JPS62199527A - Torque distribution control device for four-wheel drive vehicle - Google Patents

Torque distribution control device for four-wheel drive vehicle

Info

Publication number
JPS62199527A
JPS62199527A JP4309586A JP4309586A JPS62199527A JP S62199527 A JPS62199527 A JP S62199527A JP 4309586 A JP4309586 A JP 4309586A JP 4309586 A JP4309586 A JP 4309586A JP S62199527 A JPS62199527 A JP S62199527A
Authority
JP
Japan
Prior art keywords
gear
torque distribution
rear wheels
torque
wheel drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4309586A
Other languages
Japanese (ja)
Inventor
Yasuhei Matsumoto
松本 廉平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Heavy Industries Ltd filed Critical Fuji Heavy Industries Ltd
Priority to JP4309586A priority Critical patent/JPS62199527A/en
Priority to US07/016,759 priority patent/US4744437A/en
Priority to DE19873706459 priority patent/DE3706459A1/en
Publication of JPS62199527A publication Critical patent/JPS62199527A/en
Pending legal-status Critical Current

Links

Landscapes

  • Retarders (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To improve the turning performance and the stability, by furnishing planetary gear units for the center differential purpose on the way of the driving systems of the front and rear wheels, and controlling accurately the torque distributions of the front and the rear wheels depending on the running condition and the like, in a full time four-wheel drive vehicle with the center differential. CONSTITUTION:The driving system of this four-wheel drive vehicle has a transfer gear 18 at the rear of a transmission gear 4, and the transfer gear 18 has the front and the rear drive shafts 14 and 19 furnished parallel each other. In this case, a pair of planetary gear units 30 are installed at the transfer gear 18 as a center differential. The each unit 30 is composed of a sun gear 31, a ring gear 32, and a pinion 33 to gear with both gears 31 and 32 supported by a carrier 34, and, the sun gear 31 is linked to a shaft 14 while the ring gear 32 to a shaft 19. Furthermore, between the sun gear 31 and the ring gear 32, a differential lock, and a hydraulic clutch 35 to control the torque distribution are furnished, and the torque distribution is controlled by a control unit 43 depending on the running condition.

Description

【発明の詳細な説明】[Detailed description of the invention]

r産業上の利用分野】 本発明は、センターデフ付のフルタイム式4輪駆動車に
おいて、前後輪の駆動トルク配分を走行条件、道路事情
等により制御する[・ルク配分制御装置に関し、詳しく
は、センターデフ装置にプラネタリギヤを用いたものに
関する。
r Industrial Application] The present invention relates to a torque distribution control device that controls the drive torque distribution between the front and rear wheels according to driving conditions, road conditions, etc. in a full-time four-wheel drive vehicle with a center differential. , relates to a center differential device using a planetary gear.

【従来の技術] 従来、センターデフ付の4輪駆動車に関しては、例えば
特開昭55−72420号公報に示すように、センター
デフ装置にディファレンシャルギヤを用い、その作動制
限用として油圧クラッチを設けたものがある。 【発明が解決しようとする問題点】 ところで、上記先行技術の構成のものにあっては、セン
ターデフ装置のデイフルンシャルギX7は機構上2つの
ザイドギャの径が同一になっているため、m後輪のトル
ク配分は常に略等分になる。 従って、そのトルク配分を積極的に変化することはでき
なかった。また油圧クラッチは、前後輪の一方が空転し
た場合の緊急脱出用として、デイファレンシャルギ17
を一体的にロックするデフロック機能を有するにすぎな
い。 ここで4輪駆動車では、1)う後輪のトルク配分を各種
走行条件で変化すると、動力性能以外に旋回性、安定性
等の性能も向上し得ることが知られている。そこでセン
ターデフ句のフルタイム式においても、トルク配分を積
極的に制御して、付加価値を増大することが望まれる。 本発明は、このような点に鑑みてなされたもので、セン
ターデフ付のフルタイム式において、前後輪のトルク配
分を走行条件等により制御して、旋回性、安定性等も向
−卜することが可能な4輪駆動車のトルク配分制御装置
を提供することを目的としてる。 【問題点を解決するための手段) 上記目的を達成するため、本発明は、前後輪の駆動系の
途中にセンターデフ用の1組のプラネタリギヤ装置を介
設し、該プラネタリギヤ装置のサンギヤとリングギ%フ
の一方を前輪に、他方を後輪にそれぞれ伝動構成し、サ
ンギヤとリングギヤとの間に伝達トルク可変の油圧クラ
ッチを設り、該油圧クラッチのクラッチ油圧により前後
輪のトルク配分を連続的に制御するように構成されてい
る。 [作   用1 上記構成に基づき、プラネタリギヤ装置が旋回時の前後
輪の回転差を吸収してセンターデフ作用し、かつそのサ
ンギヤとリングギヤの径の違いに応じて前後輪のトルク
配分を変化する。そしてi+t+圧クラツクラッチッチ
油圧を増すことで、前後輪のトルク配分は異なった状態
からギー7装置を一体化して略等しくなる方向に連続的
に制御されるようになる。 こうして本発明によれば、センターデフ付のフルタイム
式4輪駆動車の走行性能、デフロック機能と、それ以外
のトルク配分による性能を備えることが可能となる。 【実 施 例] 以下、図面を参照して本発明の一実施例を具体的に説明
する。 第1図において本発明による4輪駆動車の伝動系につい
て説明すると、エンジン1.クラッチ2および変速機4
が車体前接方向に縦置き配置され、クラッチ2と変速機
4との間の下部にフロントデフ装置1Gが変速機ケース
内部に組付けて設置されることでトランスアクスル型を
成す。変速!14は常時噛合式のもので、入力軸3に対
して出力軸5が平行に配置されて、これらの両軸3,5
に例えば第1速ないし第4速の互に噛合う4組の変速用
ギヤ6ないし9が設りてあり、ギヤGど7との間の同期
機構10.ギヤ8と9との間の同期機構11を選択的に
動作することで、第1速から第4速までの各前進変速段
を得るようになっている。また、入力軸3に設けである
後退段のギA712に同期機構10のスリーブ側のギヤ
13を図示しないアイドラギA7を介して噛合わせるこ
とで、後退段を得るようになっている。 上記出力軸5は中空軸であって、その内部にフロントド
ライブ軸14が挿入され、フロントドライブ軸14のT
h”l端に形成されるドライブピニオン15が、フロン
ト・デフ装置16のクラウンギヤ17に噛合って前輪側
に伝動構成されている。 また、変速)幾4の後部に配設されるトランスファ装置
18において、出力軸5とその内部のフロントドライブ
軸14が同軸上に配置され、これらの上部にりA7ドラ
イブ軸19が平行に配置される。そしてリヤドライブ軸
19は、更にプロペラ軸20.リヤデフ装置21を介し
て後輪側に伝動構成される。 トランスファ装@18は、センターデフ用として1組の
プラネタリギヤ装置A置30を有する。このプラネタリ
ギヤ装置30は、サンギ〜731.リングギ1732゜
両ギヤ31.32に噛合うビニオン33.ビニオン33
を支持するキャリ曳734から成り、キャリ)734に
変速機出力軸5が結合する。また、小径のサンギヤ31
が前輪側のフロントドライブ軸14に、大径のリングギ
ヤ32が一対のギヤ22を介して後輪側のリヤドライブ
軸19にそれぞれ結合し、キャリヤ34がら入力する変
速機出力を前後輪に振り分け、ビニオン33の遊星回転
により前後輪の回転差を吸収する。 ここで、小径のサンギヤ31から前輪へ、大径のリング
ギA732から後輪へ動力伝達されるため、前後輪のト
ルクTF 、TRは、TF<TRの関係となる。 さらに上記プラネタリギ)7装置3oのナンギ)731
とリングギヤ32との間には、デフロックとトルク配分
制御用の油圧クラッチ35が、ハブ36をリングギF3
2に、ドラム37をサンギA731に結合してKQcプ
である。 トルク配分制御系について説明すると、車速センサ40
.舵角センサ41.加速センサ45.マニュアル指示手
段42等を有し、これらの信号が制御ユニット43に入
力する。制御ユニット43は、センサ信号により中・低
速の旋回、高速の各走行条件を判断し、マニュアル指示
手段42の信号により泥ねい地等の悪路、スタック等を
判断し、これに応じたトルク配分を定める。そして制御
ユニット43の出力信号により、アクチュエータ44を
介して油圧クラッチ35のクラッチ油圧を変化するよう
になっている。 次いで、このように構成されたトルク配分制御装置の作
用について、第2図を参照して説明する。 先ず、変速機4からの動力は、トランスファ装j?!f
f11)においてプラネタリギヤ装置30のキャリヤ3
4に入力し、サンギヤ31からフロントドライブ軸14
゜フロントデフ装置1Gを介して前輪に、リングギヤ3
2からギヤ22.すA7ドライブ軸19.プロペラ軸2
0゜リヤデフ装置21を介して後輪に伝達する。そして
プラネタリギヤ装置30のビニオン33の遊星回転によ
り、前後輪の回転差が吸収されることで、センターデフ
付のフルタイム式4輪駆動走行となる。 そこで、上記4輪駆動時において中、低速旋回時の走行
条件に、制御ユニット43により油圧クラッチ35のク
ラッチ油圧が第2図に示すように零に設定されると、プ
ラネタリギヤ装′a30はフリーの状態になる。従って
、プラネタリギヤ装置l!30のサンギヤ31とリング
ギヤ32との径の違いに応じて、前後輪のトルクTF 
、TRはTF<TRの状態に配分され、旋回性を向上す
る。 次いで、悪路走行時に制御ユニット43により油圧クラ
ッチ35のクラッチ油圧が上述と逆に最大に設定される
と、ブラネタリギせ装置30はサンギヤ31とリングギ
ヤ32との結合により一体的にデフロックする。そのた
め前後輪が直結し、そのトルク配分は略等しくなって、
走破性を最大限発揮することになる。 さらに上記クラッチ油圧が零でトルク配分最大の状態と
、タッチ油圧最大でトルク配分最小の状態の間において
、クラッチ油圧を任意に設定してクラッチトルクTcを
生じると、このクラッチトルクTCに応じた分だけ、サ
ンギヤ31とリングギA732との間でトルクがやりと
りされ、前後輪のトルク配分は(TF +Tc ) :
 (TR−Tc )になる。こうして、第2図に示すよ
うにクラッチ油圧が大きくなるほど後輪トルク(丁R−
TC>は減じ、逆に前輪トルク(TF−トTc )は増
して、トルク配分が連続的に変化する。従って、各走行
条件でクラッチ油圧によりトルク配分を定めることで、
旋回性と走破性の性能が、走行条件に適合した配分で発
揮されることになる。 以上、本発明の一実施例について述べたが、横置きトラ
ンスアクスル型、リヤエンジンのものにも適用できる。 また、プラネタリギヤ装W130のサンギA731から
後輪へ、リングギA732がら前輪へ伝動構成しても良
く、こうするとTF>TRの関係のトルク配分になって
、高速安定性重視となる。 【発明の効果1 以上述べてきたように、本発明によれば、プラネタリギ
ヤ装置式のセンターデフで、前後輪のトルク配分を変え
て動力伝達するので、旋回性。 安定性も向上し、目的や好みに合った性能を発揮し得る
。 油圧クラッチのクラッチトルクに応じてトルクのやりと
りを行うので、全体的なトルクのロスが無く、クラッチ
容量も小さくてすみ、ボタン操作をやり易い。 クラッチ油圧に応じてトルク配分が連続的に制御される
ので、各走行条件に対して最適なトルク配分を定め得る
[Prior Art] Conventionally, for four-wheel drive vehicles with a center differential, a differential gear is used in the center differential device, and a hydraulic clutch is provided to limit the operation, as shown in Japanese Patent Laid-Open No. 55-72420, for example. There is something. [Problems to be Solved by the Invention] By the way, in the configuration of the prior art described above, the diameter of the two differential gears of the center differential gear X7 is mechanically the same, so the m Torque distribution to the rear wheels is always approximately equal. Therefore, it was not possible to actively change the torque distribution. In addition, the hydraulic clutch is used as a differential gear 17 for emergency escape in the event that one of the front and rear wheels is idling.
