaporating the constituent elements of the thin film in a vacuum using methods such as resistance heating, electron impact heating, and light beam heating; (b) using an inert material such as argon. Under suitable pressure of gas,
A method that forms a thin film by applying a direct current or high-frequency voltage to a pair of opposing electrodes to cause a discharge and sputtering one electrode consisting of the constituent elements of the thin film. A method in which the constituent elements of a thin film are evaporated in an inert gas plasma and a thin film is formed on a substrate placed in the same plasma. A method in which a thin film is formed by injecting a compound gas containing a compound gas, colliding it with electrons to ionize it, and applying a voltage to a substrate. Forms a thin film by colliding electrons and ionizing them and applying voltage to the substrate (to) Under appropriate pressure of an inert gas such as argon,
A direct current or high-frequency voltage is applied to the discharge mechanism part of the electrode, which is the constituent element of the thin film, to stimulate the discharge, and the constituent elements of the sputtered thin film are bombarded with electrons, roughly ionized, and a voltage is applied to the substrate. (g) A method in which a thin film is formed by colliding an ion beam of an inert gas such as argon with the material that will be the constituent elements of the thin film and sputtering it; (h) A method in which the constituent elements of the thin film are formed in a vacuum. evaporating and irradiating the surface of the substrate with an ion beam of an inert gas such as argon or an ion beam of constituent elements of the thin film to form 1llu on the surface of the substrate. ? 44 It, which is a constituent element of the film, is used as one electrode and a 7-degree discharge is performed in an inert gas such as argon to evaporate the 114 constituent elements of the thin film and form a thin film. Broadly classified.

(発明が解決しようどする問題点) 基板の表面上に薄膜を形成させるために、従来から用い
られてきた蒸発源は、イオンを発生する部分と蒸るをす
る部分とが同一のヂャンバー内であったために、プラズ
マ中の電子または各種波長の光の影響を受けないで、化
学的に活性な特性をもつイオン化または励起状態になっ
ている薄膜の構成元素を、任意の比率で制御することは
不可能であった。その理由を第5図を参照して説明する
(Problems to be Solved by the Invention) Evaporation sources conventionally used to form a thin film on the surface of a substrate have a part that generates ions and a part that evaporates in the same chamber. Therefore, it is not possible to control the constituent elements of a thin film in any ratio, which are in an ionized or excited state with chemically active properties, without being influenced by electrons in plasma or light of various wavelengths. It was impossible. The reason for this will be explained with reference to FIG.

第5図は従来の装置であって、10は薄膜の構成元素の
発生源であり、15はイオン発生源兼蒸着室である。構
成元素の発生源10は、ルツボ11’l+j人された薄
膜の構成元素Mをルツボの回りに谷かれたヒータ3によ
り加熱して薄膜の構成元素となる蒸気■を発生するかま
たは図示していないイオン発生源兼蒸着室15に構成元
素のガスを供給するものである。イオン発生81兼蒸着
室15においては、フィラメント4からアノード5に向
って流れる電子流Eが、ガス導入口6から導入されたア
ルゴン、キセノンなどの不活性ガス及び7iJJwAの
構成元素となる蒸気またはガスの分子と衝突しその一部
はイオン化または励起状態となる。これらの薄膜の構成
元素となる蒸気またはガスが基板Wに接近した電極31
に吸引されて基板W1.:衝突して基板上に堆積または
付着される。
FIG. 5 shows a conventional apparatus, in which numeral 10 is a source for generating constituent elements of the thin film, and numeral 15 is an ion source and vapor deposition chamber. The constituent element generation source 10 heats the constituent element M of the thin film placed in the crucible 11'l+j with a heater 3 installed around the crucible to generate steam (not shown) which becomes the constituent element of the thin film. Gases of constituent elements are supplied to the ion generation source/evaporation chamber 15 which is not in use. In the ion generation chamber 81 and vapor deposition chamber 15, the electron flow E flowing from the filament 4 toward the anode 5 is caused by an inert gas such as argon or xenon introduced from the gas introduction port 6, and vapor or gas that is a constituent element of 7iJJwA. collides with other molecules, and some of them become ionized or excited. An electrode 31 where vapor or gas that is a constituent element of these thin films approaches the substrate W.
is attracted to the substrate W1. : Collided and deposited or attached onto the substrate.

