JPS62200280A - Magnetic body detector - Google Patents

Magnetic body detector

Info

Publication number
JPS62200280A
JPS62200280A JP61042494A JP4249486A JPS62200280A JP S62200280 A JPS62200280 A JP S62200280A JP 61042494 A JP61042494 A JP 61042494A JP 4249486 A JP4249486 A JP 4249486A JP S62200280 A JPS62200280 A JP S62200280A
Authority
JP
Japan
Prior art keywords
magnetic
detected
alloy wire
amorphous alloy
pulse voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61042494A
Other languages
Japanese (ja)
Inventor
Mitsuo Yamashita
満男 山下
Hisaji Shinohara
篠原 久次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61042494A priority Critical patent/JPS62200280A/en
Publication of JPS62200280A publication Critical patent/JPS62200280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To obtain a simple, firm and stable detection performance for a long time, by a method wherein a DC magnetic field is always applied to a Matteuci effect element and an orbit of a magnetic body to be detected with a magnet and as the magnetic body being detected approaches the magnet, changes in the pulse voltage are detected with a detection circuit connected across an amorphous alloy wire to generate a signal. CONSTITUTION:As a magnetic body 10 to be detected approaches a permanent magnet 5 along an orbit passing through a DC magnetic field thereof 5, a magnetic field generated from the permanent magnet 5 is attracted to the magnetic body 10 with a higher relative permeability to reduce the amount of the DC magnetic flux passing through an amorphous alloy wire 2, causing a change in the hysteresis curve and based on the change, the peak value of an output pulse voltage generated by the Mathieu..s effect increase. Therefore, when the output pulse voltage exceeding the output pulse voltage as threshould is detected with a detection circuit conductively connected across the amorphous alloy wire 2, the detection signal is outputted. Thus enables the detection of an access of the magnetic body 10 being detected.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、移動する製品の計数、近接スイッチ。[Detailed description of the invention] [Technical field to which the invention pertains] The present invention is a moving product counting, proximity switch.

非接触距離制御装置等に用いられる被検出磁性体との磁
気感応性を利用した磁性体検出装置に関する。
The present invention relates to a magnetic body detection device that utilizes magnetic sensitivity with a magnetic body to be detected, which is used in a non-contact distance control device or the like.

〔縦来技術とその問題点〕[Traditional technology and its problems]

磁気感応性を利用した磁性体検出装置としては、被検出
磁性体が磁界を発生するものである場合にはホール素子
などが、被検出磁性体が磁界を発生しないものである場
合には高周波誘導式の磁性体検出装置が従来広く用いら
れている。しかしながら、ホール素子は高価であるとと
もに、周囲温度の影響を受けて特性が変化するために温
度補正回路を必要とするなど構成が複雑化するという問
題がある。ま゛た、高周波誘導式検出装置はフェライト
コアから出される磁束が被検出磁性体と鎖交することに
よって被検出磁性体にうず電流が発生し、が停市するこ
とにより被検出磁性体を検知するものであるが、回路の
構成が複雑であるとともに、フェライトコアの加工コス
トが高いなどの欠点がある。
As a magnetic substance detection device using magnetic sensitivity, a Hall element is used when the magnetic substance to be detected generates a magnetic field, and a high-frequency induction device is used when the magnetic substance to be detected does not generate a magnetic field. Magnetic substance detection devices of the following type have been widely used in the past. However, the Hall element is expensive, and its characteristics change due to the influence of ambient temperature, so there are problems in that the structure becomes complicated, such as requiring a temperature correction circuit. In addition, in the high-frequency induction type detection device, the magnetic flux emitted from the ferrite core interlinks with the magnetic material to be detected, generating eddy current in the magnetic material to be detected, and when the current stops, the magnetic material to be detected is detected. However, there are drawbacks such as a complicated circuit configuration and high processing costs for the ferrite core.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、構成が簡
単で周囲温度の影響を受けにくく、被検出磁性体の接近
を長期間安定して検知できる磁性体検出装置を提供する
ことを目的とする。
The present invention was made in view of the above-mentioned situation, and an object of the present invention is to provide a magnetic body detection device that has a simple configuration, is not easily affected by ambient temperature, and is capable of stably detecting the approach of a magnetic body to be detected over a long period of time. shall be.

