JPS62203828A - Torque transfer controller for four wheel drive vehicle - Google Patents

Torque transfer controller for four wheel drive vehicle

Info

Publication number
JPS62203828A
JPS62203828A JP4360186A JP4360186A JPS62203828A JP S62203828 A JPS62203828 A JP S62203828A JP 4360186 A JP4360186 A JP 4360186A JP 4360186 A JP4360186 A JP 4360186A JP S62203828 A JPS62203828 A JP S62203828A
Authority
JP
Japan
Prior art keywords
gear
hydraulic
clutch
gears
rear wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4360186A
Other languages
Japanese (ja)
Other versions
JPH0764217B2 (en
Inventor
Yasuhei Matsumoto
松本 廉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP4360186A priority Critical patent/JPH0764217B2/en
Priority to US07/018,456 priority patent/US4727954A/en
Priority to DE3706506A priority patent/DE3706506C3/en
Publication of JPS62203828A publication Critical patent/JPS62203828A/en
Publication of JPH0764217B2 publication Critical patent/JPH0764217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To make a controller perform control over torque transfer according to clutch hydraulic pressure as well as to optimize the torque transfer to both front and rear wheels with each driving condition, and make improvements in turnability and safety, by installing two sets of planetary gears and two sets of hydraulic clutches in combination in the point midway in a front-rear wheel driving system. CONSTITUTION:Two sets of planetary gears 30 and 35, in the same structure, for center differential gear use are installed in the point midway in a front-rear wheel driving system, and constituted of sun gears 31 and 36, ring gears 32 and 37, pinions 32 and 38 to be engaged with these gears, and carriers 34 and 39. And, the sun gear 31 is connected to a rear wheel shaft 19 via a gear 23 and the sun gear 36 to a front wheel shaft, respectively. Thus, a rotational difference between front and rear wheels is absorbed by planetary rotation of these pinions 33 and 38. And, a hydraulic clutch 40 is connected to an interval between the ring gear 37 and the sun gear 36 and a hydraulic clutch 45 to an interval between a gear 22 and the rear wheel shaft 19 respectively, thus these clutches are installed. Then, a torque transfer signal corresponding to a driving condition is outputted to actuators 55 and 56 from a control unit 54, and hydraulic pressure in these hydraulic clutches 40 and 45 is altered, whereby torque control takes place.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、センターデフ付のフルタイム式4輪駆動車に
おいて、前後輪の駆動トルク配分を走行条件、道路事情
等により制御するトルク配分制御装置に関し、詳しくは
、センターデフ用としてデフギヤ装置と油圧クラッチを
それぞれ2組用いたものに関する。
The present invention relates to a torque distribution control device for controlling drive torque distribution between front and rear wheels according to driving conditions, road conditions, etc. in a full-time four-wheel drive vehicle equipped with a center differential. This relates to the case where two sets of clutches are used.

【従来の技術】[Conventional technology]

従来、レンターデフ付の4輪部φ力車に関しては、例え
ば特開昭55−72420号公報に示すように、センタ
ーデフ装置にディファレンシャルギヤを用い、その作動
制限用として油圧クラッチを設けたものがある。
Conventionally, with regard to four-wheeled φ rickshaws with rental differentials, as shown in Japanese Unexamined Patent Publication No. 55-72420, for example, there have been some in which a differential gear is used in the center differential device and a hydraulic clutch is provided to limit the operation of the differential gear. .

【発明が解決しようとする問題点】[Problems to be solved by the invention]