It simply has a differential lock function that locks the In four-wheel drive vehicles, it is known that 1) by changing the torque distribution of the rear wheels depending on various driving conditions, performance such as turning ability and stability can be improved in addition to power performance. Therefore, even in full-time center differential systems, it is desirable to actively control torque distribution to increase added value. The present invention has been made in view of these points, and is intended to improve turning performance, stability, etc. by controlling the torque distribution between the front and rear wheels according to driving conditions in a full-time type with a center differential. The object of the present invention is to provide a torque distribution control device for a four-wheel drive vehicle that is capable of controlling the torque distribution of a four-wheel drive vehicle. [Means for Solving the Problems] In order to achieve the above object, the present invention provides a set of planetary gear devices for a center differential in the middle of a drive system for front and rear wheels, and a sun gear and a ring gear of the planetary gear device. One side of the transmission is configured to transmit power to the front wheels and the other to the rear wheels, and a hydraulic clutch with variable transmission torque is installed between the sun gear and ring gear, and the clutch hydraulic pressure of the hydraulic clutch continuously distributes torque between the front and rear wheels. is configured to control the [Function 1] Based on the above configuration, the planetary gear device acts as a center differential by absorbing the rotation difference between the front and rear wheels during turning, and changes the torque distribution between the front and rear wheels according to the difference in diameter between the sun gear and the ring gear. By increasing the i+t+pressure latch clutch oil pressure, the torque distribution between the front and rear wheels can be continuously controlled from different states to become substantially equal by integrating the gear 7 device. In this way, according to the present invention, it is possible to provide the driving performance of a full-time four-wheel drive vehicle with a center differential, the differential lock function, and other performance based on torque distribution. [Example] Hereinafter, an example of the present invention will be specifically described with reference to the drawings. Referring to FIG. 1, the transmission system of a four-wheel drive vehicle according to the present invention will be explained. Engine 1. Clutch 2 and transmission 4
is arranged vertically in the front direction of the vehicle body, and a front differential device 1G is assembled and installed inside the transmission case at the lower part between the clutch 2 and the transmission 4, thereby forming a transaxle type. Shift! Reference numeral 14 is of a constant meshing type, in which the output shaft 5 is arranged parallel to the input shaft 3, and both shafts 3, 5
For example, four sets of transmission gears 6 to 9 meshing with each other at first to fourth speeds are provided, and a synchronization mechanism 10. By selectively operating a synchronizing mechanism 11 between gears 8 and 9, each forward gear stage from first speed to fourth speed is obtained. Further, by meshing the gear 13 on the sleeve side of the synchronization mechanism 10 with the reverse gear A712 provided on the input shaft 3 via an idler gear A7 (not shown), the reverse gear is obtained. The output shaft 5 is a hollow shaft, into which the front drive shaft 14 is inserted.
A drive pinion 15 formed at the h''l end meshes with a crown gear 17 of a front differential device 16 to transmit power to the front wheels. At 18, the output shaft 5 and the front drive shaft 14 inside thereof are arranged coaxially, and above these, the A7 drive shaft 19 is arranged in parallel.The rear drive shaft 19 is further connected to the propeller shaft 20. Transmission is configured to the rear wheel side via the device 21. The transfer device @18 has a set of planetary gear devices A 30 for the center differential. 31. Binion 33 that meshes with 32. Binion 33
The transmission output shaft 5 is connected to the carrier 734. In addition, the small diameter sun gear 31
is connected to the front drive shaft 14 on the front wheel side, and a large-diameter ring gear 32 is connected to the rear drive shaft 19 on the rear wheel side via a pair of gears 22, and the transmission output input from the carrier 34 is distributed to the front and rear wheels. The planetary rotation of the binion 33 absorbs the difference in rotation between the front and rear wheels. Here, since power is transmitted from the small diameter sun gear 31 to the front wheels and from the large diameter ring gear A732 to the rear wheels, the torques TF and TR of the front and rear wheels have a relationship of TF<TR. In addition, the above planetary gear) 7 device 3o's number) 731
A hydraulic clutch 35 for differential lock and torque distribution control is connected between the hub 36 and the ring gear F3.