このような従来の装置においては、イオンを発生する部
分と基板に蒸着を行う部分とが同一の窄(イオン発生源
兼蒸着室15)内にあるために、基板付近に蒸着に必要
なイオン以外の電子、不純物ガスなどが到達するので、
基板の蒸着元素の純度が低下する。また、従来の装置で
は、イオン発生部分は高温度であるために、基板付近も
温度が高くなり、高温度にすることができないプラスチ
ックフィルムの基板への蒸着が困難である。さらに、従
来の装置では、プラズマを発生しやすくするために、イ
オン発生部分を低真空にしているが、基板への蒸着量を
増大するには、高真空にすることが望ましいにもかかわ
らず、基板付近も低真空になってしまう欠点があった。
In such conventional equipment, since the part that generates ions and the part that performs vapor deposition on the substrate are located in the same enclosure (ion generation source and vapor deposition chamber 15), ions other than those necessary for vapor deposition are present near the substrate. electrons, impurity gas, etc. reach the
The purity of the deposited elements on the substrate is reduced. In addition, in conventional apparatuses, since the ion generating portion is at a high temperature, the temperature near the substrate is also high, making it difficult to evaporate a plastic film onto a substrate, which cannot be heated to a high temperature. Furthermore, in conventional equipment, the ion generation area is kept in a low vacuum in order to facilitate plasma generation, but even though it is desirable to make the ion generation part in a high vacuum to increase the amount of evaporation onto the substrate, There was a drawback that the vacuum near the substrate was also low.

(問題点を解決する手段) 本発明は、従来の欠点を改良するために、(1)■アル
ゴン、キセノンなどの不活性ガスのプラズマの強度、■
上記の不活性ガスと薄膜の構成元素となるガスもしくは
蒸気との混合のプラズマの強度、または■S膜の構成元
素となるガスもしくは蒸気のプラズマの強度を変化させ
るガスもしくは蒸気の損、(2)プラズマを励起するの
に必要な電子シトワーの強度、または(3)直流もしく
は脈流の大きさのいずれかを変えて、プラズマ中を通過
する薄膜の構成元素となるガスまたは蒸気をイオン化ま
たは励起状態にする割合を任意に調整づることができる
ようにしたものである。
(Means for Solving Problems) In order to improve the conventional drawbacks, the present invention aims to improve (1) the intensity of plasma of inert gas such as argon or xenon;
loss of gas or vapor that changes the intensity of the plasma of the mixture of the above-mentioned inert gas and the gas or vapor that becomes the constituent element of the thin film, or (2) the intensity of the plasma of the gas or vapor that becomes the constituent element of the S film; ) Ionize or excite the gas or vapor that will become the constituent elements of the thin film passing through the plasma by changing either the intensity of the electron squirt necessary to excite the plasma, or (3) the magnitude of the direct current or pulsating current. This allows you to arbitrarily adjust the rate of change.

また、本発明は、プラズマ中の電子または各種波長の光
の影響を殆/νど受けることなく、化学的に活性な特性
′をもつイオン化もしくは励起状態になっている薄膜の
構成元素を、イオン化もしくは励起状態になっていない
薄膜の構成元素と共に、任意の比率に制御して、任意の
温度に保持された各種材質の基板の表面に、種々の組成
の薄膜を形成させることによって、または基板の表面と
薄膜の構成元素とを反応させることによって、基板の表
面を改質するようにしたものである。
Furthermore, the present invention is capable of ionizing constituent elements of a thin film that are in an ionized or excited state with chemically active properties, without being affected by electrons in plasma or light of various wavelengths. Alternatively, by forming thin films of various compositions on the surfaces of substrates made of various materials held at arbitrary temperatures with the constituent elements of the thin films that are not in an excited state, or by controlling the proportions in arbitrary proportions, The surface of the substrate is modified by reacting the surface with constituent elements of the thin film.

