JPS62204180A - Magnetic body detecting device - Google Patents

Magnetic body detecting device

Info

Publication number
JPS62204180A
JPS62204180A JP61047071A JP4707186A JPS62204180A JP S62204180 A JPS62204180 A JP S62204180A JP 61047071 A JP61047071 A JP 61047071A JP 4707186 A JP4707186 A JP 4707186A JP S62204180 A JPS62204180 A JP S62204180A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
detected
magnet
magnetic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61047071A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamashita
満男 山下
Hisaji Shinohara
篠原 久次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61047071A priority Critical patent/JPS62204180A/en
Publication of JPS62204180A publication Critical patent/JPS62204180A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To securely detect the approach of a magnetic body to be detected by providing a nonmagnetic base which fixes the interval between a magnet and a large Barkhausen effect element and a detecting circuit which detects variation in the output pulse voltage of a detection coil and generates a signal. CONSTITUTION:At the time of the magnetic body 10 to be detected enters the DC magnetic field of a permanent magnet 5, the DC magnetic field produced by the magnet 5 is attracted by the magnetic body 10 to be detected which has specific magnetic permeability and the intensity of a DC magnetic field applied to an amorphous alloy wire 2 decreases in intensity, so the large Barkhausen effect of the amorphous allow wire 2 which is suppressed by the DC magnetic field increases again, so that the output pulse voltage of the detection coil 4 rises from a crest value V2 to t crest value V1. For the purpose, a detecting circuit 7 connected electrically to the detection coil 4 detects variation in the crest value of the pulse voltage and then the approach of the magnetic body 10 to be detected is detected from variation of the output pulse.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、移動する製品の計数、近接スイッチ。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention is a moving product counting, proximity switch.

非接触距離制御装置等に用いられる被検出磁性体との磁
気感応性を利用した磁性体検出装置に関する。
The present invention relates to a magnetic body detection device that utilizes magnetic sensitivity with a magnetic body to be detected, which is used in a non-contact distance control device or the like.

〔従来技術とその問題点〕[Prior art and its problems]

磁気感応性を利用した磁性体検出装置としては、被検出
磁性体が磁界を発生するものである場合にはホール素子
などが、被検出磁性体が磁界を発生しないものである場
合には高周波誘導式の磁性体検出装置が従来広く用いら
れている。しかしながら、ホール素子は高価であるとと
もに、周囲温度の影響を受けて特性が変化するために温
度補正回路を必要とするなど構成が複雑化するという問
題がある。また、高周波誘導式検出装置はフェライトコ
アから出される住束が被検出磁性体を鎖交することによ
って被検出磁性体にうず¥ItR,が発生し、この影響
を受けてフェライトコア側発振回路の発信が停止するこ
とにより被検出磁性体を検知するものであるが、回路の
構成が複雑であるとともに、フェライトコアの加工コス
トが高いなどの欠点がある。
As a magnetic substance detection device using magnetic sensitivity, a Hall element is used when the magnetic substance to be detected generates a magnetic field, and a high-frequency induction device is used when the magnetic substance to be detected does not generate a magnetic field. Magnetic substance detection devices of the following type have been widely used in the past. However, the Hall element is expensive, and its characteristics change due to the influence of ambient temperature, so there are problems in that the structure becomes complicated, such as requiring a temperature correction circuit. In addition, in high-frequency induction detection devices, the flux emitted from the ferrite core interlinks with the magnetic material to be detected, causing eddying in the magnetic material to be detected, and this influence causes the oscillation circuit on the ferrite core side to Although this method detects the magnetic substance to be detected by stopping the transmission, it has drawbacks such as a complicated circuit configuration and a high processing cost for the ferrite core.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、構成が簡
単で周囲温度の影響を受けにくく、被検出磁性体の接近
を長期間安定して確実に検知できる磁性体検出装置を提
供することを目的とする。
The present invention has been made in view of the above-mentioned situation, and an object of the present invention is to provide a magnetic body detection device that has a simple configuration, is not easily affected by ambient temperature, and is capable of stably and reliably detecting the approach of a magnetic body to be detected over a long period of time. With the goal.