〔発明の要点〕[Key points of the invention]

回転液中紡糸法などによって溶湯から超急冷することに
より製造されるFe基非晶質合金線等においては、凝固
時に表層部に発生するねじり残留応力を保持した強じん
な弾性を有する高磁歪性の軟質磁性体となり、交流磁界
中においては表1一部のねじり残留応力のために、磁化
反転が磁壁移動によって生じ、ヒステリシスループは角
形を示し、瞬時の磁化反転に同期して非晶質合金線の両
端間にパルス電圧が発生するいわゆるマチウシの効果と
呼ばれる現象が顕著に発生する。。
Fe-based amorphous alloy wire, which is manufactured by ultra-quenching molten metal using spinning in a rotating liquid, has high magnetostriction and strong elasticity that retains the torsional residual stress that occurs in the surface layer during solidification. In an alternating magnetic field, magnetization reversal occurs due to domain wall movement due to some torsional residual stress in an alternating current magnetic field, and the hysteresis loop exhibits a rectangular shape. A phenomenon known as the so-called "dead effect" in which a pulse voltage is generated between both ends of the line occurs significantly. .

本発明は、非晶質合金線の持つマチウシの効果に着目し
てなされたもので、高磁歪性を有する非晶質合金線の外
周面に交流励磁コイルを巻装してなるマチウシ効果素子
と、このマチウシ効果素子と被検出磁性体の軌道とに常
時直流磁界を与える磁石と、この磁石と前記マチウシ効
果素子との間隔を固定する非磁性の基台とを設け、被検
出磁性体が磁石に接近しない状態では非晶質合金線を通
る直流磁界によってマチウシの効果によって合金線に生
ずるパルス電圧を抑さえ、被検出磁性体が磁石に接近し
た状態では直流磁界が比透磁率の大きい被検出磁性体に
吸引されて非晶質合金線を通る直流磁束が減少し、出力
パルス電圧の波高値が増大させるようにするとともに、
非晶質合金線の両端に導電接続された検出回路により上
記パルス電圧の変化を検知して信号を発するよう構成し
たことにより、簡単な構成の検出装置によって被検出磁
性体の近接による磁界の変化を電気信号に変換し、安定
かつ確実に検知できるようにしたものである。
The present invention was made by paying attention to the magnetic effect of an amorphous alloy wire, and uses a magnetic effect element made by winding an AC excitation coil around the outer circumferential surface of an amorphous alloy wire having high magnetostriction. , a magnet that constantly applies a direct current magnetic field to the trajectory of the Machiushi effect element and the magnetic substance to be detected, and a non-magnetic base that fixes the distance between the magnet and the Machiushi effect element, and the magnetic substance to be detected is the magnet. When the magnetic object to be detected is not close to the magnet, the DC magnetic field passing through the amorphous alloy wire suppresses the pulse voltage generated in the alloy wire due to the magnetic field effect. The DC magnetic flux that is attracted by the magnetic material and passes through the amorphous alloy wire is reduced, and the peak value of the output pulse voltage is increased.
By using a detection circuit conductively connected to both ends of the amorphous alloy wire to detect changes in the pulse voltage and emit a signal, a simple detection device can detect changes in the magnetic field due to the proximity of the magnetic substance to be detected. This converts the signal into an electrical signal, making it possible to detect it stably and reliably.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図は本発明の実施例装置を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention.

