JPS62205104A - Production of catalytic component for polymerizing olefin - Google Patents

Production of catalytic component for polymerizing olefin

Info

Publication number
JPS62205104A
JPS62205104A JP4518786A JP4518786A JPS62205104A JP S62205104 A JPS62205104 A JP S62205104A JP 4518786 A JP4518786 A JP 4518786A JP 4518786 A JP4518786 A JP 4518786A JP S62205104 A JPS62205104 A JP S62205104A
Authority
JP
Japan
Prior art keywords
component
titanium halide
magnesium
solid composition
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4518786A
Other languages
Japanese (ja)
Other versions
JPH0721020B2 (en
Inventor
Minoru Terano
稔 寺野
Motoki Hosaka
元基 保坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP4518786A priority Critical patent/JPH0721020B2/en
Publication of JPS62205104A publication Critical patent/JPS62205104A/en
Publication of JPH0721020B2 publication Critical patent/JPH0721020B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To obtain a catalytic component which acts in high activity in the use of olefin polymerization and can produce a stereoregular polymer in high yield, by grinding specific three components at low temperature to give a solid composition and further bringing a titanium halide into contact with the solid composition. CONSTITUTION:(A) A magnesium halide (e.g., MgCl2, etc.), (B) a reaction product of an electron donor (e.g. aromatic dicarboxylic acid diester, etc.) and a titanium halide (e.g. TiCl4, TiBr4, etc.) and (C) a magnesium carbonate or a substance (e.g. MgCO3, hydrotalcite, etc.) in ratio of usually 0.1-2g component B and <=2g component C based on 1g component A are ground at <=5 deg.C low temperature to give a solid composition, which is further brought into contact with a titanium halide. The prepared catalytic component is combined with an organoaluminum compound and used as a catalyst for polymerizing an olefin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオレフィン類の重合に供した際、高活性に作用
し、しかも立体規則性重合体を高収率で得ることのでき
る触媒成分の製造方法に係り更に詳しくは、ハロゲン化
マグネシウムと電子供与性物質と、チタンハロゲン化物
との反応生成物およびマグネシウムの炭酸塩または該炭
酸塩を含む物質を低温で粉砕して得られた固体組成物を
更にチタンハロゲン化物と接触させることを特徴とする
オレフィン類重合用触媒成分の製造方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a catalyst component that has high activity when used in the polymerization of olefins and is capable of obtaining stereoregular polymers in high yield. More specifically regarding the production method, a solid composition obtained by pulverizing a reaction product of magnesium halide, an electron donating substance, and a titanium halide, and a carbonate of magnesium or a substance containing the carbonate at a low temperature. The present invention relates to a method for producing a catalyst component for polymerizing olefins, which comprises further contacting the catalyst with a titanium halide.

〔従来の技術〕[Conventional technology]

従来、オレフィン類重合用触媒成分としては固体のチタ
ンハロゲン化物が周知であり、広く用いられているが、
触媒成分、および触媒成分中のチタン当りの重合体の収
装(以下単に触媒成分および触媒成分中のチタン当りの
重合活性という。)が低いため、触媒残渣を除去するた
めの所謂脱灰工稈が不可避であった。この脱灰工程は多
量のアルコールまたはキレート剤を使用するために、そ
れ等の回収装置または再生装置が必要不可欠であり、資
源、エネルギー、その他付随する問題が多く、当業者に
とって早急に解決を望まれる重要な課題であった。この
煩雑な脱灰工程を省くため触媒成分、とりわけ触媒成分
中のチタン当妙の重合活性を高めるべく数多くの研究が
なされ、提案されている。
Conventionally, solid titanium halides have been well known and widely used as catalyst components for polymerizing olefins.
Since the catalyst component and the polymer content per titanium in the catalyst component (hereinafter simply referred to as the catalyst component and the polymerization activity per titanium in the catalyst component) are low, a so-called deashing process is used to remove the catalyst residue. was inevitable. Since this deashing process uses a large amount of alcohol or chelating agent, recovery equipment or regeneration equipment for these is essential, and there are many resource, energy, and other related problems, and it is desirable for those skilled in the art to solve them as soon as possible. This was an important issue. In order to eliminate this complicated deashing process, many studies have been made and proposals have been made to increase the polymerization activity of catalyst components, especially titanium in the catalyst components.

