JPH0572304A - Magnetic sensor - Google Patents

Magnetic sensor

Info

Publication number
JPH0572304A
JPH0572304A JP23187391A JP23187391A JPH0572304A JP H0572304 A JPH0572304 A JP H0572304A JP 23187391 A JP23187391 A JP 23187391A JP 23187391 A JP23187391 A JP 23187391A JP H0572304 A JPH0572304 A JP H0572304A
Authority
JP
Japan
Prior art keywords
magnetic
coil
core
sensor
magnetic sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23187391A
Other languages
Japanese (ja)
Inventor
Hiroyuki Aoki
博幸 青木
Munekatsu Shimada
宗勝 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP23187391A priority Critical patent/JPH0572304A/en
Publication of JPH0572304A publication Critical patent/JPH0572304A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To obtain a displacement from an extremely low speed to a high speed by extracting magnetization characteristics of a magnetic fiber positively or a magnetic sensor which is extremely effective for a rotary measurement by using first and second coils where a magnetic material and a material with a high permeability which cause a rapid inversion of magnetization at a position of coercive force for a core. CONSTITUTION:A first coil 13a is wound around a core 12a of an amorphous magnetic fiber where a rapid inversion of magnetization occurs at a position of a coercive force and a second coil 13b is wound around a core 12b of the highpermeability type amorphous fiber and these two elements are held by a member 16 which is made of a high-permeability material and is sealed, thus enabling a magnetic sensor 11 to be produced. The coils 13a and 13b are connected in series and a magnetic rotor 14 is placed opposite to the sensor 11 and then an output of the sensor 11 when the rotar 14 is rotated is measured, thus enabling a pulse 15a to be generated at a low-speed region and a sinusoidal wave 15b to be generated at a high-speed region so that a displacement or a rotation fully covering low to high speed where an output can be obtained can be measured in both cases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は外部磁界により磁化され
た磁心の磁化変化を前記磁心に巻回したコイルの端子電
圧としてとり出すことにより、前記磁心の磁化変化をも
たらす磁界発生体の変位や回転数の検出を行う磁気セン
サに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention takes out the magnetization change of a magnetic core magnetized by an external magnetic field as a terminal voltage of a coil wound around the magnetic core, thereby displacing a magnetic field generator that causes the magnetic change of the magnetic core. The present invention relates to a magnetic sensor that detects the number of rotations.

【0002】[0002]

【従来の技術】磁気センサは、位置または回転数の検出
用として重要な位置を占めるセンサの一つであるが、図
7(a)に示すように、磁心2に巻回したコイル3を外
部磁界4に近接状態で例えば矢印A方向に移動させ、コ
イル3に同図(b)に示すようなパルス5を発生させる
ものであって、図8に示すように、保磁力Hcの位置で
急激な磁化反転を起こす非晶質の金属磁性繊維を磁心2
に使用したものでは、コイル3に発生する電圧パルス数
をカウントすることにより回転数などを検出するもので
ある。一般的には、図9に示すような高透磁率性材料を
磁心に用い図10(a)に示すように磁心2′にコイル
3を巻回した磁気センサ1′もある。
2. Description of the Related Art A magnetic sensor is one of the sensors that occupies an important position for detecting a position or the number of revolutions. As shown in FIG. 7A, a coil 3 wound around a magnetic core 2 is externally connected. The magnetic field 4 is moved in the direction of, for example, an arrow A in a state of being close to the magnetic field 4 to generate a pulse 5 as shown in FIG. 8 (b) in the coil 3, and as shown in FIG. Amorphous metal magnetic fiber that causes a large magnetization reversal
In the one used in, the number of rotations and the like is detected by counting the number of voltage pulses generated in the coil 3. Generally, there is also a magnetic sensor 1'where a coil 3 is wound around a magnetic core 2'as shown in FIG. 10 (a) by using a high magnetic permeability material as shown in FIG.

【0003】微弱で不均一な磁界に感応して大きなパル
ス電圧を発生させるために、高保磁力特性を有する外皮
部と高透磁率特性を有する芯部を一体材料で形成したウ
ィーガンドワイヤを利用した磁気センサが創案されてお
り、特開昭56−72368号公報にはウィーガンドワ
イヤに磁化方向リセット用コイルを設け、局部的な反転
を起こして弱磁界においても反転が可能のように構成し
たものが示されている。また、特開昭64−35283
号公報にはウィーガンドワイヤを複数本束ね、コイルに
発生する複数のパルスを重ねてフィルタ処理することに
よりノイズに対抗するように構成したものが開示されて
いる。
In order to generate a large pulse voltage in response to a weak and inhomogeneous magnetic field, a Wiegand wire in which an outer skin portion having a high coercive force characteristic and a core portion having a high magnetic permeability characteristic are formed of an integral material is used. A magnetic sensor has been invented, and in JP-A-56-72368, a Wiegand wire is provided with a coil for resetting the magnetization direction, and local reversal is caused to enable reversal even in a weak magnetic field. It is shown. Also, JP-A-64-35283
Japanese Patent Laid-Open Publication No. 2003-242242 discloses a structure in which a plurality of Wiegand wires are bundled and a plurality of pulses generated in a coil are superposed and filtered to counter noise.

【0004】[0004]

【発明が解決しようとする課題】図7(a)に示す磁気
センサ1は、低速の磁界変化に対しては追従するが、高
速で変化する変位や高速回転数を計測しようとすると、
磁心2の磁化反転速度の対応に限界があり、100Hz
を超えると電圧パルス数を正確にカウントすることがで
きず、例えば、図7(a)に示すような、外部磁界を構
成する磁石ロータ4と間隙5mmを隔ててFe−Si−B
系の、直径100μm、長さ10mmの非晶質繊維を磁
心2とし、その周囲に線径50μmの導線コイルを10
00回巻回した磁気センサ1では、概ね5mV以下の微
弱な出力しか得られず、これでは回転数の検出は不可能
であるという問題点があった。
The magnetic sensor 1 shown in FIG. 7 (a) follows a low-speed magnetic field change, but attempts to measure a high-speed changing displacement or a high-speed rotation speed.
There is a limit to the magnetization reversal speed of the magnetic core 2, 100 Hz
If the value exceeds the value, the number of voltage pulses cannot be accurately counted. For example, as shown in FIG. 7A, the Fe-Si-B is separated from the magnet rotor 4 forming the external magnetic field with a gap of 5 mm.
An amorphous fiber having a diameter of 100 μm and a length of 10 mm is used as the magnetic core 2, and a conductive wire coil having a diameter of 50 μm is provided around the magnetic core 2.
The magnetic sensor 1 wound 00 times has a problem in that only a weak output of approximately 5 mV or less can be obtained, which makes it impossible to detect the rotation speed.

【0005】一方、図9に示すような磁束の通過しやす
いCo−Fe−Si−B系の非晶質高透磁率性材料を用い
て磁心とし、コイルを巻いて外部磁界Hを変化させる
と、変化に追従して材料内の磁束密度Bも変化するが、
保磁力Hcの位置で磁化反転が急激に起こる材料と異な
り急峻な変化特性を示さず、従って外部磁界Hを変化さ
せてもパルス状の出力は発生しない。すなわち、図10
(a)に示す磁気センサ1′は、同図(b)に示すよう
に単に振幅の小さいサイン波5′の出力が得られるのみ
であり、しかも電磁誘導の法則により鎖交磁束による起
電力は、e=−n(dφ/dt)(nはコイルの巻数、
dφ/dtは磁束変化速度)となるから、外部磁界Hの
変化が緩やかな低速域では、出力は殆ど現われないとい
う問題点があった。
On the other hand, as shown in FIG. 9, when a magnetic core is formed by using a Co--Fe--Si--B type amorphous high-permeability material through which a magnetic flux easily passes, and a coil is wound to change the external magnetic field H. , The magnetic flux density B in the material changes according to the change,
Unlike the material in which the magnetization reversal abruptly occurs at the position of the coercive force Hc, it does not show a steep change characteristic, and therefore, even if the external magnetic field H is changed, a pulsed output is not generated. That is, FIG.
The magnetic sensor 1'shown in (a) merely obtains an output of a sine wave 5'having a small amplitude as shown in FIG. 9 (b), and the electromotive force due to the interlinkage magnetic flux is generated by the law of electromagnetic induction. , E = −n (dφ / dt) (n is the number of turns of the coil,
Since dφ / dt is the magnetic flux change speed), there is a problem that the output hardly appears in the low speed region where the change of the external magnetic field H is gentle.

【0006】本発明は上記の問題点に鑑み、ウィーガン
ドワイヤのような二重構造の材料を利用することなく、
磁性繊維の磁化反転特性を確実に引き出し極低速から高
速までの外部磁界変化に対して安定した出力を得ること
により、変位または回転計測を可能とする磁気センサを
提供することを目的とするものである。
In view of the above problems, the present invention eliminates the use of a double-structured material such as Wiegand wire,
An object of the present invention is to provide a magnetic sensor capable of measuring displacement or rotation by reliably extracting the magnetization reversal characteristic of magnetic fiber and obtaining a stable output against changes in the external magnetic field from extremely low speed to high speed. is there.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決する手
段は特許請求の範囲に記載されている。すなわち、本発
明の目的は、磁心とコイルとからなり外部磁界の変化を
前記コイルの端子電圧として検出する磁気センサにおい
て、保磁力の位置で急激な磁化反転を起こす磁性材から
なる磁心に巻回した第1のコイルと、高透磁率材料から
なる磁心に巻回した第2のコイルとを有し、前記第1の
コイルと第2のコイルを直列に接続した磁気回路を具有
する磁気センサか、若しくは、保磁力の位置で急激な磁
化反転を起こす磁性材からなる磁心に巻回した第1のコ
イルと、磁心を有しない第2のコイルとを備え、前記第
1のコイルと第2のコイルを差動接続した磁気回路を具
有する磁気センサによって達成される。
Means for solving the above problems are set forth in the appended claims. That is, an object of the present invention is to provide a magnetic sensor, which is composed of a magnetic core and a coil, for detecting a change in an external magnetic field as a terminal voltage of the coil. A magnetic sensor having a first coil and a second coil wound around a magnetic core made of a high-permeability material, and having a magnetic circuit in which the first coil and the second coil are connected in series. Or a first coil wound around a magnetic core made of a magnetic material that causes a rapid magnetization reversal at the position of the coercive force, and a second coil having no magnetic core, and the first coil and the second coil are provided. This is achieved by a magnetic sensor having a magnetic circuit in which coils are differentially connected.

【0008】[0008]

【作用】上記の構成により、低速域においては、第1の
コイルによるパルス状の出力が得られ、一方、高速領域
では、第2のコイルによるサイン波状の出力が得られる
から、低速から高速までの外部磁界変化に対して安定し
た出力を示す磁気センサが実現される。すなわち、発明
者らは外部磁界の変化速度が高速になると電圧レベルが
上昇する原因は磁性繊維に巻回したコイルが磁性繊維の
磁化変化のみでなく、外部磁界の変化そのものも捉える
ため、単独コイルにおいても鎖交磁束の変化でe=−n
(dφ/dt)の起電力を生じ、従って、磁界の変化速
度が高速になればコイルの起電力が増えることに着目し
たものである。
With the above structure, in the low speed range, a pulsed output from the first coil is obtained, while in the high speed range, a sine wave output from the second coil is obtained. A magnetic sensor that exhibits stable output with respect to changes in the external magnetic field is realized. That is, the inventors have found that the reason why the voltage level rises when the rate of change of the external magnetic field becomes high is that the coil wound around the magnetic fiber catches not only the change in the magnetization of the magnetic fiber but also the change in the external magnetic field itself. Also in the case of e = -n
The focus is on the fact that an electromotive force of (dφ / dt) is generated, and therefore the electromotive force of the coil increases as the changing speed of the magnetic field increases.

【0009】[0009]

【実施例】以下本発明の実施例を図面により説明する。 〈第1実施例〉本発明の磁気センサの第1実施例を図1
に示す。Fe−Si−B系の直径100μm、長さ10m
mの、保磁力の位置で急激な磁化反転が起きる、いわゆ
るパルス発生型の非晶質磁性繊維を磁心12aとし、そ
の周囲に線径50μmの第1のコイル13aを1000
回巻回したものを用意した。次にCo−Fe−Si−B系
の直径100μm、長さ10mmの高透磁率型の非晶質
繊維を磁心12bとし、その周囲に線径50μmの第2
のコイル13bを1000回巻回したものを用意した。
Embodiments of the present invention will be described below with reference to the drawings. <First Embodiment> A first embodiment of the magnetic sensor of the present invention is shown in FIG.
Shown in. Fe-Si-B system diameter 100 μm, length 10 m
m, a so-called pulse-generating amorphous magnetic fiber in which a rapid magnetization reversal occurs at the position of the coercive force, is used as the magnetic core 12a, and the first coil 13a having a wire diameter of 50 μm is formed around the magnetic core 12a.
I prepared the wound one. Next, a high permeability magnetic fiber of Co-Fe-Si-B system having a diameter of 100 μm and a length of 10 mm was used as a magnetic core 12b, and a second core having a wire diameter of 50 μm was formed around the magnetic core 12b.
The coil 13b was prepared by winding 1000 times.

【0010】次に、これら2本の素子を図1に示すよう
にFe−Ni系の高透磁率材の部材16で挾み込んで固着
し磁気センサ11とした。このとき、巻回した第1、第
2のコイル13a、13bにより発生する磁界方向が同
一となるようにコイル13a、13bを直列に接続し
た。この磁気センサ11に対向して厚さ5mm、直径4
8mmの円板の外周に60極着磁した磁石ロータ14を
5mmの間隙を隔てて配置し、磁石ロータ14を回転さ
せたときの磁気センサ11の出力を測定した。
Next, as shown in FIG. 1, these two elements were sandwiched and fixed by a member 16 of Fe--Ni type high magnetic permeability material to form a magnetic sensor 11. At this time, the coils 13a and 13b were connected in series so that the directions of the magnetic fields generated by the wound first and second coils 13a and 13b were the same. 5 mm in thickness and 4 in diameter facing the magnetic sensor 11.
The magnet rotor 14 magnetized with 60 poles was arranged on the outer periphery of an 8 mm disk with a gap of 5 mm, and the output of the magnetic sensor 11 when the magnet rotor 14 was rotated was measured.

【0011】この結果、100Hz以下の低速域におい
ては図2に示すようなパルス15aが発生し、また10
00Hzを超えた高速域では図3に示すようなサイン波
15bが発生した。いずれも磁石ロータ4の1回転につ
き60パルス、300mVを超える出力が得られ、低速
から高速までを十分にカバーする変位または回転計測が
可能であることが確認された。なお、本実施例の磁気セ
ンサ11の場合、一方の磁心12aは保磁力の位置での
磁化反転が急激に起きる材料ならば非晶質に限定されず
結晶質、金属、合金も適用することができ、他方の磁心
12bは非晶質に限定されず高透磁率材料ならば適用が
可能である。
As a result, the pulse 15a as shown in FIG.
In the high speed range over 00 Hz, a sine wave 15b as shown in FIG. 3 was generated. In each case, 60 pulses per one rotation of the magnet rotor 4 and an output exceeding 300 mV were obtained, and it was confirmed that displacement or rotation measurement capable of sufficiently covering from low speed to high speed was possible. In the case of the magnetic sensor 11 of the present embodiment, the one magnetic core 12a is not limited to amorphous as long as it is a material in which magnetization reversal rapidly occurs at the coercive force position, and crystalline, metal, or alloy may be applied. However, the other magnetic core 12b is not limited to an amorphous material, and any material having a high magnetic permeability can be applied.

【0012】〈第2実施例〉図4に示すように、Fe−
Si−B系の長さ30mm、φ70μmの非晶質磁性繊
維の磁心22aに、φ50μmの第1のコイル23aを
1000回巻回した素子と、同じく長さ30mm、φ7
0μmのナイロン繊維22bにφ50μmの第2のコイ
ル23bを1000回巻回した素子を束ねて、シリコン
ゴム26で固定し一体化する。そして、磁界により第1
のコイル23a、第2のコイル23bにより発生する磁
界の方向が互いに打ち消されるように、コイル23a、
23bを接続して磁気センサ21とした。請求項2記載
の「第1のコイルと第2のコイルを差動接続した磁気回
路」とは、例えば本実施例に示す第1のコイル23a、
第2のコイル23bにより発生する磁界の方向が互いに
打ち消されるように接続した回路構成を指すものであ
る。第2のコイル23bを巻回する芯材は、実施例のよ
うにナイロン繊維22bに限定せず非導電性非磁性材で
あればよく、また、巻回後に前記芯材を抜いて空芯とし
ても差し支えない。
<Second Embodiment> As shown in FIG.
An element in which a first coil 23a having a diameter of 50 μm is wound 1000 times around a magnetic core 22a of an amorphous magnetic fiber having a length of 30 mm and a diameter of 70 μm of Si-B system, and the element having a length of 30 mm and a diameter of 7 mm
Elements in which a second coil 23b having a diameter of 50 μm is wound 1000 times around a nylon fiber 22b having a diameter of 0 μm are bundled and fixed with silicon rubber 26 to be integrated. Then, by the magnetic field, the first
So that the directions of the magnetic fields generated by the second coil 23a and the second coil 23a cancel each other.
23b was connected to form the magnetic sensor 21. The "magnetic circuit in which the first coil and the second coil are differentially connected" described in claim 2 means, for example, the first coil 23a shown in this embodiment,
This indicates a circuit configuration connected so that the directions of the magnetic fields generated by the second coil 23b cancel each other out. The core material around which the second coil 23b is wound is not limited to the nylon fiber 22b as in the embodiment, and may be any non-conductive non-magnetic material. Further, after winding, the core material may be removed and used as an air core. It doesn't matter.

【0013】この構成により、図5に示すようにコイル
自体が拾う外部磁界の変化による電圧成分は消去され、
磁性繊維の磁化反転によるパルス電圧成分のみを抽出す
ることができる。図4は、φ90mm、幅10mmで3
0極を着磁した磁石ロータ24と前記磁気センサ21を
5mmの間隙を隔てて対向し配置した図であり、図6
は、磁石ロータ24を回転させて得られた磁気センサ2
1の出力電圧を示す図であって、磁界変化速度10Hz
から1000Hzまでの各速度域において安定して高い
出力を得ることができることを示している。
With this configuration, the voltage component due to the change in the external magnetic field picked up by the coil itself is eliminated as shown in FIG.
Only the pulse voltage component due to the magnetization reversal of the magnetic fiber can be extracted. Fig. 4 shows 3 with φ90mm and width 10mm.
FIG. 7 is a view in which a magnet rotor 24 magnetized with 0 poles and the magnetic sensor 21 are arranged to face each other with a gap of 5 mm therebetween.
Is a magnetic sensor 2 obtained by rotating the magnet rotor 24.
It is a figure showing the output voltage of No. 1 and the magnetic field change speed 10Hz.
It is shown that a high output can be stably obtained in each speed range from 1 to 1000 Hz.

【0014】また、第1のコイル、第2のコイル間の距
離を適切に選ぶことにより、磁極着磁間隔の狭い磁界発
生手段と対向させても安定的に高出力の信号のとり出し
が可能である。
Further, by appropriately selecting the distance between the first coil and the second coil, it is possible to stably take out a high-output signal even when facing the magnetic field generating means having a narrow magnetic pole magnetizing interval. Is.

【0015】[0015]

【発明の効果】上記実施例に示すように、本発明は磁心
とコイルとからなり、外部磁界の変化をコイル端子電圧
として検出する磁気センサであって、ウィーガンドワイ
ヤのような二重構造の材料を利用せずに微弱な磁界変化
を正確に捉え、磁性繊維の磁化反転特性を確実に引き出
し極低速から高速までの変位ないし回転計測に極めて効
果的な磁気センサを提供することができる。
As shown in the above embodiments, the present invention is a magnetic sensor comprising a magnetic core and a coil for detecting a change in an external magnetic field as a coil terminal voltage, which has a double structure such as a Wiegand wire. It is possible to accurately detect a weak magnetic field change without using a material, reliably draw out the magnetization reversal characteristic of the magnetic fiber, and provide a magnetic sensor extremely effective for displacement or rotation measurement from extremely low speed to high speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る磁気センサの第1実施例の配置模
式図である。
FIG. 1 is a schematic layout diagram of a first embodiment of a magnetic sensor according to the present invention.

【図2】第1実施例の出力特性図である。FIG. 2 is an output characteristic diagram of the first embodiment.

【図3】第1実施例の出力特性図である。FIG. 3 is an output characteristic diagram of the first embodiment.

【図4】本発明に係る磁気センサの第2実施例の配置模
式図である。
FIG. 4 is an arrangement schematic diagram of a second embodiment of the magnetic sensor according to the present invention.

【図5】第2実施例の出力特性図である。FIG. 5 is an output characteristic diagram of the second embodiment.

【図6】第2実施例の磁気センサの磁界変化検出特性図
である。
FIG. 6 is a magnetic field change detection characteristic diagram of the magnetic sensor of the second embodiment.

【図7】従来の磁気センサの配置模式図と出力特性図で
ある。
FIG. 7 is a schematic layout diagram and an output characteristic diagram of a conventional magnetic sensor.

【図8】保磁力の位置での磁化反転型磁性材料の磁化特
性図である。
FIG. 8 is a magnetization characteristic diagram of a magnetization reversal type magnetic material at the position of coercive force.

【図9】高透磁率材料の磁化特性図である。FIG. 9 is a magnetization characteristic diagram of a high magnetic permeability material.

【図10】従来の磁気センサの配置模式図と出力特性図
である。
FIG. 10 is a schematic layout diagram and output characteristic diagram of a conventional magnetic sensor.

【符号の説明】 1、11、21 磁気センサ 12a、22a 急激な磁気反転が起こる材料の磁心 12b 高透磁率材料の磁心 22b ナイロン繊維 13a、23a 第1のコイル 13b、23b 第2のコイル 4、14、24 磁石ロータ 5、15、25 パルス 16 高透磁率部材 26 シリコンゴム[Explanation of reference numerals] 1, 11, 21 Magnetic sensor 12a, 22a Magnetic core 12b of material in which rapid magnetic reversal occurs 12b Magnetic core of high magnetic permeability material 22b Nylon fiber 13a, 23a First coil 13b, 23b Second coil 4, 14, 24 Magnet rotor 5, 15, 25 Pulse 16 High permeability member 26 Silicon rubber

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】磁心とコイルとからなり外部磁界の変化を
前記コイルの端子電圧の変化として検出する磁気センサ
において、 保磁力の位置で急激な磁化反転を起こす磁性材からなる
磁心に巻回した第1のコイルと、 高透磁率材料からなる磁心に巻回した第2のコイルとを
有し、 前記第1のコイルと第2のコイルを直列に接続した磁気
回路を具有することを特徴とする磁気センサ。
1. A magnetic sensor comprising a magnetic core and a coil for detecting a change in an external magnetic field as a change in a terminal voltage of the coil, the magnetic sensor being wound around a magnetic core which causes a rapid magnetization reversal at a coercive force position. It has a first coil and a second coil wound around a magnetic core made of a high magnetic permeability material, and has a magnetic circuit in which the first coil and the second coil are connected in series. Magnetic sensor to do.
【請求項2】磁心とコイルとからなり外部磁界の変化を
前記コイルの端子電圧の変化として検出する磁気センサ
において、 保磁力の位置で急激な磁化反転を起こす磁性材からなる
磁心に巻回した第1のコイルと、 磁心を有しない第2のコイルとを備え、 前記第1のコイルと第2のコイルを差動接続した磁気回
路を具有することを特徴とする磁気センサ。
2. A magnetic sensor comprising a magnetic core and a coil for detecting a change in an external magnetic field as a change in the terminal voltage of the coil, the magnetic sensor being wound around a magnetic core which causes a rapid magnetization reversal at a coercive force position. A magnetic sensor comprising: a first coil; a second coil having no magnetic core; and a magnetic circuit differentially connecting the first coil and the second coil.
JP23187391A 1991-09-11 1991-09-11 Magnetic sensor Pending JPH0572304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23187391A JPH0572304A (en) 1991-09-11 1991-09-11 Magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23187391A JPH0572304A (en) 1991-09-11 1991-09-11 Magnetic sensor