ところで、上記先行技術の構成のものにあっては、セン
ターデフ1首のディファレンシャルギヤは機構上2つの
サイドギヤの径が同一になっているため、前後輪のトル
ク配分は常に略等分になる。 従って、そのトルク配分を積極的に変化することはでき
なかった。また油圧クラッチは、前後輪の一方が空転し
た場合の緊急脱出用として、ディファレンシャルギヤを
一体的にロックするデフロック機能を有するにすぎない
。 ここで4輪駆動車では、前後輪のトルク配分を各種走行
条件で変化すると、動力性能以外に旋回性、安定性等の
性能も向上し得ることが知られている。そこでセンター
デフ付のフルタイム式においても、トルク配分を積極的
に制御して、付加価値を増大することが望まれる。 本発明は、このよ・)な点に鑑みてなされたもので、セ
ンターデフ付のフルタイム式において、前後輪のトルク
配分を走行条件等により制御して、旋回性、安定性等も
向上することが可能な4輪駆動車のトルク配分制御装置
を提供することを目的としている。
By the way, in the configuration of the prior art described above, since the diameter of the two side gears of the single center differential differential gear is mechanically the same, the torque distribution between the front and rear wheels is always approximately equal. Therefore, it was not possible to actively change the torque distribution. Further, the hydraulic clutch only has a differential lock function that integrally locks the differential gear for emergency escape when one of the front and rear wheels is idling. In a four-wheel drive vehicle, it is known that by changing the torque distribution between the front and rear wheels depending on various driving conditions, performance such as turning performance and stability can be improved in addition to power performance. Therefore, even in full-time systems with a center differential, it is desirable to actively control torque distribution to increase added value. The present invention has been made in view of these points. In a full-time type with a center differential, the torque distribution between the front and rear wheels is controlled depending on the driving conditions, etc., thereby improving turning performance, stability, etc. The object of the present invention is to provide a torque distribution control device for a four-wheel drive vehicle that is capable of controlling the torque distribution of a four-wheel drive vehicle.

【問題点を解決するための手段】[Means to solve the problem]

上記目的を達成するため本発明は、前後輪の駆動系の途
中にセンターデフ用の2組のデフギヤ装置を介設し、第
1のデフギヤ装置の入力要素に変速機出力軸を結合し、
第1の出力要素を後輪側に連結し、第2の出力要素を第
2のデフギヤ装置の入力要素に結合し、該第2のデフギ
ヤ装置の第1の出力要素を前輪側に、第2の出力要素を
後輪側に連結し、第2のデフギヤ装置の第1および第2
の出力要素の間に第1の油圧クラッチを、第1のデフギ
ヤ装置の第1の出力要素と第2のデフギヤ装置の第2の
出力要素の間に第2の油圧クラッチをそれぞれ設け、第
1および第2の油圧クラッチのクラッチ油圧により前後
輪のトルクTF、TRを、TF −でTR、TF 1=
FTR、TF >TRの3種類の配分に制御する。そし
て、上記第1または第2の油圧クラッチのクラッチ油圧
を変化させることで、TF <TRまたはTF>TRの
状態で配分量を連続的に変化するように構成されている
In order to achieve the above object, the present invention provides two sets of differential gear devices for a center differential in the middle of a drive system for front and rear wheels, connects a transmission output shaft to an input element of the first differential gear device,
a first output element is connected to the rear wheel side, a second output element is connected to an input element of a second differential gear device, the first output element of the second differential gear device is connected to the front wheel side, and a second output element is connected to the front wheel side; output element is connected to the rear wheel side, and the first and second output elements of the second differential gear device are connected to the rear wheel side.
A first hydraulic clutch is provided between the output elements of the first differential gear device, and a second hydraulic clutch is provided between the first output element of the first differential gear device and the second output element of the second differential gear device, And the torques TF and TR of the front and rear wheels are determined by the clutch oil pressure of the second hydraulic clutch, and TF - is TR, TF 1=
The distribution is controlled into three types: FTR, TF>TR. By changing the clutch oil pressure of the first or second hydraulic clutch, the distribution amount is continuously changed in the state of TF<TR or TF>TR.

【作   用】[For production]

上記構成に基づき、第1の油圧クラッチを係合すると第
1のデフギヤ装置の第2の出力要素と第1の出力要素か
ら前後輪に動力伝達し、そのギヤ径の違いにより、TF
 >TRにトルク配分され、第2の油圧クラッチを係合
すると第2のデフギヤ装置の第1の出力要素と第1およ
び第2のデフギヤ装置の第1.第2の出力要素から前後
輪に動力伝達し、その動力伝達系路の数の違いにより、
TF<TRにトルク配分される。この状態でデフギヤ装
置はいずれもセンターデフ作用し、クラッチ油圧を変え
ることでトルクの配分mが連続的に制御される。また第
1および第2の油圧クラッチを共に係合すると、第1お
よび第2のデフギヤ装置が一体化してデフロックし、T
F #TRにトルク配分されるようになる。 こうして本発明によれば、センターデフ付のフルタイム
式4輪駆動車の走行性能、デフロック機能と、それ以外
のTF <TR、TF >TRのトルク配分による性能
を備えることが可能となる。
Based on the above configuration, when the first hydraulic clutch is engaged, power is transmitted from the second output element and the first output element of the first differential gear device to the front and rear wheels, and due to the difference in gear diameter, the TF
>TR, and when the second hydraulic clutch is engaged, the first output element of the second differential gear device and the first output element of the first and second differential gear devices are distributed. Power is transmitted from the second output element to the front and rear wheels, and due to the difference in the number of power transmission paths,
Torque is distributed as TF<TR. In this state, all the differential gear devices operate as a center differential, and the torque distribution m is continuously controlled by changing the clutch oil pressure. Further, when both the first and second hydraulic clutches are engaged, the first and second differential gear devices are integrated and differentially locked, and the T
Torque will now be distributed to F #TR. In this way, according to the present invention, it is possible to provide the driving performance of a full-time four-wheel drive vehicle with a center differential, the differential lock function, and the other performance by torque distribution of TF <TR, TF >TR.