特に最近の傾向として活性成分であるチタンハロゲン化
物等の遷移金属化合物を、塩化マグネシウム等の担体物
質に担持させ、オレフィン類の重合に供した際に、触媒
成分中のチタン当妙の重合活性を飛躍的に高めたという
提案が数多く見かけられる。
In particular, there has been a recent trend in which transition metal compounds such as titanium halides, which are active ingredients, are supported on carrier materials such as magnesium chloride, and when used in the polymerization of olefins, the polymerization activity of the titanium in the catalyst component is reduced. There are many proposals that have dramatically improved this.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来提案されている方法においては、塩化マグ
ネシウムをアルコールに溶解させるなどそれぞれ非常に
煩雑な工程を必要とし、簡単な手法をもって立体規則性
重合体の収率をも高度に維持しつつ触媒成分当りの重合
活性を高めだ例は見出し得ない。
However, the methods proposed so far require very complicated steps such as dissolving magnesium chloride in alcohol, and it is possible to maintain a high yield of stereoregular polymers while maintaining the catalyst components using simple methods. No examples have been found in which the polymerization activity per unit was increased.

本発明者等は、斯かる従来技術に残された課題を解決す
べく鋭意研究の結果本発明に達し弦に提案するものであ
る。
The present inventors have arrived at the present invention as a result of intensive research to solve the problems remaining in the prior art, and propose it to strings.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

即ち、本発明の特徴とするところは、(a)ノ・ロゲン
化マグネシウム、(b)電子供与性物質とチタンハロゲ
ン化物との反応生成物および(c)マグネシウムの炭酸
塩または該炭酸塩を含む物質を低温で粉砕して得られた
固体組成物を更にチタンハロゲン化物と接触させてオレ
フづン類の重合用触媒成分として用いるところにある。
That is, the present invention is characterized by (a) magnesium no-logenide, (b) a reaction product of an electron donating substance and a titanium halide, and (c) a carbonate of magnesium or containing the carbonate. The solid composition obtained by grinding the material at low temperature is further contacted with a titanium halide and used as a catalyst component for the polymerization of olefins.

本発明において用いられるノ・ロゲン化マグネシウムと
しては弗化マグネシウム、塩化マグネシウム、臭化マグ
ネシウム、沃化マグネシウム等があげられるが、中でも
塩化マグネシウムが好ましい。
Magnesium chloride used in the present invention includes magnesium fluoride, magnesium chloride, magnesium bromide, magnesium iodide, and the like, with magnesium chloride being preferred.

本発明において用いられる電子供与性物質としては、芳
香族カルボン酸エステル類が好ましく、特に芳香族ジカ
ルボン酸ジエステル類が好ましい。
As the electron donating substance used in the present invention, aromatic carboxylic acid esters are preferable, and aromatic dicarboxylic acid diesters are particularly preferable.

本発明において用いられるチタンノ・ロゲン化物として
はTiCj4 、 TiBr4 、 Ti I4等があ
げられるが中でもTickが好ましい。
Examples of the titanium logide used in the present invention include TiCj4, TiBr4, TiI4, etc., and among them, Tick is preferable.

本発明において用いられるマグネシウムの炭酸塩または
該炭酸塩を含む物質としては炭酸マグネシウム、塩基性
炭酸マグネシウム、/−イドロタルサイトなどが好まし
い。
As the magnesium carbonate or the substance containing the carbonate used in the present invention, magnesium carbonate, basic magnesium carbonate, idrotalcite, etc. are preferable.

本発明において生成された固体組成物とチタンハロゲン
化物との接触後、更にチタンハロゲン化物と接触させた
り、あるいはまたn−へブタン等の有機溶媒で洗浄する
ことにより、本発明の効果をより高めることも可能であ
る。
After contacting the solid composition produced in the present invention with a titanium halide, the effect of the present invention can be further enhanced by further contacting with a titanium halide or by washing with an organic solvent such as n-hebutane. It is also possible.