〔発明の要点〕[Key points of the invention]

回転液中紡糸法などによって溶湯から超急冷することに
より製造されるFe基非晶質合金線等においては、凝固
時に表層部に発生するねじり残留応力を保持した強じん
な弾性を有する高磁歪性の軟質磁性体となり、交流磁界
中においては表層部のねじり残留応力のために、磁化反
転が瞬間的な1回の缶壁移動によって生ずるいわゆる大
バルクハウゼン効果を示し、ヒステリシスループは角形
を示し、瞬時の磁化反転に同期して非晶質合金線の両端
間にパルス電圧が発生するいわゆるマチウシの効果と呼
ばれる現象が顕著に現われるとともに、非晶質合金線に
検出コイルを巻着しておけば大バルクハウゼン効果によ
る瞬時の磁束変化を検出コイルに誘起される鋭いパルス
電圧として検出することができる。
Fe-based amorphous alloy wire, which is manufactured by ultra-quenching molten metal using spinning in a rotating liquid, has high magnetostriction and strong elasticity that retains the torsional residual stress that occurs in the surface layer during solidification. It becomes a soft magnetic material, and in an alternating current magnetic field, due to torsional residual stress in the surface layer, magnetization reversal occurs due to one instantaneous movement of the can wall, which is the so-called large Barkhausen effect, and the hysteresis loop exhibits a rectangular shape. A phenomenon called the so-called "Machiushi effect", in which a pulse voltage is generated between both ends of the amorphous alloy wire in synchronization with the instantaneous magnetization reversal, appears conspicuously, and if a detection coil is wound around the amorphous alloy wire, Instantaneous magnetic flux changes due to the large Barkhausen effect can be detected as sharp pulse voltages induced in the detection coil.

本発明は、非晶質合金線の持つ大バルクハウゼン効果に
着目してなされたもので、高磁歪性を有する非晶質合金
線の外周面に交流励磁コイルおよび検出コイルを巻装し
てなる大バルクハウゼン効果素子と、この大バルクハウ
ゼン効果素子と被検出磁性体の軌道とに常時直流磁界を
与える磁石と、この磁石と前記大バルクハウゼン効果素
子との間隔を固定する非出性の基台とを設は被検出磁性
体が接近しない状弗では非晶質合金#Jこ加わる出方の
直流磁界により大バルクハウゼン効果を抑制して検出コ
イルの出力パルス電圧の波高値を低減し、被検出磁性体
が接近した状態では比透磁率の大きい被検出磁性体に直
流磁界が吸引されて非晶質合金線を通る直流磁束が減少
し、大バルク・・ウゼン効果に基づく検出コイルの出力
パルス電圧を増大させる。いわゆる大バルクハウゼン効
果に基づくパルス電圧の制御を可能にするとともに、こ
の出力パルス電圧の変化を検出回路で検知して信号を発
するよう構成したことにより、簡素な構成の検出装置に
よって被検出磁性体の接近による磁界の磁化を電気信号
に変換し、安定かつ確実に検知できるようにしたもので
ある。
The present invention was made by focusing on the large Barkhausen effect of an amorphous alloy wire, and is made by winding an AC excitation coil and a detection coil around the outer peripheral surface of an amorphous alloy wire having high magnetostriction. A large Barkhausen effect element, a magnet that constantly applies a DC magnetic field between the large Barkhausen effect element and the orbit of the magnetic substance to be detected, and a non-emission base that fixes the distance between the magnet and the large Barkhausen effect element. When the stand is set up so that the magnetic substance to be detected does not approach, the direct current magnetic field applied to the amorphous alloy #J suppresses the large Barkhausen effect and reduces the peak value of the output pulse voltage of the detection coil. When the magnetic substance to be detected is close to the magnetic substance to be detected, the DC magnetic field is attracted to the magnetic substance to be detected, which has a high relative magnetic permeability, and the DC magnetic flux passing through the amorphous alloy wire decreases, resulting in a large bulk... The detection coil output based on the Uzen effect. Increase pulse voltage. In addition to making it possible to control the pulse voltage based on the so-called large Barkhausen effect, the change in the output pulse voltage is detected by a detection circuit and a signal is emitted. The magnetization of the magnetic field caused by the approach of the object is converted into an electrical signal, allowing stable and reliable detection.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明の実施例装置を示す概略溝成図である。FIG. 1 is a schematic diagram showing a device according to an embodiment of the present invention.