【実 施 例】【Example】

以下、図面を参照して本発明の一実施例を具体的に説明
する。 第1図において本発明による4輪部!1111の伝動系
について説明すると、エンジン1.クラッチ2および変
速4914が車体前後方向に縦置き配置され、クラッチ
2と変速機4との間の下部にフロントデフ装置16が変
速機ケース内部に組付けて設置されることでトランスア
クスル型を成す。変速機4は常時噛合式のもので、入力
軸3に対して出力軸5が平行に配置されて、これらの両
輪3.5に例えば第1速ないし第4速の互に噛合う4組
の変速用ギヤ6ないし9が設けてあり、ギヤ6と7との
間の同期機構10.ギヤ8と9との間の同期機構11を
選択的に動作することで、第1速から第4速までの各前
進変速段を得るようになっている。また、入力軸3に設
けである後退段のギヤ12に同期機構10のスリーブ側
のギヤ13を図示しないアイドラギヤを介して噛合わせ
ることで、後退段を得るようになっている。 上記出力軸5は中空軸であって、その内部にフロントド
ライブ軸14が挿入され、フロントドライブ@14の前
端に形成されるドライブピニオン15が、フロントデフ
装置16のクラウンギヤ17に噛合って前輪側に伝動構
成されている。 また、変速機4の接部に配設されるトランスファ装置1
8において、出力軸5とその内部のフロントドライブ軸
14が同軸上に配置され、これらの上部にリヤドライブ
軸19が平行に配置される。そしてリヤドライブ軸19
は、更にプロペラ軸20.リヤデフ装置21を介して後
輪側に伝動構成される。 トランスフ1装置18は、センターデフ用として2組の
プラネタリギヤ装置30.35をフロントドライブ軸1
4上に2段に3!I!設して有する。両プラネタリギヤ
装置30.35は同一の構成で、サンギヤ31゜36、
リングギヤ32.37、それらに噛合うビニオン33、
38およびキレリヤ34.39から成る。そして、前段
のプラネタリギヤ装置30のキャリヤ34に変速機出力
軸5が結合し、サンギヤ31が一対のギヤ23を介して
りA7ドライブ軸19に結合し、リングギヤ32が後段
のプラネタリギヤ装置35のキャリヤ39に結合する。 また、そのプラネタリギヤ装置35のサンギヤ36がフ
ロントドライブ軸14に結合し、リングギヤ37が一対
のギヤ22を介してリヤドライブ軸19側に連結する。 こうして、全体的にはリングギヤ32.サンギヤ36か
ら前輪へ、同様にサンギヤ31゜リングギAア37から
後輪へ動力を撮り分けて伝達する構成になり、ビニオン
33.38の遊星回転により1vI後輪の回転差を吸収
する。 また、デフロックとトルク配分制御用として2組の油圧
クラッチ40.45を、上述のプラネタリギヤ装fi3
0.35の後方に有する。即ら油圧クラッチ40は、プ
ラネタリギヤ装置35のリングギヤ37とサンギヤ36
との間にハブ41.ドラム42をそれぞれ結合して設け
られ、油圧クラッチ45は、プラネタリギヤ装置35の
リングギヤ37側のギヤ22とプラネタリギヤ装置30
のサンギヤ31側のリヤドライブ@19との間にハブ4
G、ドラム47を結合して設けられている。油圧クラッ
チ40.45は、クラッチ油圧により係合または解放し
、さらに任意のクラッチトルクを生じて伝達トルクを可
変にするものである。 トルク配分制御系について説明すると、車速センサ50
.舵角センサ51.加速センサ52.マニュアル指示手
段53等を有し、これらの信号が制御ユニット54に入
力する。制御ユニット54は、センサ信号により中・低
速の旋回、高速の各走行条件を判断し、マニュアル指示
手段53の信号により泥ねい地等の悪路、スタック等を
判断し、これに応じたトルク配分を定める。そして制御
ユニット54の出力信号により、アクチュエータ55.
56を介して油圧クラップ・40.45のクラッチ油圧
を変化するようになっている。 次いで、このように構成されたトルク配分制御装置の作
用について説明する。 先ず、変速機4からの動力は、トランスファ装置18に
おいて前段のプラネタリギヤ装置30のキャリヤ34に
入力し、サンギヤ31からギヤ23.リヤドライブ軸1
つ以降の後輪に、リングギヤ32から後段のブラネタリ
ギA7装置35のキャリヤ39に伝達する。 そこで、高速の走行条件で制御ユニット54により一方
の油圧クラッチ40がクラッチ油圧最大で係合すると、
プラネタリギヤ装置35はサンギヤ36とリングギヤ3
7との結合で一体化する。そのため上記リングギヤ32
からの動力は、そのままプラネタリギヤ装fW35.フ
ロントドライブ@14以降の前輪に伝達する。こうして
、実質的にはプラネタリギヤ装置30のリングギヤ32
.サンギヤ31から前後輪に動力伝達して4輪駆動とな
り、ビニオン33の遊星回転により前後輪の回転差を吸
収してセンターデフ作用する。 そしてこの場合は、小径のサンギヤ31と大径のリング
ギヤ32とのギヤ径の違いにより、前後輪のトルクTF
 、TRは第2図(へ)のようにTF >TRの状態に
配分されて、安定性を向上することになる。ここで、油
圧クラッチ40のクラッチ油圧を減じてそのトルクTC
Pを第2図の)のように低下し。 同時に油圧クラッチ45のクラッチトルクTCRを増大
すると、プラネタリギヤ装置35から前輪へ伝達するト
ルクが減るが、その減った分はプラネタリギヤ装置35
からギヤ22.油圧クラッチ45を介して後輪側に加樟
される。こうして、第2図(2)のように前輪トルクT
Fが減じるのに伴って後輪トルク”lは増すようになり
、両者の配分量は大きい状態から小さくなる方向に連続
的に変化する。 一方、中、低速時に制御ユニット54により今度は他方
の油圧クラッチ45が係合すると、プラネタリギヤ装置
35のリングギヤ37側のギヤ22がリヤドライブ軸1
9に結合する。そのため、両プラネタリギヤ装J30.
35のり°ンギャ31.36から後輪へ、プラネタリギ
ヤ装置35のサンギヤ36のみから前輪へ動力伝達して
、同様に4輪駆動となる。そして2組のプラネタリギヤ
装置130.35のビニオン33.38の遊星回転およ
びリングギヤ32とキャリヤ39の回転によりセンター
デフ作用する。 この場合は、2組のプラネタリギヤ装置30.35のサ
ンギヤ31.リングギヤ37による2系統で後輪にcJ
力伝達することで、前後輪のトルク配分は第2図(へ)
のカッコ書のようにTF<TRの状態になって、旋回性
を向上することになる。ここで、油圧クラッチ45のク
ラッチトルクTCRを第2図(ロ)のカッコ書のように
減じ、同時に油圧クラッチ40のクラッチトルクTCP
を逆に増すと、リングギヤ37から後輪へ伝達するトル
クの一部が前輪の方へ流れることになる。こうして、第
2図(2)のカッコ書きのように後輪トルクTRが少な
くなるのに伴って前輪トルクTFは大きくなり、上述と
同様にトルクTF 、TRの配分量が連続的に変化する
。 さらに悪路走行時に制御ユニット54により両油圧クラ
ッチ40.45を共に係合すると、プラネタリギヤ装置
35の一体化に加え、サンギヤ31とリングギヤ32の
、プラネタリギヤ装置35.ギヤ22.油圧クラッチ4
5.リヤドライブ軸19.ギヤ23による結合でプラネ
タリギヤ![30も一体化してデフロックする。そのた
め、前後輪が直結してTF b−pTRの状態に配分さ
れ、走破性を最大限発揮することになる。 以上の各トルク配分状態をまとめると、以下の表のよう
になる。 以上、本発明の一実施例について述べたが、デフギヤ装
置として実施例のプラネタリギヤ方式の代りにベベルギ
ヤ方式等を使用することもできる。 トルク配分制御に関しては上記走行条件のみならず、ド
ライバの好み、路面状況等によっても行い得る。 更に、本発明は横置きトランスアクスル型、自動変速機
付リヤエンジン等のギヤトレーンにも適用できる。 【発明の効果] 以上述べてきたように、本発明によれば、前後輪のトル
ク配分を変えて動力伝達するので、旋回性と安定性も向
上し、目的や好みに合った性能を発揮し得る。 クラッヂ油圧に応じてトルク配分が連続的に制御される
ので、各走行条件に対して最適なトルク配分を定め得る
。 2組の油圧クラッチの組合わせ動作により3種類のトル
ク配分を選択する構成であるから、動作性が良く、制御
し易い。 2組の油圧クラッチはフロントおよびリヤのドニイブ軸
上に分散配置されるので、コンパクトになり得る。 高速走行時には1組のプラネタリギヤ装置のみが動作す
るので、騒音が少ない。
Hereinafter, one embodiment of the present invention will be specifically described with reference to the drawings. In FIG. 1, there are four wheels according to the present invention! To explain the transmission system of 1111, engine 1. The clutch 2 and the transmission 4914 are arranged vertically in the longitudinal direction of the vehicle body, and the front differential device 16 is assembled and installed inside the transmission case at the lower part between the clutch 2 and the transmission 4, thereby forming a transaxle type. . The transmission 4 is of a constant mesh type, with an output shaft 5 disposed parallel to the input shaft 3, and four sets of mutually meshing wheels 3. Shift gears 6 to 9 are provided, and a synchronization mechanism 10 between gears 6 and 7 is provided. By selectively operating a synchronizing mechanism 11 between gears 8 and 9, each forward gear stage from first speed to fourth speed is obtained. Further, the reverse gear is obtained by meshing the sleeve-side gear 13 of the synchronizing mechanism 10 with the reverse gear gear 12 provided on the input shaft 3 via an idler gear (not shown). The output shaft 5 is a hollow shaft, into which the front drive shaft 14 is inserted, and a drive pinion 15 formed at the front end of the front drive@14 meshes with the crown gear 17 of the front differential device 16 to drive the front wheels. The transmission is configured on the side. Further, the transfer device 1 disposed at the contact portion of the transmission 4
8, the output shaft 5 and the front drive shaft 14 inside the output shaft 5 are arranged coaxially, and the rear drive shaft 19 is arranged above these in parallel. and rear drive shaft 19
Further, the propeller shaft 20. Transmission is configured to the rear wheels via the rear differential device 21. The transf 1 device 18 connects two sets of planetary gear devices 30 and 35 to the front drive shaft 1 for the center differential.
4 on top, 2 on 3! I! and have it. Both planetary gear units 30, 35 have the same configuration, with sun gears 31, 36,
Ring gears 32, 37, binions 33 meshing with them,
38 and Kireliya 34.39. The transmission output shaft 5 is coupled to the carrier 34 of the planetary gear device 30 at the front stage, the sun gear 31 is coupled to the A7 drive shaft 19 via a pair of gears 23, and the ring gear 32 is coupled to the carrier 34 of the planetary gear device 35 at the rear stage. join to. Further, a sun gear 36 of the planetary gear device 35 is connected to the front drive shaft 14, and a ring gear 37 is connected to the rear drive shaft 19 side via a pair of gears 22. Thus, overall the ring gear 32. Power is separately transmitted from the sun gear 36 to the front wheels and similarly from the sun gear 31° and the ring gear AA 37 to the rear wheels, and a 1vI rear wheel rotation difference is absorbed by the planetary rotation of the binions 33 and 38. In addition, two sets of hydraulic clutches 40.45 are used for differential lock and torque distribution control, and the above-mentioned planetary gear system fi3
It has a rear of 0.35. That is, the hydraulic clutch 40 connects the ring gear 37 and the sun gear 36 of the planetary gear device 35.
Between the hub 41. The hydraulic clutch 45 is provided by coupling the drums 42 to each other, and the hydraulic clutch 45 connects the gear 22 on the ring gear 37 side of the planetary gear device 35 and the planetary gear device 30.
between the rear drive @19 on the sun gear 31 side and the hub 4.
G and drum 47 are combined. The hydraulic clutches 40, 45 are engaged or released by clutch oil pressure, and further generate arbitrary clutch torque to make the transmitted torque variable. To explain the torque distribution control system, the vehicle speed sensor 50
.. Rudder angle sensor 51. Acceleration sensor 52. It has manual instruction means 53 and the like, and these signals are input to the control unit 54. The control unit 54 determines medium/low-speed turning and high-speed driving conditions based on sensor signals, determines rough roads such as muddy terrain, stuck, etc. based on signals from the manual instruction means 53, and distributes torque accordingly. Establish. Then, according to the output signal of the control unit 54, the actuator 55.
The clutch hydraulic pressure of the hydraulic clamp 40.45 is changed through the hydraulic clutch 56. Next, the operation of the torque distribution control device configured as described above will be explained. First, power from the transmission 4 is input to the carrier 34 of the planetary gear device 30 at the front stage in the transfer device 18, and is transmitted from the sun gear 31 to the gears 23. Rear drive shaft 1
The signal is transmitted to the subsequent rear wheels from the ring gear 32 to the carrier 39 of the rear gear A7 device 35. Therefore, when one hydraulic clutch 40 is engaged by the control unit 54 at the maximum clutch oil pressure under high-speed driving conditions,
The planetary gear device 35 includes a sun gear 36 and a ring gear 3.
It becomes one by combining with 7. Therefore, the ring gear 32
The power from the fW35. It is transmitted to the front wheels of the front drive@14 and later. Thus, substantially the ring gear 32 of the planetary gear device 30
.. Power is transmitted from the sun gear 31 to the front and rear wheels to provide four-wheel drive, and the planetary rotation of the binion 33 absorbs the difference in rotation between the front and rear wheels to act as a center differential. In this case, due to the difference in gear diameter between the small diameter sun gear 31 and the large diameter ring gear 32, the torque TF of the front and rear wheels is
, TR are distributed to the state where TF>TR as shown in FIG. 2 (f), thereby improving stability. Here, the clutch oil pressure of the hydraulic clutch 40 is reduced and its torque TC
P is decreased as shown in Figure 2). At the same time, if the clutch torque TCR of the hydraulic clutch 45 is increased, the torque transmitted from the planetary gear device 35 to the front wheels is reduced, but the reduced amount is transferred to the planetary gear device 35.
From gear 22. It is applied to the rear wheel side via the hydraulic clutch 45. In this way, as shown in Fig. 2 (2), the front wheel torque T
As F decreases, the rear wheel torque "l" increases, and the amount of distribution between the two continuously changes from a large state to a small state. On the other hand, at medium and low speeds, the control unit 54 now controls the rear wheel torque "l". When the hydraulic clutch 45 engages, the gear 22 on the ring gear 37 side of the planetary gear device 35 engages the rear drive shaft 1.
Combines with 9. Therefore, both planetary gears J30.
Power is transmitted from the 35° gears 31 and 36 to the rear wheels, and only from the sun gear 36 of the planetary gear device 35 to the front wheels, resulting in four-wheel drive. The planetary rotation of the binions 33 and 38 of the two sets of planetary gear devices 130 and 35 and the rotation of the ring gear 32 and carrier 39 act as a center differential. In this case, the sun gears 31. of the two planetary gear devices 30.35. Two systems with ring gear 37 provide cJ to the rear wheels.
By transmitting force, the torque distribution between the front and rear wheels is as shown in Figure 2 (see below).
As shown in parentheses, TF<TR will be established, improving turning performance. Here, the clutch torque TCR of the hydraulic clutch 45 is reduced as shown in parentheses in FIG.
Conversely, if the torque is increased, part of the torque transmitted from the ring gear 37 to the rear wheels will flow toward the front wheels. In this way, as the rear wheel torque TR decreases, the front wheel torque TF increases as shown in parentheses in FIG. 2(2), and the distribution amount of the torques TF and TR changes continuously in the same way as described above. Further, when both hydraulic clutches 40, 45 are engaged together by the control unit 54 when driving on a rough road, in addition to the integration of the planetary gear device 35, the planetary gear device 35.45 of the sun gear 31 and ring gear 32. Gear 22. hydraulic clutch 4
5. Rear drive shaft 19. Planetary gear connected by gear 23! [30 is also integrated to lock the differential. Therefore, the front and rear wheels are directly connected and distributed to the TF b-pTR state, maximizing the running performance. The above torque distribution states are summarized in the table below. Although one embodiment of the present invention has been described above, a bevel gear system or the like may be used instead of the planetary gear system of the embodiment as a differential gear device. Torque distribution control can be performed not only according to the above-mentioned driving conditions but also according to the driver's preference, road surface conditions, etc. Furthermore, the present invention can also be applied to a gear train such as a transverse transaxle type or a rear engine with an automatic transmission. [Effects of the Invention] As described above, according to the present invention, power is transmitted by changing the torque distribution between the front and rear wheels, which improves turning performance and stability, and provides performance that suits the purpose and preference. obtain. Since the torque distribution is continuously controlled according to the clutch oil pressure, the optimum torque distribution can be determined for each driving condition. Since the configuration selects three types of torque distribution by the combined operation of two sets of hydraulic clutches, operability is good and control is easy. Since the two sets of hydraulic clutches are distributed on the front and rear drive shafts, it can be made compact. When running at high speeds, only one set of planetary gears operates, so there is less noise.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のトルク配分制御装置の実施例を示すス
ケルトン図、第2図り、■)はトルク配分制御の特性図
である。 5・・・変速機出力軸、14・・・フロントドライブ軸
、19・・・リヤドライブ軸、30.35・・・プラネ
タリギヤ装置、31.36・・・サンギヤ、32.37
・・・リングギヤ、34゜39・・・キャリヤ、40.
45・・・油圧クラッチ、54・・・制御ユニット。
Fig. 1 is a skeleton diagram showing an embodiment of the torque distribution control device of the present invention, and Fig. 2 (2) is a characteristic diagram of torque distribution control. 5... Transmission output shaft, 14... Front drive shaft, 19... Rear drive shaft, 30.35... Planetary gear device, 31.36... Sun gear, 32.37
...Ring gear, 34°39...Carrier, 40.
45... Hydraulic clutch, 54... Control unit.