これ等各成分の使用割合は生成される触媒成分の性能に
悪影響を及ぼすことのない限り任意であり、特に限定す
るものではないが、通常ノ・ロゲン化マグネシウム1 
’f K対して電子供与性物質とチタンハロゲン化物と
の反応生成物は101〜2F、マグネシウムの炭酸塩ま
たは該炭酸塩を含む物質は5f以下、好ましくは2を以
下の割合で用いられる。
The ratio of each component to be used is arbitrary as long as it does not adversely affect the performance of the catalyst component produced, and is not particularly limited.
For 'f K, the reaction product of the electron donating substance and the titanium halide is 101 to 2F, and the carbonate of magnesium or the substance containing the carbonate is 5F or less, preferably 2 or less.

この際用いられる電子供与性物質とチタンハロゲン化物
との反応生成物は適当な溶媒中で両者を反応させた後、
生成した固体分を洗浄し、乾燥して得られる。
The reaction product of the electron donating substance and titanium halide used at this time is obtained by reacting the two in an appropriate solvent, and then
It is obtained by washing and drying the generated solids.

本発明におけるハロゲン化マグネシウムと電子供与性物
質とチタンハロゲン化物との反応生成物およびマグネシ
ウムの炭酸塩また″は該炭酸塩を含む物質の粉砕は、通
常機械的手段によって行なわれるが、一般にボールミル
、振動ミル、基或摩砕機、衝撃粉砕機等が用いられる。
In the present invention, the reaction product of a magnesium halide, an electron-donating substance, and a titanium halide and a carbonate of magnesium or a substance containing the carbonate are usually pulverized by mechanical means, but generally a ball mill, Vibratory mills, base mills, impact mills, etc. are used.

粉砕時間は用いられる装置の性能に応じて異なることは
勿論であるが通常1〜500時間の範囲である。また粉
砕温度は10℃以下、好ましくは5℃以下の低温であれ
ばよい。
The grinding time will of course vary depending on the performance of the equipment used, but is usually in the range of 1 to 500 hours. The grinding temperature may be as low as 10°C or lower, preferably 5°C or lower.

チタンハロゲン化物と前記固体組成物との接触は、種々
の方法を用いて行ない得るが、例えば攪拌機を具備した
容器中で通常室温ないし用いられるチタンノ・ロゲン化
吻の沸点までの温度範囲で行なわれる。接触時間は固体
組成物と、チタンハロゲン化物とが十分に接触し得る範
囲であれば任意であるが、通常10分ないし100時間
の範囲で行なわれる。
The contact between the titanium halide and the solid composition can be carried out using various methods, but for example, it is usually carried out in a container equipped with a stirrer at a temperature ranging from room temperature to the boiling point of the titanium halide used. . The contact time is arbitrary as long as the solid composition and the titanium halide can be brought into sufficient contact with each other, but the contact time is usually in the range of 10 minutes to 100 hours.

この際、チタンハロゲン化物との接触をくり返し行なう
ことやn−へブタン等の有機溶媒を用いて洗浄すること
も可能である。
At this time, it is also possible to repeatedly contact the titanium halide or to wash using an organic solvent such as n-hebutane.

本発明におけるこれ等一連の操作は酸素、水分等の不存
在下に行なわれることが好ましい。
These series of operations in the present invention are preferably carried out in the absence of oxygen, moisture, and the like.

以上の如くして製造された触媒成分は有機アルミニウム
化合物と組合せてオl/ フィン類市会用触媒を形成す
る。使用する有機アルミニウム化合物は触媒成分中のチ
タン原子のモル当りモル比で1〜1000の範囲で用い
られる。また重合に際して電子供与性物質などの第三成
分を添加使用することも妨げない。
The catalyst component prepared as described above is combined with an organoaluminum compound to form an olefinic catalyst. The organoaluminum compound used is used in a molar ratio of 1 to 1000 per mole of titanium atoms in the catalyst component. Further, it is not prohibited to add and use a third component such as an electron-donating substance during the polymerization.