本発明の装置は、(イ)薄膜の構成元素となるガスの供
給または)璋躾のIM構成元素蒸発させる構成元素の発
生源、(ロ)電子衝撃または直流もしくは高周波電力の
投入によるプラズマを生成するイオン化室、(ハ)一部
がイオン化または励起状態にある薄膜の構成元素を、場
合によってはプラズマの成分と一緒に正または負の電圧
を印加して取り出すイオン取り出し口と、取り出し口か
ら取り出したイオンを付着し堆積させる基板を配置した
蒸’14 空30とから構成される。
The device of the present invention is capable of: (a) supplying a gas that becomes a constituent element of a thin film; or) a source of a constituent element that evaporates the IM constituent elements; and (b) generating plasma by electron bombardment or injection of direct current or high-frequency power. (iii) an ion extraction port where a positive or negative voltage is applied to extract the constituent elements of the thin film, which are partially ionized or excited, together with plasma components; It is composed of a vapor chamber 30 on which a substrate is placed on which ions are attached and deposited.

(実施例) 以下、第1図乃至第4図を参照して本発明の装置の実施
例について説明する。
(Example) Hereinafter, an example of the apparatus of the present invention will be described with reference to FIGS. 1 to 4.

第1図は、本発明の第1の実施例であって、ルツボ1に
挿入された薄膜の構成元素M、ヒータ3より構成される
薄膜の構成元素の発生源10は、第5図の従来のiA置
と同一であるが、従来装置のイオン発生源兼蒸着室15
が、本発明の装置においては、イオン化室20と蒸着室
30との各々独立したチャンバーになっており、これら
イオン化室20と蒸着室30との間には、イオン加速電
(本28に貫通孔を設けたイオン取出し口29が設置さ
れている。イオン化室20においては、従来装置と同様
のフィラメント4からアノード5に向って流れる電子流
Eが、ガス導入口6から導入されたアルゴン、キセノン
などの不活性ガスと衝突して励起されたプラズマを通過
する途中で、薄膜の構成元素となる蒸気またはガスの一
部はイオン化または励起状態となる。イオン化室2oの
フィラメント4と前述したイオン加速電極28との間に
は直流高電圧が印加されているので、これらのイオン化
または励起状態になった薄膜の構成元素は加速されて、
′イオン化または励起状態になっていない薄膜の構成元
素と共に、またはプラズマの成分と共にイオン取出し口
29から取り出され蒸着室30へ加速をつけて飛びこむ
。蒸着室30には、基板Wが配置されており、この基板
Wに加速された薄膜の構成元素となるイオンが衝突吸収
され、基板Mに薄膜が付着・堆積する。
FIG. 1 shows a first embodiment of the present invention, in which a source 10 of the thin film constituent elements M inserted into a crucible 1 and a heater 3 is a conventional source 10 of the thin film constituent elements shown in FIG. It is the same as the iA location of the conventional device, but the ion source and vapor deposition chamber 15
However, in the apparatus of the present invention, the ionization chamber 20 and the vapor deposition chamber 30 are each independent chambers, and between the ionization chamber 20 and the vapor deposition chamber 30 there is an ion accelerating electric current (through hole in the main 28). In the ionization chamber 20, an electron current E flowing from the filament 4 toward the anode 5, similar to the conventional device, is ionized by argon, xenon, etc. introduced from the gas inlet 6. Part of the vapor or gas that forms the constituent elements of the thin film becomes ionized or excited while passing through the plasma excited by colliding with the inert gas.The filament 4 of the ionization chamber 2o and the aforementioned ion accelerating electrode Since a high DC voltage is applied between 28 and 28, these ionized or excited constituent elements of the thin film are accelerated,
'The ions are taken out from the ion extraction port 29 together with the constituent elements of the thin film that are not in an ionized or excited state, or together with the plasma components, and fly into the deposition chamber 30 with acceleration. A substrate W is disposed in the vapor deposition chamber 30, and ions that are accelerated by the substrate W and are constituent elements of the thin film are collided and absorbed, and the thin film is attached and deposited on the substrate M.

第2図は、本発明の第2の実施例であって、第1図の実
施例と同様に薄膜の構成元素の発生源10とイオン化室
20とイオン加速Ti極28に貫通孔を設けたイオン取
出し口29と蒸着室30とから構成される。第1図の実
施例と異なる個所は、第1図がイオン化室20のフィラ
メント4とイオン加速電極28との間に高電圧が印加さ
れていたのに対して、第2図においてはイオン加速電極
28と蒸着室30の基板Wに接近した電極31との間に
高電圧が印加されている点である。
FIG. 2 shows a second embodiment of the present invention, in which through holes are provided in the source 10 of the constituent elements of the thin film, the ionization chamber 20, and the ion accelerating Ti electrode 28, similar to the embodiment shown in FIG. It is composed of an ion extraction port 29 and a vapor deposition chamber 30. The difference from the embodiment in FIG. 1 is that in FIG. 1, a high voltage was applied between the filament 4 of the ionization chamber 20 and the ion accelerating electrode 28, whereas in FIG. 28 and an electrode 31 close to the substrate W in the vapor deposition chamber 30 at which a high voltage is applied.

第3図は、本発明の第3の実施例であって、第1図また
は第2図の実施例と異なる個所は、第1図又は第2図が
イオン化室20のフィラメント4からアノード5に向っ
て流れる電子流Eをガス導入口6から導入された不活性
ガスと衝突させてイオン化したのに対して、第3図にお
いては、イオン化苗20に高周波印加電極21を設けて
高周波の電離作用により薄膜の構成元素となるガスまた
は蒸気をイオン化させたものである。
FIG. 3 shows a third embodiment of the present invention, and the difference from the embodiment shown in FIG. 1 or 2 is that in FIG. In contrast to the case in which the electron flow E flowing in the opposite direction was ionized by colliding with an inert gas introduced from the gas inlet 6, in FIG. The gas or vapor that forms the constituent elements of the thin film is ionized.

第4図は、本発明の第4の実施例であって、第3図の高
周波印加電極21のかわりに高周波電流通電用コイル2
2を設けて、その誘導作用により、′1′7g膜のl/
I成元素となるガスよlζは蒸気をイオン化させるもの
である。
FIG. 4 shows a fourth embodiment of the present invention, in which a high-frequency current energizing coil 2 is used instead of the high-frequency applying electrode 21 in FIG.
2 is provided, and by its induction effect, l/ of the '1'7g film is
The gas that becomes the I-component element ionizes the vapor.

(効果) 以上のように、本発明は、第5図の従来装着のイオン発
生源兼蒸着室15が、第1図のように、イオン化室20
と蒸着室30とに各々独立したチャンバーとなっており
、これらイオン化室20と蒸6130との間には、イオ
ン加速電極28にUj通孔を設けたイオン取出し口29
が設置されているので、■蒸着室30をイオン化室20
よりも高真空にすることにより、イオンの衝突散乱l1
lI率を減少させて基′板Wへの付着量を増大さけるこ
とができ、また■イオン止子20からの電子、不純物ガ
スが蒸着室30への進入を阻止することができるので、
基板Wに高純度の元素を付着させることができ、さらに
、■イオン至化20からの高温度の伝達を阻止すること
かできるので、高温度にすることができないポリエチレ
ンテレフタレート、ポリカーボネート等のプラスデック
基板Wへのイオンの11着が可能になるなどのすぐれた
効果が1qられる。
(Effects) As described above, in the present invention, the conventionally installed ion source/evaporation chamber 15 in FIG. 5 is replaced by the ionization chamber 20 in FIG.
The ionization chamber 20 and the vapor deposition chamber 30 are independent chambers, and between the ionization chamber 20 and the vapor deposition chamber 30, there is an ion extraction port 29 provided with a Uj through hole in the ion acceleration electrode 28.
is installed, so ■ the vapor deposition chamber 30 is replaced by the ionization chamber 20.
By creating a higher vacuum than the ion collision scattering l1
It is possible to reduce the lI rate and avoid an increase in the amount of adhesion to the substrate W, and (2) to prevent electrons and impurity gas from the ion stopper 20 from entering the deposition chamber 30.
It is possible to attach high-purity elements to the substrate W, and furthermore, it is possible to prevent the transfer of high temperatures from the ionization 20, so it is possible to use plus decks such as polyethylene terephthalate and polycarbonate that cannot be heated to high temperatures. Excellent effects such as 11 ions being able to land on the substrate W can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の装置の実施例であって、イ
オン化室20と蒸着室30とに分離してこれらの間にイ
オン加速電極28を備えた取り出し口29を設けたもの
であり、 第1図は、フィラメントとイオン加速電極との間に加速
のための電圧を供給した第1の実施例、第2図は、取り
出しTi橿と基板側電極との間に加速のための電圧を供
給した第2の実施例、第3図は、イオン化室に電極を設
けて高周波電圧を供給した第3の実施例、 第4図は、イオン化Tの周囲にコイルを巻いて高周波電
圧を供給するようにした第4の実!例、第5図は単一の
ヂャンバからなる従来例を示す。 10・・・構成元素ガスの発生源、2o・・・イオン化
室、28・・・イオン加速電極、29・・・イオン取出
し口、30・・・蒸着室、31・・・基板側電極、薄膜
の構成元素M、W・・・基板 代理人  弁理士  中 井  家 弟1図 υJ //V1 第Φ図 第5図 7     rt
1 to 4 show an embodiment of the apparatus of the present invention, in which an ionization chamber 20 and a vapor deposition chamber 30 are separated, and an extraction port 29 with an ion accelerating electrode 28 is provided between them. Figure 1 shows the first embodiment in which a voltage for acceleration is supplied between the filament and the ion accelerating electrode, and Figure 2 shows the voltage applied for acceleration between the take-out Ti rod and the substrate side electrode. A second embodiment in which a voltage was supplied, FIG. 3 is a third embodiment in which an electrode was provided in the ionization chamber and a high frequency voltage was supplied, and FIG. 4 is a third embodiment in which a high frequency voltage was supplied by winding a coil around the ionization T. The fourth fruit that was supplied! For example, FIG. 5 shows a conventional example consisting of a single chamber. DESCRIPTION OF SYMBOLS 10... Constituent element gas generation source, 2o... Ionization chamber, 28... Ion acceleration electrode, 29... Ion extraction port, 30... Vapor deposition chamber, 31... Substrate side electrode, thin film Constituent elements M, W...Substrate agent Patent attorney Nakai Family disciple 1 Figure υJ //V1 Figure Φ Figure 5 Figure 7 rt

Claims (1)

【特許請求の範囲】[Claims]  薄膜の構成元素となるガスの供給または薄膜の構成元
素を蒸発させる構成元素の発生源10と、不活性ガスの
プラズマ中、前記不活性ガスと薄膜の構成元素となるガ
スもしくは蒸気の混合のプラズマ中または薄膜の構成元
素となるガスもしくは蒸気のプラズマ中に、薄膜の構成
元素となるガスまたは蒸気を噴射または通過させるイオ
ン化室20と、この薄膜の構成元素の一部をイオン化ま
たは励起状態にして、前記のイオン化または励起状態に
なつていない薄膜の構成元素と共に、またはプラズマの
成分と一緒に、電圧を印加して取り出すイオン取り出し
口29と、前記イオンを付着し堆積させる基板を配置し
た蒸着室30とからなる薄膜形成のための蒸発源。
A constituent element generation source 10 for supplying a gas serving as a constituent element of the thin film or evaporating the constituent element of the thin film, and a plasma of a mixture of the inert gas and a gas or vapor serving as a constituent element of the thin film in an inert gas plasma. An ionization chamber 20 for injecting or passing gas or vapor that is a constituent element of the thin film into a plasma of gas or vapor that is a constituent element of the thin film, and a part of the constituent elements of this thin film are ionized or excited. , an ion extraction port 29 for extracting ions by applying a voltage together with the constituent elements of the thin film that are not in an ionized or excited state or together with plasma components; and a vapor deposition chamber in which a substrate on which the ions are attached and deposited is arranged. An evaporation source for thin film formation consisting of 30.
JP4943986A 1986-03-05 1986-03-05 Evaporation source for forming thin film Pending JPS62205269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4943986A JPS62205269A (en) 1986-03-05 1986-03-05 Evaporation source for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4943986A JPS62205269A (en) 1986-03-05 1986-03-05 Evaporation source for forming thin film

Publications (1)

Publication Number Publication Date
JPS62205269A true JPS62205269A (en) 1987-09-09

Family

ID=12831143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4943986A Pending JPS62205269A (en) 1986-03-05 1986-03-05 Evaporation source for forming thin film

Country Status (1)

Country Link
JP (1) JPS62205269A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013789A1 (en) * 2012-07-18 2014-01-23 ラボテック株式会社 Deposition device and deposition method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227163A (en) * 1985-03-30 1986-10-09 Agency Of Ind Science & Technol Production of high hardness boron nitride film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227163A (en) * 1985-03-30 1986-10-09 Agency Of Ind Science & Technol Production of high hardness boron nitride film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014013789A1 (en) * 2012-07-18 2014-01-23 ラボテック株式会社 Deposition device and deposition method
JP2014037618A (en) * 2012-07-18 2014-02-27 Rabotekku Kk Deposition device and deposition method
US9453278B2 (en) 2012-07-18 2016-09-27 Labotec Limited Deposition device and deposition method

Similar Documents

Publication Publication Date Title
US7327089B2 (en) Beam plasma source
US20090200158A1 (en) High power impulse magnetron sputtering vapour deposition
US4980610A (en) Plasma generators
JPH0633453B2 (en) Equipment for depositing thin layers on substrates by cathodic sputtering
JPH10509833A (en) Linear arc discharge generator for plasma processing
JP3345009B2 (en) Method for ionizing material vapor produced by heating and apparatus for performing the method
JPS5989763A (en) Vapor deposition device for thin film
JPH0456761A (en) Thin film forming device
JPS62205269A (en) Evaporation source for forming thin film
JPS5489983A (en) Device and method for vacuum deposition compound
JPS6372875A (en) Sputtering device
JPH0214426B2 (en)
JPH0417669A (en) Film forming method using plasma and rf ion plating device
JPS6199670A (en) Ion plating device
JPS6362872A (en) Formation of thin film
JP2602267B2 (en) Plasma generating apparatus and thin film forming apparatus using plasma
JP2595009B2 (en) Plasma generating apparatus and thin film forming apparatus using plasma
JPH0368764A (en) Plasma treating device for forming thin film
JPH01176072A (en) Ion plating device
JPH05339720A (en) Device for formation of thin film
JPH05239631A (en) Plasma forming device
JPS595732Y2 (en) Ion plating equipment
JPS62280357A (en) Ion plating using electron beam evaporation and apparatus therefor
JPH04276065A (en) Ion plating device
JPS63266065A (en) Film forming device