図において、1は大バルクハウゼン効果素子であり、直
径0.12m5+、長さ30絹程度のFe基非晶質合金
@ (Fe77Si8B15 )  2に発振器8によ
って交流励磁される交流励磁コイル3と検出回路7が導
電接続された検出コイル4とを巻着したものからなって
いる。なお、図においては両コ、イル3,4を見分けや
すくするために、両コイル3.4を非晶質合金線2の長
さ方向の異なる位置に巻いた状態を示しであるが、実際
には両コイル3.4は非晶質合金+11!2の外周面に
ほぼ全長にわたって重ね巻きされている。5は大バルク
ハウゼン効果素子1との間に数n程度の間隔をおいて平
行に配置され非磁性材からなる基台6に固定された細い
棒状の永久磁石である。大バルクハウゼン効果素子1と
永久磁石をこのように構成することにより、永久磁石5
は非晶質合金a2と磁気的に結合して永久磁石5が発生
する直流磁界のかなりの部分を非晶質合金線2の軸方向
に通過させることができ、また永久磁石5の直流磁界内
を通過する軌道11を例えば矢印方向に移動する被検出
母性体10が、永久磁石5の側方を数順程度の距離をお
いて存在する場合には、永久磁石5の発生する直流磁界
を比透磁率の大きい被検出磁性体に多く通過させ、非晶
質合金線2を通る直流磁束を低減させることができる。
In the figure, 1 is a large Barkhausen effect element, which is made of an Fe-based amorphous alloy @ (Fe77Si8B15) with a diameter of 0.12 m5+ and a length of approximately 30 mm, an AC excitation coil 3 which is AC excited by an oscillator 8, and a detection circuit. 7 is wound around a detection coil 4 which is conductively connected. In addition, in the figure, in order to make it easier to distinguish between the coils 3 and 4, the coils 3 and 4 are shown wound at different positions in the length direction of the amorphous alloy wire 2, but in reality Both coils 3.4 are wound around the outer peripheral surface of the amorphous alloy +11!2 over almost the entire length. Reference numeral 5 denotes a thin rod-shaped permanent magnet that is arranged parallel to the large Barkhausen effect element 1 with an interval of about several nanometers and fixed to a base 6 made of a non-magnetic material. By configuring the large Barkhausen effect element 1 and the permanent magnet in this way, the permanent magnet 5
is magnetically coupled with the amorphous alloy a2, allowing a considerable portion of the DC magnetic field generated by the permanent magnet 5 to pass through in the axial direction of the amorphous alloy wire 2, and also within the DC magnetic field of the permanent magnet 5. For example, when the detected maternal body 10 moving in the direction of the arrow on the trajectory 11 passing through the permanent magnet 5 is present at a distance of several orders of magnitude from the side of the permanent magnet 5, the direct current magnetic field generated by the permanent magnet 5 is compared. The direct current magnetic flux passing through the amorphous alloy wire 2 can be reduced by allowing a large amount of the magnetic material to be detected to pass through the magnetic body having high magnetic permeability.

7は検出コイル4に導電接続され、この検出コイルの出
力パルス電圧の変化を検知して信号を発する検出回路で
ある。
A detection circuit 7 is conductively connected to the detection coil 4 and detects a change in the output pulse voltage of the detection coil to generate a signal.

第2図は前述の実施例装置において、大バルクハウゼン
効果素子に直流磁界が加わっていない状態における磁化
特性線図、第3図および第4図はそれぞれ異なる方向の
直流磁界が加わった状?割における磁化特性線図であり
、いずれも上段にヒステリシスループを、下段に交流磁
界Hおよび直流磁界Hdをそれぞれ示したものである。
FIG. 2 is a magnetization characteristic diagram in the above-mentioned embodiment device when no DC magnetic field is applied to the large Barkhausen effect element, and FIGS. 3 and 4 are diagrams when a DC magnetic field is applied in different directions. 3 is a magnetization characteristic diagram showing the hysteresis loop in the upper row, and the AC magnetic field H and the DC magnetic field Hd in the lower row.

非晶質合金?fM2に直流磁界が加わっていない状態に
おいては、第2図に示すように時間に対する交流磁界H
の変化t(dH/dt)  が大きい交流磁界Hの零位
相近傍で大パルクツ・ウゼン効果による磁壁移動とそれ
に基づく磁化反転が瞬間的に起こり、ヒステリシスカー
ブは磁束密度の正負の飽和値間を瞬時に変化する鋭い角
形を示す。また、第3図に示すように、非晶質合金線の
交流磁界Hを負側(左側)にバイアスする直流磁界Hd
が加わり、かつ直流磁界Hdが交流磁界Hの波高値近傍
にまで強まった場合には、磁化反転は図中a、  bで
示す交流磁界Hの正の波高値近傍で起こることになり、
交流磁界I(の変化41(dH/dt)  が低い交流
磁界Hの波高値近傍で磁化反転が起こるために、大バル
クハウゼン効果を起こすに十分なエネルギーが不足し、
ヒステリシスカーブは磁束密度Bが正側で飽和値に達し
ない負側に偏った形となる。また、第4図に示すように
、非晶質合金線の交流磁界Hを正側(右側)にバイアス
する直流磁界Hdが加わった場合には、前述と同様な理
由により磁化反転は負の波高値近傍C,d位置で起こり
、ヒスプリシスカーブは磁束密度Bが正側に偏った形と
なる。
Amorphous alloy? When no DC magnetic field is applied to fM2, the AC magnetic field H changes over time as shown in Figure 2.
Near the zero phase of the alternating current magnetic field H, where the change t (dH/dt) is large, domain wall movement due to the large Parkz-Usen effect and magnetization reversal occur instantaneously, and the hysteresis curve instantaneously changes between the positive and negative saturation values of the magnetic flux density. It shows a sharp corner that changes to . In addition, as shown in Fig. 3, a DC magnetic field Hd biases the AC magnetic field H of the amorphous alloy wire to the negative side (left side).
is applied and the DC magnetic field Hd is strengthened to near the peak value of the AC magnetic field H, magnetization reversal will occur near the positive peak value of the AC magnetic field H as indicated by a and b in the figure.
Since magnetization reversal occurs near the peak value of the AC magnetic field H where the AC magnetic field I (change 41 (dH/dt) is low, there is insufficient energy to cause the large Barkhausen effect,
The hysteresis curve has a shape biased toward the negative side where the magnetic flux density B does not reach the saturation value on the positive side. Furthermore, as shown in Figure 4, when a DC magnetic field Hd that biases the AC magnetic field H of the amorphous alloy wire to the positive side (right side) is applied, the magnetization reversal occurs as a negative wave for the same reason as mentioned above. This occurs at positions C and d near the high value, and the hysteresis curve has a shape in which the magnetic flux density B is biased toward the positive side.