重合は有機溶媒の存在下でも、或いは不存在下でも行な
うことができる。またオレフィン単量体(ri気体しよ
び液体どちらの状態でも用いることができる。重合温度
は200℃以下好ましくは100℃以下であり、重合圧
力は100’kg/12・G以下、好ましくは50に1
7/讐・G以下である。
Polymerization can be carried out in the presence or absence of organic solvents. In addition, the olefin monomer (RI can be used in either gas or liquid state. The polymerization temperature is 200°C or lower, preferably 100°C or lower, and the polymerization pressure is 100'kg/12·G or lower, preferably 50°C or lower. 1
7/Enemy・G or lower.

本発明により製造された触媒成分を用いて単独重合また
は共重合されるオレフィンI!i!iはエチレン、フロ
ピレン、1−7”テン、4−メチル−1−ペンテン等で
ある。
Olefins I which are homopolymerized or copolymerized using the catalyst components produced according to the invention! i! i is ethylene, phlopylene, 1-7''tene, 4-methyl-1-pentene, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によって得られた触媒成分を用いてオレフィン碩
の重合を行なった場合、高活性であるがゆえに生成重合
体中の触媒残渣を極めて低くおさえることができ、しか
も触媒成分中の塩素含清の少ないこともあって生成重合
体に及ぼす塩素の影身を無視し得る程まで低減すること
ができる。更て立体規則性重合体の収率においても極め
て優れた効果を示している。
When polymerizing olefins using the catalyst component obtained by the present invention, the amount of catalyst residue in the resulting polymer can be kept extremely low due to its high activity, and the chlorine content in the catalyst component can be kept to an extremely low level. Because of the small amount, the influence of chlorine on the produced polymer can be reduced to a negligible level. Furthermore, it shows extremely excellent effects in terms of the yield of stereoregular polymers.

また、従来知られている高活性担持型触媒においては重
合の進行につれて活性が犬疼く低下してしまい、実質上
共重合等に使用することは不可能であったが、本発明に
よって得られた触媒成分を用いた場合、そのような現t
が極めて低くおさえることができ、共重合にも十分使用
することができる。
In addition, in conventionally known highly active supported catalysts, the activity drops sharply as the polymerization progresses, making it virtually impossible to use them in copolymerization, etc. When using catalyst components, such current
can be kept extremely low, and can be used sufficiently for copolymerization.

〔実施列〕[Implementation row]

以下本発明を実施例により具体的Vこ説明する。 The present invention will be specifically explained below with reference to Examples.

実施例1 〔触媒成分のA裏〕 塩化マグネシウム25y′、塩縞性炭酸マグネシウム5
1およびn−へブタン中でTiCl2とジブチルフタレ
ートを反応し、洗浄した後乾燥し。
Example 1 [Back side of catalyst component A] Magnesium chloride 25y', salt striped magnesium carbonate 5
TiCl2 and dibutyl phthalate were reacted in 1 and n-hebutane, washed and dried.

て得うれ′#:、TiC!4  ・ジブチルフタレート
錯体16y/I−窒素ガス雰囲気下で25flφのステ
ンレスポールを全容積の415充填した容1i 1. 
Otの振を助ミルポットに装入し、振動数1420 r
、ry、rr1゜撮巾五51で一10℃・(おいて20
時間の粉砕処理を行な・つた。
I'm happy with it'#:, TiC! 4 - Dibutyl phthalate complex 16y/I - A total volume of 415 stainless steel poles of 25flφ filled in a nitrogen gas atmosphere 1i 1.
Place the Ot vibration into the auxiliary mill pot and set the vibration frequency to 1420 r.
, ry, rr 1° photographing width 551 -10°
I did the time crushing process.