Claims (2)

【特許請求の範囲】[Claims] (1)前後輪の駆動系の途中にセンターデフ用の2組の
デフギヤ装置を介設し、 第1のデフギヤ装置の入力要素に変速機出力軸を結合し
、第1の出力要素を後輪側に連結し、第2の出力要素を
第2のデフギヤ装置の入力要素に結合し、該第2のデフ
ギヤ装置の第1の出力要素を前輪側に、第2の出力要素
を後輪側に連結し、第2のデフギヤ装置の第1および第
2の出力要素の間に第1の油圧クラッチを、第1のデフ
ギヤ装置の第1の出力要素と第2のデフギヤ装置の第2
の出力要素の間に第2の油圧クラッチをそれぞれ設け、 第1および第2の油圧クラッチのクラッチ油圧により前
後輪のトルクT_F、T_Rを、T_F<T_R、T_
F≒T_R、T_F>T_Rの3種類の配分に制御する
4輪駆動車のトルク配分制御装置。
(1) Two sets of differential gear devices for the center differential are interposed in the middle of the drive system for the front and rear wheels, the transmission output shaft is connected to the input element of the first differential gear device, and the first output element is connected to the rear wheels. the second output element is coupled to the input element of the second differential gear device, the first output element of the second differential gear device is connected to the front wheel side, and the second output element is connected to the rear wheel side. a first hydraulic clutch between the first and second output elements of the second differential gear device; and a first hydraulic clutch between the first output element of the first differential gear device and the second
A second hydraulic clutch is provided between the output elements of the first and second hydraulic clutches, and the torques T_F and T_R of the front and rear wheels are controlled by the clutch hydraulic pressure of the first and second hydraulic clutches such that T_F<T_R, T_
A torque distribution control device for a four-wheel drive vehicle that controls three types of distribution: F≒T_R and T_F>T_R.
(2)上記第1または第2の油圧クラッチのクラッチ油
圧を変化させることで、T_F<T_RまたはT_F>
T_Rの状態で配分量を連続的に変化する特許請求の範
囲第1項記載の4輪駆動車のトルク配分制御装置。
(2) By changing the clutch oil pressure of the first or second hydraulic clutch, T_F<T_R or T_F>
The torque distribution control device for a four-wheel drive vehicle according to claim 1, which continuously changes the distribution amount in the T_R state.
JP4360186A 1986-02-28 1986-02-28 Torque distribution control device for four-wheel drive vehicle Expired - Lifetime JPH0764217B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4360186A JPH0764217B2 (en) 1986-02-28 1986-02-28 Torque distribution control device for four-wheel drive vehicle
US07/018,456 US4727954A (en) 1986-02-28 1987-02-25 Power transmitting system for a four-wheel drive vehicle
DE3706506A DE3706506C3 (en) 1986-02-28 1987-02-27 Power transmission system for a four-wheel drive vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4360186A JPH0764217B2 (en) 1986-02-28 1986-02-28 Torque distribution control device for four-wheel drive vehicle