2, the drum 37 is connected to the sangi A731 to form a KQc pump. To explain the torque distribution control system, vehicle speed sensor 40
.. Rudder angle sensor 41. Acceleration sensor 45. It has manual instruction means 42 and the like, and these signals are input to a control unit 43. The control unit 43 determines medium/low-speed turning and high-speed driving conditions based on sensor signals, determines rough roads such as muddy terrain, stuck, etc. based on signals from the manual instruction means 42, and distributes torque accordingly. Establish. The clutch oil pressure of the hydraulic clutch 35 is changed via the actuator 44 based on the output signal of the control unit 43. Next, the operation of the torque distribution control device configured as described above will be explained with reference to FIG. 2. First of all, the power from the transmission 4 is the transfer equipment? ! f
f11), the carrier 3 of the planetary gear device 30
4 and input it from the sun gear 31 to the front drive shaft 14.
゜Ring gear 3 is connected to the front wheels via the front differential device 1G.
2 to gear 22. A7 drive shaft 19. propeller shaft 2
It is transmitted to the rear wheels via the 0° rear differential device 21. The planetary rotation of the binion 33 of the planetary gear device 30 absorbs the difference in rotation between the front and rear wheels, resulting in full-time four-wheel drive with a center differential. Therefore, when the clutch oil pressure of the hydraulic clutch 35 is set to zero by the control unit 43 as shown in FIG. 2 under the driving conditions of medium and low speed turning in the four-wheel drive mode, the planetary gear system 'a30 becomes free. become a state. Therefore, the planetary gear device l! The torque TF of the front and rear wheels varies according to the difference in diameter between the sun gear 31 and ring gear 32 of 30.
, TR are distributed so that TF<TR, which improves turning performance. Next, when the clutch oil pressure of the hydraulic clutch 35 is set to the maximum by the control unit 43 while driving on a rough road, contrary to the above-described case, the brane gearing device 30 is integrally differentially locked by coupling the sun gear 31 and the ring gear 32. Therefore, the front and rear wheels are directly connected, and the torque distribution is approximately equal.
This will maximize running performance. Furthermore, between the state where the clutch oil pressure is zero and the torque distribution is maximum, and the state where the touch oil pressure is maximum and the torque distribution is the minimum, if the clutch oil pressure is arbitrarily set to generate a clutch torque Tc, the amount corresponding to this clutch torque TC is Torque is exchanged between sun gear 31 and ring gear A732, and the torque distribution between the front and rear wheels is (TF + Tc):
(TR-Tc). In this way, as shown in Figure 2, as the clutch oil pressure increases, the rear wheel torque (R-
TC> decreases, and conversely, the front wheel torque (TF-Tc) increases, and the torque distribution changes continuously. Therefore, by determining torque distribution using clutch oil pressure under each driving condition,
The performance of turning and all-terrain performance will be demonstrated through distribution that suits the driving conditions. Although one embodiment of the present invention has been described above, it can also be applied to a transverse transaxle type or a rear engine type. Further, transmission may be configured from the sun gear A731 of the planetary gear W130 to the rear wheels and from the ring gear A732 to the front wheels. In this case, the torque is distributed in the relationship TF>TR, and high-speed stability is emphasized. Effects of the Invention 1 As described above, according to the present invention, since power is transmitted by changing the torque distribution between the front and rear wheels using the planetary gear type center differential, turning performance is improved. It also improves stability and allows you to achieve performance that suits your purposes and preferences. Since torque is exchanged according to the clutch torque of the hydraulic clutch, there is no overall torque loss, the clutch capacity is small, and button operations are easy. Since the torque distribution is continuously controlled according to the clutch oil pressure, the optimum torque distribution can be determined for each driving condition.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のトルク配分制りo装置の実施例を示す
スケルトン図、第2図はトルク配分制御の特性図である
FIG. 1 is a skeleton diagram showing an embodiment of the torque distribution control device of the present invention, and FIG. 2 is a characteristic diagram of torque distribution control.

Claims (1)

【特許請求の範囲】 前後輪の駆動系の途中にセンターデフ用の1組のプラネ
タリギヤ装置を介設し、 該プラネタリギヤ装置のサンギヤとリングギヤの一方を
前輪に、他方を後輪にそれぞれ伝動構成し、 サンギヤとリングギヤとの間に伝達トルク可変の油圧ク
ラッチを設け、 該油圧クラッチのクラッチ油圧により前後輪のトルク配
分を連続的に制御する4輪駆動車のトルク配分制御装置
[Scope of Claims] A set of planetary gear devices for a center differential is interposed in the middle of the drive system for the front and rear wheels, and one of the sun gear and ring gear of the planetary gear device is configured to transmit power to the front wheels, and the other to the rear wheels. , A torque distribution control device for a four-wheel drive vehicle, wherein a hydraulic clutch with variable transmission torque is provided between a sun gear and a ring gear, and torque distribution between front and rear wheels is continuously controlled by clutch oil pressure of the hydraulic clutch.
JP4309586A 1986-02-27 1986-02-27 Torque distribution control device for four-wheel drive vehicle Pending JPS62199527A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP4309586A JPS62199527A (en) 1986-02-27 1986-02-27 Torque distribution control device for four-wheel drive vehicle
US07/016,759 US4744437A (en) 1986-02-27 1987-02-20 Power transmitting system for a four-wheel drive vehicle
DE19873706459 DE3706459A1 (en) 1986-02-27 1987-02-27 POWER TRANSMISSION SYSTEM FOR A FOUR-WHEEL DRIVED VEHICLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4309586A JPS62199527A (en) 1986-02-27 1986-02-27 Torque distribution control device for four-wheel drive vehicle

Publications (1)

Publication Number Publication Date
JPS62199527A true JPS62199527A (en) 1987-09-03

Family

ID=12654274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4309586A Pending JPS62199527A (en) 1986-02-27 1986-02-27 Torque distribution control device for four-wheel drive vehicle

Country Status (1)

Country Link
JP (1) JPS62199527A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111528A (en) * 1987-10-24 1989-04-28 Fuji Heavy Ind Ltd Torque split controller for four-wheel-drive car
JPH01114526A (en) * 1987-10-27 1989-05-08 Fuji Heavy Ind Ltd Torque split controller for four-wheel-drive vehicle
JPH03139437A (en) * 1989-10-25 1991-06-13 Fuji Heavy Ind Ltd Power distribution control device for four-wheel drive car
JPH10339274A (en) * 1997-06-05 1998-12-22 Aqueous Res:Kk Compressor drive device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139722A (en) * 1985-12-13 1987-06-23 Toyota Motor Corp Four-wheel drive system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139722A (en) * 1985-12-13 1987-06-23 Toyota Motor Corp Four-wheel drive system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111528A (en) * 1987-10-24 1989-04-28 Fuji Heavy Ind Ltd Torque split controller for four-wheel-drive car
JPH01114526A (en) * 1987-10-27 1989-05-08 Fuji Heavy Ind Ltd Torque split controller for four-wheel-drive vehicle
JPH03139437A (en) * 1989-10-25 1991-06-13 Fuji Heavy Ind Ltd Power distribution control device for four-wheel drive car
JPH10339274A (en) * 1997-06-05 1998-12-22 Aqueous Res:Kk Compressor drive device

Similar Documents

Publication Publication Date Title
US4779699A (en) Four wheel drive vehicle with inter-axle differential having dual planetary gear sets
US6105704A (en) Coupling device between left and right wheels of vehicle
JP2922924B2 (en) Four-wheel drive vehicle and its torque distribution control device
JP2772979B2 (en) Torque distribution control device for four-wheel drive vehicle
US4727954A (en) Power transmitting system for a four-wheel drive vehicle
US4875978A (en) Vehicle four wheel drive system
US4744437A (en) Power transmitting system for a four-wheel drive vehicle
US4890509A (en) Transfer unit for four wheel drive automotive vehicle drive train
JPS62199527A (en) Torque distribution control device for four-wheel drive vehicle
JP3599847B2 (en) Connecting device between left and right wheels of vehicle
JPS6344091B2 (en)
JPS62203828A (en) Torque transfer controller for four wheel drive vehicle
JPH0764210B2 (en) 4-wheel drive
JPS62203827A (en) Torque transfer controller for four wheel drive vehicle
JPS6325140A (en) Four-wheel drive device
JP2802309B2 (en) Power distribution control device for four-wheel drive vehicle
JPS6334233A (en) Four wheel drive device
JPS62173325A (en) Four-wheel drive device
JP2599305B2 (en) Power distribution control device for four-wheel drive vehicle
KR100279985B1 (en) Compound Differential Device for Four Wheel Drive Vehicle
JPS62279127A (en) Four-wheel driving device
JPH01190541A (en) Four-wheel drive device
JPS6320229A (en) Four wheel drive device
JPS63222928A (en) Four wheel drive type working vehicle
JPS62143734A (en) 4-wheel drive device