′54素ガスで充分に置換され、攪拌機を具肩し免容艙
50[]rntの丸底フラスコに′r1(シム20〇−
と前記粉砕処理によって得で固体組成物167を装入し
、120℃で2時間の攪拌反応を行なった。反応終了後
静置してデカンテーションにより上泄液を除去し、新た
にTiC4200mlを加え120℃で2時間反応させ
た。次いでn−ヘプタン200−による洗浄を繰返し行
ない、洗浄液中に塩素が検出されなくなった時点を以っ
て洗浄終了とみなし触媒成分とした。なお、この際該触
媒成分中の固液を分離して固体分中のチタン含有率を測
定したところ、2−86.It!4)%であった。
'54 After being sufficiently replaced with elementary gas, 'r1 (shim 200-
Solid composition 167 obtained by the above-mentioned pulverization process was charged, and a stirring reaction was carried out at 120° C. for 2 hours. After the reaction was completed, the mixture was allowed to stand and the supernatant was removed by decantation, and 2200 ml of TiC4 was added to the reaction mixture for 2 hours at 120°C. Next, washing with 200 ml of n-heptane was carried out repeatedly, and when chlorine was no longer detected in the washing solution, the washing was considered to be completed and used as a catalyst component. At this time, when the solid and liquid in the catalyst component was separated and the titanium content in the solid content was measured, it was found to be 2-86. It! 4)%.

〔重 合〕[Overlapping]

窒素ガスで完全に(d換された内容41.5 tの攪拌
at付オートクレーブに、n−へブタン700 rll
を装入し、1七ガス雰囲気を保ちつつトリエチルアルミ
ニウム3oatpy、、9フエニルジメトキシシラン6
4キ金よび前記触媒成分・tチタン原子としてo、、s
OrMi榛入した。その後水素ガス100−を装入し7
70℃vC外温してプロピレンガスを導入しつつ6 k
g、’ cm” 事Gの圧力を4持して2時間の重付を
行なった、。
700 rll of n-hebutane was completely replaced with nitrogen gas (contains 41.5 t of autoclave with stirring).
17 While maintaining the gas atmosphere, 3 oatpy of triethylaluminum, 9 phenyldimethoxysilane 6
4 As the gold and the catalyst component/t titanium atom, o, s
OrMi entered. After that, hydrogen gas 100- is charged and 7
6k while introducing propylene gas at external temperature of 70℃vC
g, 'cm'' The weight was applied for 2 hours at a pressure of 4 times.

重合終T後得ら几た固体1合体を戸別し、80℃に加部
して減圧乾燥し、2085′の重廿体?得た。一方P液
を、疑縮して1.97の1′11合体を得た。また、該
固体重合体のMIは7.6であった。
After the completion of the polymerization, the resulting solid mixture was separated, heated to 80°C, and dried under reduced pressure to obtain a 2085' heavy solid. Obtained. On the other hand, the P solution was subjected to pseudo-condensation to obtain a 1'11 compound of 1.97. Further, the MI of the solid polymer was 7.6.

実施例2 重合時間を5時間にした以外は実施・列1と同様にして
実験を行なったところ、2852の固体重合体が得られ
た。該固体重合体のMIは2.6、また、F液を疑翻し
て得られた重合体:・よ2.42であった。
Example 2 An experiment was carried out in the same manner as in Example 1, except that the polymerization time was changed to 5 hours, and a solid polymer of 2852 was obtained. The MI of the solid polymer was 2.6, and the MI of the polymer obtained by substituting Solution F was 2.42.

実施例5 TiC4・ジブチルフタレート4体を181吏用して実
施例1と同様、でシて実験を行なった。
Example 5 An experiment was conducted in the same manner as in Example 1 using 4 TiC4 dibutyl phthalates.

なお、この際の固体成分中のチタン含有率は五〇2重計
1でろつ之。重合路r後得られた固体重合体9.・よ1
952、p液を凝縮して得られた重合体は1.6tであ
った。また、該固体重合体のMIは五9であった。
In addition, the titanium content in the solid component at this time was 502 times 1. Solid polymer obtained after polymerization route 9.・Yo1
952, the polymer obtained by condensing the p liquid was 1.6 t. Moreover, the MI of the solid polymer was 59.

実ノ1il14 粉砕を0℃で30時間行なった以外は実施列1と同様に
して実検を行なった。なお、この際の固体分生のチ・ヌ
ン含有餐は2.61重1%でらった。
Practical No. 1il14 A practical test was carried out in the same manner as in Example 1, except that the crushing was carried out at 0° C. for 30 hours. In this case, the solid condensate containing Ji Nung was 2.61% by weight.