Publications (1)

Publication Number Publication Date
JPH0572304A true JPH0572304A (en) 1993-03-26

Family

ID=16930365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23187391A Pending JPH0572304A (en) 1991-09-11 1991-09-11 Magnetic sensor

Country Status (1)

Country Link
JP (1) JPH0572304A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035464A1 (en) * 2006-09-22 2008-03-27 Ntn Corporation Rotation detector, wheel bearing equipped therewith and process for manufacturing the same
JP2008096380A (en) * 2006-10-16 2008-04-24 Ntn Corp Rotation detector and manufacturing method of the same
JP2020530565A (en) * 2017-08-25 2020-10-22 インノヴァ・パテント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Guidance sensor
CN115343501A (en) * 2022-10-18 2022-11-15 四川新川航空仪器有限责任公司 Variable magnetic flux type rotating speed sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148978A (en) * 1982-03-01 1983-09-05 Aisin Seiki Co Ltd Magnetic detecting element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58148978A (en) * 1982-03-01 1983-09-05 Aisin Seiki Co Ltd Magnetic detecting element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035464A1 (en) * 2006-09-22 2008-03-27 Ntn Corporation Rotation detector, wheel bearing equipped therewith and process for manufacturing the same
US9395389B2 (en) 2006-09-22 2016-07-19 Ntn Corporation Rotation detector, wheel bearing equipped therewith and process for manufacturing the same
JP2008096380A (en) * 2006-10-16 2008-04-24 Ntn Corp Rotation detector and manufacturing method of the same
JP2020530565A (en) * 2017-08-25 2020-10-22 インノヴァ・パテント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Guidance sensor
CN115343501A (en) * 2022-10-18 2022-11-15 四川新川航空仪器有限责任公司 Variable magnetic flux type rotating speed sensor

Similar Documents

Publication Publication Date Title
Mohri et al. Magneto-inductive element
US4045738A (en) Variable reluctance speed sensor of integral construction utilizing a shielded high coercive force rare earth magnet positioned directly adjacent the sensing rotating element
JP2011059130A (en) Position detector
JPS618670A (en) Device for detecting speed of revolution and/or angle of rotation of shaft
US5229715A (en) Variable reluctance sensor for electromagnetically sensing the rate of movement of an object
US5128614A (en) Compound core element having a pair of uniaxial anisotropic ferromagnetic cell components with different coercive field strength for a thin film sensor
JP3352366B2 (en) Pulse signal generator
JPH0572304A (en) Magnetic sensor
EP0903856B1 (en) Pulse signal generation method and apparatus
KR20230101134A (en) Magnetic sensor using spin orbit torque and sensing method using same
Abe et al. Construction of electromagnetic rotation sensor using compound magnetic wire and measurement at extremely low frequency rotations
JP3064293B2 (en) Rotation sensor
JPS5896252A (en) Electromagnetic type sensor
JP3673412B2 (en) Pulse signal generator
JPH03297215A (en) Magneto-sensitive pulse generator using coaxial cylindrical composite magnetic body
JP3617604B2 (en) Pulse signal generator
JP3626341B2 (en) Magnetic metal sensor and magnetic metal detection system
EP0391160A1 (en) Variable reluctance sensor for detecting the rate of rotary or linear movement
JPH0572305A (en) Magnetic sensor
JPS6315119A (en) Flowmeter
JP2514338B2 (en) Current detector
JPH03252577A (en) Magnetic field detecting method and magnetic field sensor
JPS6216053B2 (en)
JPH026297B2 (en)
JPH0572306A (en) Magnetic sensor