図において、1はマチウシ効果素子であり、長さ数十−
程度に切断された高磁歪性を有するFe基非晶質合金線
2(直径0 、12m、 Fe775i8B15)と、
その外周面に巻装され発振器4によって励磁される交流
励磁コイル3とからなり、非磁性の基台6上に固定され
ている。5は細い棒状の永久磁石であり、マチウシ効果
素子1との間に数−程度の距離を隔てて互いに平行に基
台6上に固定されることにより、永久磁石5の発生直流
磁束のかなりの部分が透磁率の大きい非晶質合金線2を
通るよう磁気的に結合されている。7は非晶質合金線2
の両端部に導電接続された検出回路であり、マチウシの
効果により非晶質合金線2に発生した出力パルス電圧が
所定のしきい値を超えたとき、被検出磁性体の検知信号
を発するよう構成される。また、10は被検出磁性体で
あり、永久磁石5の直流磁界内を通過する軌道15に沿
って図中矢印で示す方向に移動するものであり、永久磁
′;F55と最も近ずく位置においてその距離は数簡程
度番こなっている。
In the figure, 1 is a Machiushi effect element, which has a length of several tens of meters.
Fe-based amorphous alloy wire 2 (diameter 0, 12 m, Fe775i8B15) having high magnetostriction and cut to a certain degree;
It consists of an AC excitation coil 3 wound around its outer circumferential surface and excited by an oscillator 4, and is fixed on a non-magnetic base 6. Reference numeral 5 denotes a thin bar-shaped permanent magnet, which is fixed on a base 6 in parallel with the Machiushi effect element 1 at a distance of several meters, thereby absorbing a considerable amount of the DC magnetic flux generated by the permanent magnet 5. The parts are magnetically coupled through an amorphous alloy wire 2 having high magnetic permeability. 7 is amorphous alloy wire 2
This is a detection circuit that is conductively connected to both ends of the detection circuit, and when the output pulse voltage generated in the amorphous alloy wire 2 due to the magnetic field effect exceeds a predetermined threshold, it emits a detection signal for the magnetic substance to be detected. configured. Further, 10 is a magnetic body to be detected, which moves in the direction shown by the arrow in the figure along a trajectory 15 passing within the DC magnetic field of the permanent magnet 5, and at a position closest to the permanent magnet '; F55. The distance is about several kilometers.

第2図は実施例におけるマチウシ効果素子単独の磁化特
性線図であり、交流励磁される非晶質合金線2の磁化反
転が磁壁移動によって急速に生ずるためにシステリシス
ループは角形となり、瞬時の磁化反転にともなってマチ
ウシの効果に基づくパルス電圧が発生する。
FIG. 2 is a magnetization characteristic diagram of the Machiushi effect element alone in the example. Since magnetization reversal of the amorphous alloy wire 2 excited by AC occurs rapidly due to domain wall movement, the systeresis loop becomes rectangular, and instantaneous Along with the magnetization reversal, a pulse voltage based on the Machinshi effect is generated.

第3図および84図はマチウシ効果素子に互いに逆方向
の直流磁界が加わった状態における磁化特性ヒステリシ
ス線図であり、直流磁界が加わることによってシステリ
シスループは図の右側または右側の磁化力Hの高い領域
に移動した状態となり、非晶質合金線2の内部において
直流磁界による軸方向磁化が支配的となって非晶質合金
線2の表層部におけるねじり残留応力によるマチウシの
効果は低下する。
Figures 3 and 84 are magnetization characteristic hysteresis diagrams in a state where direct current magnetic fields in opposite directions are applied to the Machiushi effect element, and when the direct current magnetic field is applied, the systeresis loop is caused by the magnetizing force H on the right or right side of the figure. The amorphous alloy wire 2 is moved to a higher region, and the axial magnetization due to the DC magnetic field becomes dominant inside the amorphous alloy wire 2, and the stiffness effect due to torsional residual stress in the surface layer portion of the amorphous alloy wire 2 is reduced.