重合終了後、得られた固体重合体は211 f。After the polymerization was completed, the obtained solid polymer had 211 f.

P液を凝縮して得られた重合体−・ま2.1fであった
。また、該固体重合体のMI?丈!&、1でちった。
The polymer obtained by condensing the P liquid was 2.1f. Moreover, the MI of the solid polymer? height! &, I got it by 1.

Claims (1)

【特許請求の範囲】[Claims] (1)(a)ハロゲン化マグネシウム、(b)電子供与
性物質とチタンハロゲン化物との反応生成物および(c
)マグネシウムの炭酸塩または該炭酸を含む物質を低温
で粉砕して得られた固体組成物を、更にチタンハロゲン
化物と接触させることを特徴とするオレフィン類重合用
触媒成分の製造方法。
(1) (a) Magnesium halide, (b) reaction product of an electron donating substance and titanium halide, and (c
) A method for producing a catalyst component for polymerizing olefins, which comprises further contacting a solid composition obtained by pulverizing a magnesium carbonate or a substance containing the carbonate at a low temperature with a titanium halide.
JP4518786A 1986-03-04 1986-03-04 Method for producing catalyst component for olefin polymerization Expired - Fee Related JPH0721020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4518786A JPH0721020B2 (en) 1986-03-04 1986-03-04 Method for producing catalyst component for olefin polymerization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4518786A JPH0721020B2 (en) 1986-03-04 1986-03-04 Method for producing catalyst component for olefin polymerization

Publications (2)

Publication Number Publication Date
JPS62205104A true JPS62205104A (en) 1987-09-09
JPH0721020B2 JPH0721020B2 (en) 1995-03-08

Family

ID=12712266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4518786A Expired - Fee Related JPH0721020B2 (en) 1986-03-04 1986-03-04 Method for producing catalyst component for olefin polymerization

Country Status (1)

Country Link
JP (1) JPH0721020B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848845A (en) * 2020-07-03 2020-10-30 江苏扬农化工集团有限公司 Catalyst for preparing low-entanglement ultrahigh molecular weight polyethylene and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111848845A (en) * 2020-07-03 2020-10-30 江苏扬农化工集团有限公司 Catalyst for preparing low-entanglement ultrahigh molecular weight polyethylene and preparation method thereof
CN111848845B (en) * 2020-07-03 2023-03-24 江苏扬农化工集团有限公司 Catalyst for preparing low-entanglement ultrahigh molecular weight polyethylene and preparation method thereof

Also Published As

Publication number Publication date
JPH0721020B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
JPS62205104A (en) Production of catalytic component for polymerizing olefin
JPS62124104A (en) Production of catalyst component for polymerization of olefin
JP2513997B2 (en) Method for producing catalyst component for olefin polymerization
JPS61276806A (en) Production of catalyst component for polymerization of olefin
JPS62209105A (en) Production of catalyst component for polymerizing olefin
JPS60139706A (en) Olefin polymerization catalyst component
JPS61296006A (en) Production of catalyst component for polymerizing olefin
JPS61261304A (en) Production of catalyst component for polymerization of olefin
JPS61281103A (en) Production of catalyst component for polymerizing olefin
JPS62181308A (en) Production of catalytic component for olefin polymerization
JPS56155206A (en) Production of olefin polymer
JPH0725824B2 (en) Method for producing catalyst component for olefin polymerization
JPS61255910A (en) Catalyst component for polymerization of olefin
JPS5857408A (en) Production of catalytic component for alpha-olefin polymerization
JPS60161404A (en) Catalytic component for polymerizing olefin
JPS6354723B2 (en)
JPS619409A (en) Production of olefin polymer
JPS6071607A (en) Production of catalyst component for polymerizing olefin
JPS58109508A (en) Production of catalytic component for olefin polymerization
JPS6026007A (en) Polymerization of olefin
JPS5898309A (en) Production of catalytic component for olefin polymerization
JPS58113207A (en) Preparation of catalytic component for olefin polymerization
JPH059445B2 (en)
JPS58104904A (en) Preparation of catalytic component for polymerizing olefin
JPS61108612A (en) Catalyst component for olefin polymerization and catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees