JPS62201644A - Production of catalyst and catalytic carrier - Google Patents

Production of catalyst and catalytic carrier

Info

Publication number
JPS62201644A
JPS62201644A JP62032238A JP3223887A JPS62201644A JP S62201644 A JPS62201644 A JP S62201644A JP 62032238 A JP62032238 A JP 62032238A JP 3223887 A JP3223887 A JP 3223887A JP S62201644 A JPS62201644 A JP S62201644A
Authority
JP
Japan
Prior art keywords
alumina
weight
cordierite
surface area
specific surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62032238A
Other languages
Japanese (ja)
Other versions
JPS642418B2 (en
Inventor
Koichi Yamada
興一 山田
Katsuzo Shiraishi
白石 勝造
Masahide Mori
毛利 正英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP62032238A priority Critical patent/JPS62201644A/en
Publication of JPS62201644A publication Critical patent/JPS62201644A/en
Publication of JPS642418B2 publication Critical patent/JPS642418B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To enhance shock resistance, compressive strength and specific surface area by molding an aggregate composition from each specified amount of rehydrating alumina and cordierite and subjecting the composition to rehydrating treatment and thereafter sintering it at the specified temp. CONSTITUTION:The following aggregate composition is molded wherein it consists of 90-10wt% rehydrating alumina, 10-90wt% cordierite and total of rehydrating alumina and cordierite is at least >=50%. Then after subjecting this molded material to rehydrating treatment, it is calcined at 1,100-1,350 deg.C temp. to produce a catalytic carrier. As the above-mentioned rehydrating treatment of the molded material, a treating method in underwater at room temp. -100 deg.C or in steam at room temp. -150 deg.C can be adopted. The obtained carrier has the value of 5-100m<2>/g specific surface area and >=100kg/cm<2> compressive strength.

Description

【発明の詳細な説明】 本発明は耐熱衝撃性、耐圧強度に優れ、かつ高比表面積
を有する触媒および触媒担体の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst having excellent thermal shock resistance and pressure resistance strength and a high specific surface area, and a method for producing a catalyst carrier.

近年、環境保全の点から各種産業よりの排出ガス規制が
強化され、活性アルミナ、アルミナゾル等の遷移アルミ
ナを骨材とする成形体は他の無機成形体と比較し高比表
面積を有するとの特性より脱硝用、脱臭用、内熱機関用
の触媒及び触媒担体として広く用いられているが、該遷
移アルミナより得た成形体は耐熱衝撃性、耐圧強度が低
く、例えば自動車用触媒担体の様に担体自体に衝撃が加
わるため耐圧強度の要求されるもの、あるいは排気ガス
中の未燃焼炭化水素、−酸化炭素の触媒酸化反応による
急激な発熱や、エンジン停止による急激な放冷等の大き
な温度変化を受ける場合には担体に亀裂や破損が生じ実
用に供しない。
In recent years, exhaust gas regulations from various industries have been tightened from the perspective of environmental conservation, and molded bodies made of transitional alumina such as activated alumina and alumina sol have a characteristic of having a high specific surface area compared to other inorganic molded bodies. It is widely used as a catalyst and catalyst carrier for denitrification, deodorization, and internal heat engines, but the molded bodies obtained from transition alumina have low thermal shock resistance and pressure resistance, and are not suitable for use as catalyst carriers for automobiles, for example. Items that require pressure resistance due to impact being applied to the carrier itself, or large temperature changes such as sudden heat generation due to catalytic oxidation reaction of unburned hydrocarbons and carbon oxides in exhaust gas, or sudden cooling due to engine stop. If this happens, the carrier will crack or break, rendering it unusable.