第5図はマチウシ効果素子の交流磁界ならびに発生パル
ス電圧の波形図であり、波形11は交流磁界、波形12
は第2図と同様な条件における出力パルス電圧波形、波
形】3は第3図と同様な条件における出力パルス電圧波
形、波形14は第4図と同様な条件における出力パルス
重圧波形をそれぞれ示したものである。まず、波形11
で示される交流磁界を発生しているマチウシ効果素子1
単独の非晶質合金線2の両端に発生する出力パルス電圧
は、非晶質合金線2の磁化反転か第2図に示すように磁
化力Hの低い領域で磁壁移動により瞬時に発生するため
に、マチウシの効果により非晶質合金線の両端に現われ
るパルス電圧は波形12に示すように交流磁界の零位相
近傍に同期して発生し;零位相近傍での交流磁界11の
磁束の変化量(dφ/d t )が大きいために波萬値
V1なる大きなパルスとなる。つぎに永久磁石5.が発
生する直流磁界が非晶質合金線2に重畳し、直流バイア
ス磁界によりヒステリシスルーズが第3図、第4図に示
すように磁化力Hの高い領域に移動している状態では、
波形11で示される交流磁界の正負いずれかの半波の波
高値近傍で磁化反転が生ずるために、出力パルス電圧は
波形13においては交流磁界の正の半波で、波形14に
おいては負の半波で、それぞれ交流磁界の波高値位相を
挟んで2個のパルスが出力され、かつ交流磁界の波高値
近傍における磁束の変化量(dφ/d t )が小さく
なることによりマチウシの効果に基づく出力パルス電圧
の波高値v2はマチウシ効果素子単独の出力パルス電圧
の波高値V、に比べ低下する。本発明は出力パルス電圧
V、と■2との差を利用して被検出磁性体1oを検知す
るものなので、マチウシ効果索子1および永久磁石5の
磁化特性および相対位置の決定にあたっては電圧V、と
■、との比をなるべ(大きくするよう配慮する。
FIG. 5 is a waveform diagram of the alternating magnetic field and generated pulse voltage of the Machiushi effect element, where waveform 11 is the alternating magnetic field, waveform 12
Waveform 3 shows the output pulse voltage waveform under the same conditions as in Figure 2, and waveform 14 shows the output pulse pressure waveform under the same conditions as in Figure 4. It is something. First, waveform 11
Machiushi effect element 1 generating an alternating magnetic field shown by
The output pulse voltage generated at both ends of a single amorphous alloy wire 2 is generated instantaneously due to magnetization reversal of the amorphous alloy wire 2 or domain wall movement in a region where the magnetizing force H is low as shown in Fig. 2. The pulse voltage that appears at both ends of the amorphous alloy wire due to the Machinshi effect is generated in synchronization with the vicinity of the zero phase of the alternating current magnetic field as shown in waveform 12; the amount of change in the magnetic flux of the alternating current magnetic field 11 near the zero phase is Since (dφ/d t ) is large, it becomes a large pulse with a waveform value of V1. Next, permanent magnet 5. When the DC magnetic field generated by is superimposed on the amorphous alloy wire 2, and the hysteresis loose is moved to the region where the magnetizing force H is high as shown in Figs. 3 and 4, due to the DC bias magnetic field,
Since magnetization reversal occurs near the peak value of either the positive or negative half wave of the AC magnetic field shown in waveform 11, the output pulse voltage is the positive half wave of the AC magnetic field in waveform 13, and the negative half wave in waveform 14. Two pulses are output with the wave peak value phase of the AC magnetic field in between, and the amount of change in magnetic flux (dφ/d t ) near the peak value of the AC magnetic field becomes small, resulting in an output based on the Machining effect. The peak value v2 of the pulse voltage is lower than the peak value V of the output pulse voltage of the Machiushi effect element alone. Since the present invention detects the magnetic body 1o to be detected using the difference between the output pulse voltages V and 2, the voltage V Consider making the ratio between , and ■ as large as possible.

前述のようlこ構成された検出装置の永久磁石に被検出
磁性体1−0が、永久磁石5の直流磁界内を通過する軌
道15に沿って接近したと仮定すると。
Assume that the magnetic body 1-0 to be detected approaches the permanent magnet of the detection device configured as described above along the trajectory 15 passing within the DC magnetic field of the permanent magnet 5.

永久磁石5が発生する磁界は比透磁率の大きい被検出磁
性体10に吸い寄せられ、非晶質合金線2を通る直流磁
束の量が減少するので、ヒステリシスカーブは第2図に
示す状態に戻る方向に変化し、これζこ基づいて出力パ
ルス電圧の波高値v2は■1に向けて増大する。したが
って、非晶質合金線2の両端に導電接続された検出回路
により、出力パルス電圧V、をしきい値としてV、を超
える出力パルス電圧が検出されたとき検知信号を出力す
るよう構成することにより、被検出磁性体10の近接を
検出することができる。なお、被検出磁性体10として
は、永久磁石5の発生磁界を吸引できない程に磁化され
ていないことが必要である。また、Fe基非晶質合金線
は周囲温度150℃程度まではマチウシの効果に影響を
受けないので、周囲温度の変化に対する補償回路を必要
とせず、装置の構成を簡素化できるとともに、経年劣化
を生じ難いので、長期間安定した磁性体検知性能を維持
することができる。したがって、検出回路7の出力検知
信号を計数することにより生産ラインにおける製品の計
数装置を構成することができ、出力検知信号により電気
接点を開閉することにより近接スイッチを構成でき、被
検出磁性体と検出装置との間の距離とパルス電圧波高値
との関係をあらかじめ校正しておくことにより非接触距
離センサーを構成することができる。
The magnetic field generated by the permanent magnet 5 is attracted to the detected magnetic body 10 having a high relative magnetic permeability, and the amount of DC magnetic flux passing through the amorphous alloy wire 2 decreases, so the hysteresis curve returns to the state shown in FIG. 2. Based on this, the peak value v2 of the output pulse voltage increases toward {circle over (1)}1. Therefore, the detection circuit conductively connected to both ends of the amorphous alloy wire 2 is configured to output a detection signal when an output pulse voltage exceeding V is detected with the output pulse voltage V being a threshold value. Accordingly, the proximity of the magnetic body 10 to be detected can be detected. Note that the magnetic body 10 to be detected must not be magnetized to the extent that it cannot attract the magnetic field generated by the permanent magnet 5. In addition, Fe-based amorphous alloy wire is not affected by the static effect up to an ambient temperature of about 150°C, so there is no need for a compensation circuit for changes in ambient temperature, which simplifies the configuration of the device and reduces the risk of deterioration over time. Since it is difficult to cause this, stable magnetic substance detection performance can be maintained for a long period of time. Therefore, by counting the output detection signal of the detection circuit 7, a product counting device in a production line can be configured, and by opening and closing the electrical contacts based on the output detection signal, a proximity switch can be configured, and the magnetic material to be detected can be A non-contact distance sensor can be configured by calibrating the relationship between the distance to the detection device and the peak value of the pulse voltage in advance.

なお、前述の実施例においては、磁石5に永久磁石を用
いた例を示したが、例えば棒状の直流電磁石を用いても
実施例と同様な機能を得ることができる。また、基台6
を合成樹脂硬化物とするとともに、マチウシ効果索子1
.磁石5等の主構成要素を基台6中に埋設するよう構成
すれば、検出装置の機械的安定性ならびに取扱いの利便
性を有する検出装置とすることができる。
In addition, in the above-mentioned embodiment, an example was shown in which a permanent magnet was used as the magnet 5, but the same function as in the embodiment can be obtained by using, for example, a rod-shaped DC electromagnet. Also, the base 6
is made into a synthetic resin cured product, and Machiushi effect cord 1
.. By embedding the main components such as the magnet 5 in the base 6, the detection device can have mechanical stability and ease of handling.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように構成した結果、非晶質合金線が高
磁歪性かつ強じん弾性体であることにより大きな出力パ
ルス電圧が得られ、かつ非晶質合金線および被検出磁性
体に磁気的に結合した磁石の発する直流磁界により出力
パルス電圧を被検出磁性体の接近状況に対応して変化さ
せることが可能となり、検出回路によって出力パルス電
圧の変化を検知することにより被検出磁性体の接近を従
末技術とは変わった原理によって容易に検知できるとと
もに、非晶質合金線の出力パルス電圧が周囲温度150
℃程度まで影響を受けずしたがって温度補償回路を必要
とせず装置の構成を簡単かつ強固にできることにより、
簡単かつ強固で長期間安定した検出性能が得られる磁性
体検出装置を経済的に有利に提供することができる。ま
た、検出回路の出力信号の処理の仕方により、被検出磁
性体の計数、近接スイッチ、非接触距離センサーなど種
々の分野に適用できる利点を有する。
As a result of the above-described configuration of the present invention, a large output pulse voltage can be obtained because the amorphous alloy wire has high magnetostriction and strong elasticity, and the amorphous alloy wire and the magnetic body to be detected are magnetized. It is possible to change the output pulse voltage according to the proximity of the magnetic object to be detected by the direct current magnetic field generated by the magnets coupled to the Approach can be easily detected using a principle different from conventional technology, and the output pulse voltage of the amorphous alloy wire is
It is not affected by temperatures up to around 30 degrees Fahrenheit and therefore does not require a temperature compensation circuit, making the device structure simple and robust.
It is possible to economically advantageously provide a magnetic substance detection device that is simple, strong, and provides long-term stable detection performance. Furthermore, depending on how the output signal of the detection circuit is processed, it has the advantage that it can be applied to various fields such as counting of magnetic substances to be detected, proximity switches, and non-contact distance sensors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例装置の概略構成図、第2図は実
施例におけるマチウシ効果素子単独の磁化特性線図、第
3図および第4図は直流磁界が加わった状態におけるマ
チウシ効果素子の磁化特性線図、第5図はマチウシ効果
素子の交流磁界および出力パルス電圧の波形図である。 1・・・マチウシ効果素子、2・・・非晶質合金線、3
・・・交流励磁コイル、5・・・磁石(永久磁石)、6
・・・石1にヤ生イ2ト、 第 1 区
Fig. 1 is a schematic configuration diagram of an apparatus according to an embodiment of the present invention, Fig. 2 is a magnetization characteristic diagram of the Machiushi effect element alone in the embodiment, and Figs. 3 and 4 are the Machiushi effect element in a state where a DC magnetic field is applied. FIG. 5 is a waveform diagram of the alternating current magnetic field and output pulse voltage of the Machiushi effect element. 1...Machiushi effect element, 2...Amorphous alloy wire, 3
...AC excitation coil, 5...Magnet (permanent magnet), 6
...1 stone and 2 stones, 1st ward

Claims (1)

【特許請求の範囲】 1)高磁歪性を有する非晶質合金線に交流励磁コイルを
巻装してなるマチウシ効果素子と、このマチウシ効果素
子と被検出磁性体の軌道とに常時直流磁界を与える磁石
と、この磁石と前記マチウシ効果素子との間隔を固定す
る非磁性の基台と、前記非晶質合金線の両端部に導電接
続されマチウシ効果素子の出力パルス電圧を検知して信
号を発する検出回路とを備えたことを特徴とする磁性体
検出装置。 2)特許請求の範囲第1項または第2項記載のものにお
いて、磁石が永久磁石であることを特徴とする磁性体検
出装置。 3)特許請求の範囲第1項記載のものにおいて、磁石が
鉄心に直流励磁コイルを巻装した電磁石であることを特
徴とする磁性体検出装置。 4)特許請求の範囲第1項記載のものにおいて、基台が
合成樹脂硬化物からなり、マチウシ効果素子および磁石
が前記基台中に埋設されてなることを特徴とする磁性体
検出装置。
[Claims] 1) A Machiushi effect element formed by winding an AC excitation coil around an amorphous alloy wire having high magnetostriction, and a DC magnetic field constantly applied to the orbit of the Machiushi effect element and the magnetic substance to be detected. a non-magnetic base that fixes the distance between the magnet and the Machiushi effect element; and a non-magnetic base that is conductively connected to both ends of the amorphous alloy wire to detect the output pulse voltage of the Machiushi effect element and generate a signal. A magnetic substance detection device characterized by comprising a detection circuit that emits light. 2) A magnetic body detection device according to claim 1 or 2, characterized in that the magnet is a permanent magnet. 3) A magnetic substance detection device according to claim 1, wherein the magnet is an electromagnet having a DC excitation coil wound around an iron core. 4) A magnetic substance detection device according to claim 1, wherein the base is made of a cured synthetic resin, and the Machiushi effect element and the magnet are embedded in the base.
JP61042494A 1986-02-27 1986-02-27 Magnetic body detector Pending JPS62200280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61042494A JPS62200280A (en) 1986-02-27 1986-02-27 Magnetic body detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61042494A JPS62200280A (en) 1986-02-27 1986-02-27 Magnetic body detector