Publications (2)

Publication Number Publication Date
JPS62203828A true JPS62203828A (en) 1987-09-08
JPH0764217B2 JPH0764217B2 (en) 1995-07-12

Family

ID=12668334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4360186A Expired - Lifetime JPH0764217B2 (en) 1986-02-28 1986-02-28 Torque distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPH0764217B2 (en)

Also Published As

Publication number Publication date
JPH0764217B2 (en) 1995-07-12

Similar Documents

Publication Publication Date Title
US6105704A (en) Coupling device between left and right wheels of vehicle
US4779699A (en) Four wheel drive vehicle with inter-axle differential having dual planetary gear sets
JP2772979B2 (en) Torque distribution control device for four-wheel drive vehicle
US4727954A (en) Power transmitting system for a four-wheel drive vehicle
US4744437A (en) Power transmitting system for a four-wheel drive vehicle
JP3599847B2 (en) Connecting device between left and right wheels of vehicle
JPS62199527A (en) Torque distribution control device for four-wheel drive vehicle
JPS62203828A (en) Torque transfer controller for four wheel drive vehicle
JPS62203827A (en) Torque transfer controller for four wheel drive vehicle
CA2484819C (en) Coupling device between left and right wheels of vehicle
JPS6334233A (en) Four wheel drive device
JPS6325140A (en) Four-wheel drive device
JPH0764208B2 (en) 4-wheel drive
JPS6325137A (en) Feour wheel drive device
JPS6325138A (en) Four-wheel drive device
JPS63170130A (en) Transfer structure for four-wheel driven vehicle
JPS6320229A (en) Four wheel drive device
JPS635294B2 (en)
JPS6320228A (en) Four wheel drive device
JPH0572299B2 (en)
JPS6325139A (en) Four wheel drive device
JPH0572297B2 (en)
JPS6320230A (en) Four wheel drive device
JPS62178431A (en) Four-wheel drive system
JPH0572295B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term