一方、この様な耐熱衝撃性、耐圧強度の要求される分野
への触媒あるいは触媒担体としてはコージェライト、ス
ボジュメン、ムライト等の低熱膨張性物質を原料とした
成形体が用いられているが、該成形体は一般的に比表面
積が1r+(7g以下と低いため、高比表面積を必要と
する場合には、該成形体の表面に活性アルミナ、アルミ
ナゾル等の高比表面積を有する物質をコーティングし、
触媒あるいは触媒担体として用いらているが、これら触
媒および触媒担体は製造工程の複雑さからコスト高にな
るとともに使用時にコーティング層が剥離し活性の低下
が生じ易い。
On the other hand, molded bodies made from low thermal expansion materials such as cordierite, subodumene, and mullite are used as catalysts or catalyst carriers in fields where thermal shock resistance and pressure resistance are required. The molded body generally has a low specific surface area of 1r+ (7 g or less), so if a high specific surface area is required, the surface of the molded body is coated with a substance having a high specific surface area such as activated alumina or alumina sol,
Although they are used as catalysts or catalyst carriers, these catalysts and catalyst carriers are expensive due to the complexity of the manufacturing process, and the coating layer tends to peel off during use, resulting in a decrease in activity.

また、内熱機関排ガス用触媒あるいは触媒′担体は近年
その排ガス規制の強化、装置のコンパクト化等の要請に
より平方インチ当り約400個の孔数を有するハニカム
状触媒担体が主流となってきており、さらに平方インチ
当り約600孔数以上の非常に孔径の小さいハニカム状
触媒担体の開発が行なわれている。
Additionally, in recent years, honeycomb-shaped catalyst carriers with approximately 400 holes per square inch have become mainstream as catalysts or catalyst carriers for exhaust gas from internal heat engines due to stricter exhaust gas regulations and demands for more compact equipment. Further, a honeycomb-shaped catalyst carrier having a very small pore diameter of about 600 pores per square inch or more is being developed.

この著しく孔径の小さな触媒担体にアルミナ層を均一に
コーティングすることは非常に困難であり、コストも増
加せざるを得ない。
It is very difficult to uniformly coat this catalyst carrier with a very small pore size with an alumina layer, and the cost must also increase.

本発明者らは、かかる状況を鑑み、耐熱衝撃性、耐圧強
度に優れ、かつ高比表面積を有する触媒および触媒担体
を見出すべく鋭意研究した結果、再水和性アルミナとコ
ージェライトを特定割合で有する骨材組成物を成形後再
水和処理し、次いで特定温度で焼結することにより、上
記物性をすべて満足し得る触媒あるいは触媒担体が得ら
れることを見出し、本発明を完成するに至った。
In view of this situation, the present inventors conducted intensive research to find a catalyst and catalyst support that have excellent thermal shock resistance, pressure resistance, and a high specific surface area. The present inventors have discovered that a catalyst or catalyst carrier that satisfies all of the above physical properties can be obtained by rehydrating an aggregate composition after molding and then sintering at a specific temperature, and have completed the present invention. .

すなわち、本発明は再水和性アルミナ90〜10重量%
、コージェライト10〜90重量%でかつ再水和性アル
ミナとコージェライトの合計が少なくとも50重量%以
上からなる骨材組成物を成形し、該成形体を再水和処理
した後これを1100〜1350℃の温度にて焼結する
ことを特徴とする触媒および触媒担体の製造方法を提供
するにある。
That is, the present invention uses 90 to 10% by weight of rehydratable alumina.
, an aggregate composition consisting of 10 to 90% by weight of cordierite and a total of at least 50% by weight of rehydratable alumina and cordierite is molded, and after the molded body is rehydrated, it is The present invention provides a method for producing a catalyst and a catalyst carrier, characterized in that the catalyst is sintered at a temperature of 1350°C.

以下、本発明方法を詳細に説明する。The method of the present invention will be explained in detail below.

本発明方法において用いる再水和性アルミナとはアルミ
ナ水和物を熱分解したα−アルミナ以外の遷移アルミナ
、例えばρ−アルミナ及び無定形アルミナ等であり、工
業的には例えばバイヤ一工程から得られるアルミナ三水
和物等のアルミナ水和物を約400〜1200℃の熱ガ
スに通常数分の1〜10秒間接触させたり、あるいはア
ルミナ水和物を減圧下で約250〜900℃に通常1分
〜4時間加熱保持することにより得ることができる約0
.5〜15重量%の灼熱減量を存するもの等が挙げられ
る。
The rehydratable alumina used in the method of the present invention is transitional alumina other than α-alumina obtained by thermally decomposing alumina hydrate, such as ρ-alumina and amorphous alumina, and industrially, for example, it can be obtained from a Bayer step. Alumina hydrates, such as alumina trihydrate, are brought into contact with hot gas at about 400 to 1200°C, usually for a fraction of a second to 10 seconds, or alumina hydrates are brought into contact with hot gas at about 250 to 900°C under reduced pressure. Approximately 0 can be obtained by heating and holding for 1 minute to 4 hours.
.. Examples include those having a loss on ignition of 5 to 15% by weight.

本発明において用いる再水和性アルミナを物性面から見
ればX線回折によりρ−アルミナおよび/または無定形
アルミナが再水和性アルミナ中に20重貴簡以上、好ま
しくは30重貴簡以上存在するものであればよい。
When looking at the physical properties of the rehydratable alumina used in the present invention, X-ray diffraction reveals that ρ-alumina and/or amorphous alumina are present in the rehydrating alumina at least 20 times, preferably at least 30 times. It is fine as long as it is done.

再水和性アルミナは一般に約50μ以下の粒子径のもの
が使用され、コージェライトとの混合割合で10〜90
を量%、望ましくは30〜70重景%の貴簡で用いられ
る。
Rehydratable alumina is generally used with a particle size of about 50 μm or less, and the mixing ratio with cordierite is 10 to 90 μm.
%, preferably 30 to 70%.

再水和性アルミナのコージェライトに対する混合割合が
10重量%より少ない場合には比表面積の向上がみられ
ず、一方90重量%を越える場合には耐圧強度、耐熱衝
撃性の改良は認められない。
If the mixing ratio of rehydratable alumina to cordierite is less than 10% by weight, no improvement in specific surface area is observed, while if it exceeds 90% by weight, no improvement in compressive strength or thermal shock resistance is observed. .

本発明に於いて用いるコージェライトとは結晶相の主成
分がコージェライトであればよく、より具体的にはシリ
カ51.3重量%、アルミナ34.9重量%及びマグネ
シア13.8重量%のコージェライト組成点に対し、シ
リカ44〜51重量%、アルミナ34〜48重量%、マ
グネシア10〜18重量%の化学組成範囲を有するもの
が挙げられ、再水和性アルミナとの混合割合で9O−1
o重量%、望ましくは70〜30重景%の貴簡で用いら
れる。
The cordierite used in the present invention may be any cordierite as long as the main component of the crystalline phase is cordierite. Examples include those having a chemical composition range of 44 to 51% by weight of silica, 34 to 48% by weight of alumina, and 10 to 18% by weight of magnesia with respect to the light composition point, and the mixing ratio with rehydratable alumina is 9O-1.
o weight percent, preferably 70 to 30 weight percent.

再水和性アルミナに対するコージェライトの添加量が1
0重量%以下の場合、熱膨張率の低減化に寄与せず十分
な耐熱衝撃性を得るに至らず、一方90重量%を越える
場合には比表面積が小さく十分な触媒活性を得ることが
できない。
The amount of cordierite added to rehydratable alumina is 1
If it is less than 0% by weight, it will not contribute to reducing the coefficient of thermal expansion and sufficient thermal shock resistance will not be obtained, while if it exceeds 90% by weight, the specific surface area will be small and sufficient catalytic activity will not be obtained. .

コージェライトの粒径は低温での易焼結性を付与せしめ
、加えて成形体とした場合のマクロポア量を著しく低減
することのない粒径のものが用いられ、−aには中心粒
径50〜0.1μ、望ましくは30〜0.5μのものが
用いられる。
The particle size of cordierite is such that it provides easy sinterability at low temperatures and does not significantly reduce the amount of macropores when formed into a molded body. ~0.1μ, preferably 30~0.5μ is used.

本発明方法の実施に際し、再水和性アルミナとコージェ
ライトは上記組成範囲で骨材組成物を形成し、次いで成
形され再水和処理、焼結処理を経て触媒または触媒担体
となるが、本発明の目的とする諸物性を損なわない範囲
で再水和性アルミナおよびコージェライト以外の骨材を
用いることができる。
When carrying out the method of the present invention, rehydratable alumina and cordierite form an aggregate composition within the above composition range, which is then shaped into a catalyst or catalyst support through rehydration treatment and sintering treatment. Aggregates other than rehydratable alumina and cordierite can be used as long as the physical properties targeted by the invention are not impaired.

これら骨材としては光触媒担体の分野に於いて用いられ
ている骨材であれば特に限定されるものではないが、α
−アルミナ、シリカ、アルミナ水和物、粘土、タルク、
ベントナイト、ケイソウ土、ゼオライト、スボジュメン
、チタニア、ジルコニア、シリカゾル、アルミナゾル、
ムライト、活性炭等が挙げられ、骨材組成物中50重量
%未満、好ましくは30重貴簡未満、より好ましくは2
0重量%未満で用いられる。
These aggregates are not particularly limited as long as they are aggregates used in the field of photocatalyst carriers, but α
−Alumina, silica, alumina hydrate, clay, talc,
bentonite, diatomaceous earth, zeolite, subodumene, titania, zirconia, silica sol, alumina sol,
Examples include mullite, activated carbon, etc., and the content thereof in the aggregate composition is less than 50% by weight, preferably less than 30 times, more preferably 2
Used at less than 0% by weight.

更に必要に応じて(触媒あるいは)触媒担体の比表面積
、細孔容積を増大せしめる目的で、有機質結晶セルロー
スおよび合成樹脂等の添加、強度増加のための無機質繊
維の添加、担体形成後の触媒成分の担持工程を省略する
目的で、あるいは触媒能強化の目的で触媒成分の添加等
を行なってもよく、該添加量範囲は無機物は骨材の範晴
、有機物は目的とする成形体の用途に応じて調製すれば
よい。
Furthermore, as necessary, for the purpose of increasing the specific surface area and pore volume of the (catalyst or) catalyst carrier, organic crystalline cellulose and synthetic resins are added, inorganic fibers are added to increase strength, and catalyst components are added after the carrier is formed. Catalyst components may be added for the purpose of omitting the supporting step or for the purpose of strengthening the catalytic ability. It may be prepared accordingly.

本発明の実施において、再水和性アルミナは水あるいは
水含有物質と接触せしめる前に、再水和防止剤で部分的
に、あるいは完全に被覆せしめる。
In the practice of this invention, the rehydratable alumina is partially or completely coated with an anti-rehydration agent prior to contact with water or water-containing materials.

骨材構成物中の再水和性アルミナは、直接水あるいは水
含有物質で混練すると、この過程で再水和反応を生起す
る。
When the rehydratable alumina in the aggregate composition is kneaded directly with water or water-containing substances, a rehydration reaction occurs during this process.

このため例え、成形後再水和処理を実施しても所望の強
度を付与することができない。
For this reason, even if a rehydration treatment is performed after molding, desired strength cannot be imparted.

再水和防止剤はかかる再水和性アルミナの再水和を抑制
しうるちのであれば、具体的には常温で固体状の有機物
の場合常温における水への溶解度が約20重量%以下の
もの、好ましくは約10重量%以下のものが挙げられる
If the rehydration inhibitor can suppress the rehydration of such rehydratable alumina, specifically, in the case of organic substances that are solid at room temperature, the solubility in water at room temperature is about 20% by weight or less. %, preferably about 10% by weight or less.

また、常温で液体状の有機物の場合、常温における水に
対する相互溶解度が高々50%以下のもの、好ましくは
25%以下のものが挙げられる。
Further, in the case of organic substances that are liquid at room temperature, examples thereof include those whose mutual solubility in water at room temperature is at most 50% or less, preferably 25% or less.