Publications (1)

Publication Number Publication Date
JPS62200280A true JPS62200280A (en) 1987-09-03

Family

ID=12637608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61042494A Pending JPS62200280A (en) 1986-02-27 1986-02-27 Magnetic body detector

Country Status (1)

Country Link
JP (1) JPS62200280A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572305A (en) * 1991-09-12 1993-03-26 Nissan Motor Co Ltd Magnetic sensor
ES2109879A1 (en) * 1995-06-20 1998-01-16 Univ Madrid Complutense Magnetic device for detecting and monitoring moving elements.
JP2011033469A (en) * 2009-07-31 2011-02-17 Hioki Ee Corp Magnetic detection sensor
JP2011064607A (en) * 2009-09-18 2011-03-31 Hioki Ee Corp Magnetic detection sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0572305A (en) * 1991-09-12 1993-03-26 Nissan Motor Co Ltd Magnetic sensor
ES2109879A1 (en) * 1995-06-20 1998-01-16 Univ Madrid Complutense Magnetic device for detecting and monitoring moving elements.
JP2011033469A (en) * 2009-07-31 2011-02-17 Hioki Ee Corp Magnetic detection sensor
JP2011064607A (en) * 2009-09-18 2011-03-31 Hioki Ee Corp Magnetic detection sensor

Similar Documents

Publication Publication Date Title
US3777255A (en) Position sensor utilizing a primary and secondary shielded from one another by a ferromagnetic shield and a magnet whose position relative to the shield changes the shielding
US4045738A (en) Variable reluctance speed sensor of integral construction utilizing a shielded high coercive force rare earth magnet positioned directly adjacent the sensing rotating element
JP3197414B2 (en) Magnetic impedance effect element
EP0376977B1 (en) Frequency difference digital compass and magnetometer
JPH01187424A (en) Torque sensor
SE9202401D0 (en) MOVEMENT SENSOR OF INDUCTIVE TYPE
KR950014895A (en) DC current sensor
DE59001330D1 (en) ELECTROMAGNET WITH A SUBMERSIBLE.
JP3645116B2 (en) Magneto-impedance effect micro magnetic sensor
ES2107948A1 (en) Sensorless measurement of electromagnetic actuator displacement device
JP3431471B2 (en) Pulse signal generator
JPH1194588A (en) Method and device for generating pulse signal
SE8904307L (en) PROCEDURAL APPLICABLE DEVICE FOR THE DETECTION OF AND PROTECTION AGAINST THE EFFECT OF ANNOUNCING STATIC AND QUASISTIC MAGNETIC FIELD ON SEATING WITH POWER AND TORQUE SENSORS
JP3679907B2 (en) Pulse signal generator
JPS62200280A (en) Magnetic body detector
JPS5743483A (en) Magnetoelectric transducer
JP3673412B2 (en) Pulse signal generator
JPS62204180A (en) Magnetic body detecting device
JP3618425B2 (en) Magnetic sensor
JP3617604B2 (en) Pulse signal generator
Vertesy et al. Magnetoinductive position sensor
SU1580452A1 (en) Device for controlling speed of displacement of electroconductive objects
JPH03131717A (en) Linear position detector
JPS6133471B2 (en)
JPH0572304A (en) Magnetic sensor