第5図は前述の実施例における検出コイルの出力パルス
ζに圧波形を大パルクツ・ウゼン効果素子の交流磁界波
形と対比して示す波形図であり、W 11は交流磁界波
形、Wl2は第2図に示す磁化特性線図に対応する出力
パルス電圧波形、Wl3は第3図に対応する出力パルス
電圧波形、Wl4は第4図に対応する出力パルス電圧波
形をそれぞれ示したものである。図において、直流磁界
Hdが加わっていない状態における検出コイル4の出力
パルス電圧波形W 12は、交流磁界波形Wllの零位
相近傍に同期して各半サイクル毎に発生し、第2図に示
すヒステリシスカーブの瞬間的な磁束密度の変化に対応
して、演出コイル4には波高値V。
FIG. 5 is a waveform diagram showing the pressure waveform of the output pulse ζ of the detection coil in the above-described embodiment in comparison with the AC magnetic field waveform of the large Parkz-Usen effect element, W11 is the AC magnetic field waveform, Wl2 is the second waveform. The output pulse voltage waveform corresponding to the magnetization characteristic diagram shown in the figure, Wl3, is the output pulse voltage waveform corresponding to FIG. 3, and Wl4 is the output pulse voltage waveform corresponding to FIG. 4, respectively. In the figure, the output pulse voltage waveform W12 of the detection coil 4 in a state where no DC magnetic field Hd is applied is generated every half cycle in synchronization with the vicinity of the zero phase of the AC magnetic field waveform Wll, and the hysteresis shown in FIG. Corresponding to the instantaneous change in magnetic flux density of the curve, the wave height value V is set in the production coil 4.

なる大きなパルス電圧が誘起される。また、受渡磁界[
■の波高値に近い直流磁界Hdが非晶質合金線2にカロ
わった状態では、Wl 3.Wl 4に示すように、検
出コイル4の出力パルス電圧波形は交流磁界Hの波高値
を挾んでその両側で発生し、交R,磁界Hの波高値近傍
における交fi磁界の変化量の減少に基づく大バルクハ
ウゼン効果の低下により、検出コイル4に誘起されるパ
ルス電圧W13゜〜V 14の波高値V2は前述のvl
に比べて小さくなる。すなわち、大パルクツ・ウゼン効
果素子1と直流磁界を発生する永久磁石5とを組合わせ
ることにより、大パルクツ・ウゼン効果に基づいて検出
コイル4に誘起されるパルス電圧v2を永久磁石が無い
場合の波高値v1以下に制剤することができる。
A large pulse voltage is induced. In addition, the transfer magnetic field [
When the DC magnetic field Hd close to the peak value of (2) is applied to the amorphous alloy wire 2, Wl 3. As shown in Wl 4, the output pulse voltage waveform of the detection coil 4 is generated on both sides of the peak value of the alternating current magnetic field H, and is caused by a decrease in the amount of change in the alternating current fi magnetic field near the peak value of the alternating current R and magnetic fields H. Due to the decrease in the large Barkhausen effect based on the
becomes smaller compared to That is, by combining the large Parkuts-Usen effect element 1 and the permanent magnet 5 that generates a DC magnetic field, the pulse voltage v2 induced in the detection coil 4 based on the large Parkuts-Usen effect can be changed to the same level as when no permanent magnet is used. It is possible to suppress the peak value to below v1.

つぎに、前述のように構成された検出装置に被検出磁性
体IOが、永久C+71石5′の直流磁界内を通過する
軌道11に沿って接近したと仮定する。被検出fa磁性
体0が永久磁石5の直流磁界内には入ると、永久磁石5
が発生する直流磁界は比透磁率の大きい被検出磁性体1
0に吸引され、非晶質合金i!i!2に加わる直流磁界
Hdの量が減少するので、直流磁界t(dによって抑さ
えられていた非晶質合金線の大バルクハウゼン効果は再
びT1大し、その結果検出コイル4の出力パルス電圧は
波高値v2から波高@V1に向けて増大する。したがっ
て、検出コイル4に導N接続された検出回路7によって
パルス電圧の波高値の変化を検出すれば、出力パルス電
圧の変化によって被検出磁性体10の近接を検知するこ
とができる。なお、被検出磁性体10は永久磁石の発生
直流磁界を吸引できない程に8化されていないものであ
る必要がある。
Next, it is assumed that the magnetic substance IO to be detected approaches the detection device configured as described above along the trajectory 11 passing through the DC magnetic field of the permanent C+71 stone 5'. When the detected fa magnetic body 0 enters the DC magnetic field of the permanent magnet 5, the permanent magnet 5
The DC magnetic field generated by the detected magnetic body 1 with high relative permeability
0, the amorphous alloy i! i! Since the amount of the DC magnetic field Hd applied to 2 decreases, the large Barkhausen effect of the amorphous alloy wire, which was suppressed by the DC magnetic field t(d, increases T1 again, and as a result, the output pulse voltage of the detection coil 4 becomes It increases from the peak value v2 to the peak height @V1.Therefore, if a change in the peak value of the pulse voltage is detected by the detection circuit 7 connected to the detection coil 4, the magnetic body to be detected will be detected by the change in the output pulse voltage. 10 can be detected. Note that the magnetic body 10 to be detected must not be 8-shaped to the extent that it cannot attract the direct current magnetic field generated by the permanent magnet.

前述のように構成された砒性体検出装置においては、F
e基非晶質合金線が周囲温度150’CIX度まで大バ
ルクハウゼン効果に変化を生じないので、周囲温度変化
に対する補償回路を必要とせず、またマチウシ効果に基
づく出力パルス電圧に比べ検出コイルに大きなパルス電
圧を誘起でき、かつ主要構成要素である大バルクハウゼ
ン効果素子および永久磁石に後年劣化がほとんどなく単
純かつ強じんであることにより、構成が簡素で長期安定
性ならびに経済性に浸れた磁性体検出装置を得ることが
できる。
In the arsenic body detection device configured as described above, F
Since the e-based amorphous alloy wire does not cause any change in the large Barkhausen effect up to an ambient temperature of 150'CIX degrees, there is no need for a compensation circuit for changes in ambient temperature, and compared to the output pulse voltage based on the Machiusi effect, the detection coil It can induce a large pulse voltage, and its main components, the large Barkhausen effect element and permanent magnet, show little deterioration in later years and are simple and strong, resulting in a simple structure, long-term stability, and economic efficiency. A magnetic substance detection device can be obtained.

また、検出回路を例えばV2をしきい値とし、v2を超
える入力信号が入力されたとき被検出磁性体が近接した
ものと判断して検知信号を出力するよう構成すれば、生
産ライン等において製品の計測製蓋として応用すること
ができるうさらに、上記検知信号により電気接点を開閉
するよう構成すれば近接スイッチを得ることができ、さ
らにまた被検出磁性体と永久磁石との間の距離とパルス
電圧波高値との関係をあらかじめ校正しておくことによ
り、非接触距離センサーが得られるなど広い適用範囲を
期待することができる。
In addition, if the detection circuit is configured to, for example, set V2 as a threshold value and output a detection signal when an input signal exceeding V2 is input, it is possible to determine that the magnetic substance to be detected is close and output a detection signal. In addition, a proximity switch can be obtained by configuring the electrical contacts to open and close according to the detection signal, and furthermore, it can be used as a measurement cover for measuring the distance between the magnetic body to be detected and the permanent magnet and the pulse. By calibrating the relationship with the voltage peak value in advance, a wide range of applications can be expected, such as the creation of a non-contact distance sensor.

なお、前述の実施列においては、磁石に永久磁石を用い
た場合を例に説明したが、直流励磁された電磁石を用い
ても前述の実施例と同様な機能を得ることができる。ま
た、基台6に合成樹脂硬化物を用い、この基台中に大バ
ルクハウゼン効果素子および出血等を埋設するよう構成
すれば、機械的に強固で取扱いの利便性を有する磁性体
検出装置を得ることができる。
In the above-mentioned embodiments, the case where a permanent magnet is used as the magnet has been explained as an example, but the same function as the above-mentioned embodiment can be obtained even if a DC-excited electromagnet is used. Furthermore, by using a cured synthetic resin for the base 6 and embedding a large Barkhausen effect element and a hemorrhage in the base, a magnetic substance detection device that is mechanically strong and convenient to handle can be obtained. be able to.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように構成した結果、大バルクハウゼン
効果による瞬間的な砒壁移動および磁化反転、ならびに
検出コイルに誘起するパルス電圧の波高値を、磁石の発
する直流磁界により制御することが可能になり、かつ被
検出磁性体の近接により非晶質合金線に加わる直流磁界
および検出コイルに誘起するパルス電圧の波高値を制御
することを可能にしたことにより、従来技術とは異なっ
た原理に基づく磁性体検出装置を提供することができる
。また、非晶質合金線の磁化特性には経年変化がなく周
囲温度150 ’CC変度では温度依存性が無く、かつ
大バルクハウゼン効果により検出コイルに大きなパルス
電圧を誘起できるので、温度補償回路などを必要とせず
構成が簡素かつ安価で取扱いの利便性に優れ、長期間安
定した検出精度を有する磁性体検出装置を提供すること
ができる。さらに、検出回路におけるパルス電圧信号お
よび出力信号の処理方法を工夫することにより、計数装
置、近接スイッチ、非接触位置センサーなど広い分野に
適用できる利点が得られる。
As a result of the above-described configuration of the present invention, it is possible to control instantaneous shear wall movement and magnetization reversal due to the large Barkhausen effect, as well as the peak value of the pulse voltage induced in the detection coil, using the DC magnetic field generated by the magnet. By making it possible to control the direct current magnetic field applied to the amorphous alloy wire and the peak value of the pulse voltage induced in the detection coil due to the proximity of the magnetic substance to be detected, the principle differs from that of conventional technology. A magnetic substance detection device based on the present invention can be provided. In addition, the magnetization characteristics of the amorphous alloy wire do not change over time and have no temperature dependence at an ambient temperature of 150' CC variation, and a large pulse voltage can be induced in the detection coil due to the large Barkhausen effect, so the temperature compensation circuit It is possible to provide a magnetic body detection device that does not require any of the above, has a simple configuration, is inexpensive, has excellent handling convenience, and has stable detection accuracy over a long period of time. Furthermore, by devising a method for processing pulse voltage signals and output signals in the detection circuit, an advantage can be obtained that the present invention can be applied to a wide range of fields such as counting devices, proximity switches, and non-contact position sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置の概略構成図、第2図は実
施例における大バルクハウゼン効果素子の直流磁界が加
わらない状態での磁化特性線図、第3図および第4図は
直流磁界が加わった状態における磁化特性線図、第5図
は検出コイルの各出力パルス電圧波形を大バルクハウゼ
ン効果素子の交流磁界に対比して示す波形図である。 1・・大バルクハウゼン効果素子、2・・・非晶質合金
線、3・・交流励磁コイル、4・・・検出コイル、5・
・・磁石(永久磁石)、6・・基台、7・・・検出回路
、10・・・被検出磁性体、11・・軌道。 頁[r@
Fig. 1 is a schematic configuration diagram of an embodiment of the device of the present invention, Fig. 2 is a magnetization characteristic diagram of the large Barkhausen effect element in the embodiment in a state where no direct current magnetic field is applied, and Figs. 3 and 4 are direct current FIG. 5 is a waveform diagram showing each output pulse voltage waveform of the detection coil in comparison with the alternating current magnetic field of the large Barkhausen effect element. DESCRIPTION OF SYMBOLS 1... Large Barkhausen effect element, 2... Amorphous alloy wire, 3... AC excitation coil, 4... Detection coil, 5...
...Magnet (permanent magnet), 6.. Base, 7.. Detection circuit, 10.. Magnetic body to be detected, 11.. Trajectory. Page [r@

Claims (1)

【特許請求の範囲】 1)高磁歪性を有する非晶質合金線の外周面に交流励磁
コイルならびに検出コイルを巻着してなる大バルクハウ
ゼン効果素子と、この大バルクハウゼン効果素子と被検
出磁性体の軌道とに常時直流磁界を与える磁石と、この
磁石と前記大バルクハウゼン効果素子との間隔を固定す
る非磁性の基台と、前記検出コイルに導電接続され該検
出コイルの出力パルス電圧の変化を検知して信号を発す
る検出回路とを備えたことを特徴とする磁性体検出装置
。 2)特許請求の範囲第1項記載のものにおいて、磁石が
永久磁石であることを特徴とする磁性体検出装置。 3)特許請求の範囲第1項記載のものにおいて、磁石が
直流電磁石であることを特徴とする磁性体検出装置。 4)特許請求の範囲第1項記載のものにおいて、基台が
合成樹脂硬化物からなり、大バルクハウゼン効果素子お
よび磁石が前記基台中に埋設されてなることを特徴とす
る磁性体検出装置。
[Claims] 1) A large Barkhausen effect element formed by winding an AC excitation coil and a detection coil around the outer peripheral surface of an amorphous alloy wire having high magnetostriction, and this large Barkhausen effect element and a detected object. a magnet that constantly applies a DC magnetic field to the orbit of the magnetic body; a non-magnetic base that fixes the distance between the magnet and the large Barkhausen effect element; and a non-magnetic base that is conductively connected to the detection coil and provides an output pulse voltage of the detection coil. 1. A magnetic substance detection device comprising: a detection circuit that detects a change in the temperature and generates a signal. 2) A magnetic body detection device according to claim 1, wherein the magnet is a permanent magnet. 3) A magnetic body detection device according to claim 1, wherein the magnet is a DC electromagnet. 4) A magnetic substance detection device according to claim 1, wherein the base is made of a cured synthetic resin, and a large Barkhausen effect element and a magnet are embedded in the base.
JP61047071A 1986-03-04 1986-03-04 Magnetic body detecting device Pending JPS62204180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61047071A JPS62204180A (en) 1986-03-04 1986-03-04 Magnetic body detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61047071A JPS62204180A (en) 1986-03-04 1986-03-04 Magnetic body detecting device

Publications (1)

Publication Number Publication Date
JPS62204180A true JPS62204180A (en) 1987-09-08

Family

ID=12764931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61047071A Pending JPS62204180A (en) 1986-03-04 1986-03-04 Magnetic body detecting device

Country Status (1)

Country Link
JP (1) JPS62204180A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274817A (en) * 1988-09-09 1990-03-14 Nippon Steel Corp Distance sensor
JP2011149906A (en) * 2010-01-25 2011-08-04 Fuji Xerox Co Ltd Detector and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0274817A (en) * 1988-09-09 1990-03-14 Nippon Steel Corp Distance sensor
JP2011149906A (en) * 2010-01-25 2011-08-04 Fuji Xerox Co Ltd Detector and program

Similar Documents

Publication Publication Date Title
EP0376977B1 (en) Frequency difference digital compass and magnetometer
US4414855A (en) Torque sensor
US4506214A (en) Measuring transformer
US4309655A (en) Measuring transformer
US4859944A (en) Single-winding magnetometer with oscillator duty cycle measurement
Takemura et al. Batteryless Hall sensor operated by energy harvesting from a single Wiegand pulse
US6084406A (en) Half-cycle saturable-core magnetometer circuit
JPS6364928B2 (en)
JPH08186019A (en) Magnetic marker
US4371272A (en) Thermodetector
JPS62204180A (en) Magnetic body detecting device
US3854086A (en) Non-linear flux detection device utilizing magnetic thin film
JPH0131591B2 (en)
US3735369A (en) Magnetic memory employing force detecting element
JPS62200280A (en) Magnetic body detector
JPH0315710B2 (en)
JP3618425B2 (en) Magnetic sensor
US4103340A (en) Electromagnetic sensor and memory device
Vertesy et al. Magnetoinductive position sensor
JP2001305163A (en) Current sensor
Ohbuchi et al. Measurement of flux distribution in toroidal and multiaperture cores
JPH0572304A (en) Magnetic sensor
RU2059259C1 (en) Magnetic-sensitive unit
SU1583889A1 (en) Pickup of saturation degree of magnetic circuit of electric magnetic device
JPH08122422A (en) Magnetic field sensor utilizing reversible susceptibility