より具体的には、カプロン酸、パルミチン酸、オレイン
酸、グリコール酸、カプリル酸、ステアリン酸、サリチ
ル酸、トリメチル酢酸、ラウリル酸、セロチン酸、桂皮
酸、マロン酸、ミリスチン酸、セバシン酸、安息香酸、
無水マレイン酸、ロウ等の脂肪酸及びその塩類、または
これらのスルホン酸、リン酸置換体、t−ブチルアルコ
ール、ラウリルアルコール、セチルアルコール、ステア
リルアルコール、シクロヘキサノール、メントール、コ
レステリン、ナフトール等のアルコール、ラウリルアミ
ン、テトラメチレンジアミン、ジェタノールアミン、ジ
フェニルアミン等のアミン、n−ヘプタデカン、n−オ
クタデカン、n−ノナデカン、n−エイコサン等のアル
カン、ナフタリン、ジフェニル、アントセン等の芳香族
化合物、澱粉、カゼイン、セルロース及びその誘導体、
アルギン酸塩等の天然高分子化合物、ポリエチレン、ポ
リビニルアルコール、ポリ塩化ビニル、ポリプロピレン
、ポリアクリル酸ソーダ、ポリブタジェン、イソプレン
ゴム、ウレタン樹脂等の合成高分子化合物、流動パラフ
ィン、大豆油、白絞油、軽油、灯油等のパラフィン類、
カプリル酸、ペラルゴン酸等のカルボン酸類、ベンゼン
、トルエン、キシレン、キュメン等の芳香族炭化水素が
挙げられる。
More specifically, caproic acid, palmitic acid, oleic acid, glycolic acid, caprylic acid, stearic acid, salicylic acid, trimethylacetic acid, lauric acid, cerotic acid, cinnamic acid, malonic acid, myristic acid, sebacic acid, benzoic acid,
Fatty acids and their salts such as maleic anhydride and wax, or sulfonic acids, phosphoric acid substituted products thereof, alcohols such as t-butyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol, cyclohexanol, menthol, cholesterin, and naphthol, Amines such as laurylamine, tetramethylenediamine, jetanolamine, diphenylamine, alkanes such as n-heptadecane, n-octadecane, n-nonadecane, n-eicosane, aromatic compounds such as naphthalene, diphenyl, anthcene, starch, casein, cellulose and its derivatives,
Natural polymer compounds such as alginate, synthetic polymer compounds such as polyethylene, polyvinyl alcohol, polyvinyl chloride, polypropylene, sodium polyacrylate, polybutadiene, isoprene rubber, urethane resin, liquid paraffin, soybean oil, white squeeze oil, light oil , paraffins such as kerosene,
Examples include carboxylic acids such as caprylic acid and pelargonic acid, and aromatic hydrocarbons such as benzene, toluene, xylene, and cumene.

これら再水和防止剤は、再水和性アルミナ表面を部分的
あるいは完全に被覆せしめ得る割合で添加混合するが、
被覆方法としては直接粉体に添加混合、あるいは混練し
被覆せしめる方法、あるいは再水和防止剤が固体状物で
直接粉体に被覆するのが困難なものの場合にはアルコー
ル、エーテル等の適切な溶媒中に予め再水和防止剤を溶
解せしめた後被覆せしめるか、また液状物の場合には直
接再水和防止剤中に浸漬せしめるか、あるいは液体を蒸
気化して、粉体表面に被覆せしめる等の種々の方法が挙
げられる。
These rehydration inhibitors are added and mixed in such a proportion that they can partially or completely cover the rehydrating alumina surface.
Coating methods include adding and mixing directly to the powder, or kneading to coat the powder, or if the rehydration inhibitor is a solid substance that is difficult to coat directly on the powder, an appropriate coating method such as alcohol or ether may be used. The anti-rehydration agent is dissolved in a solvent in advance and then coated, or in the case of a liquid, it is directly immersed in the anti-rehydration agent, or the liquid is vaporized and coated on the powder surface. There are various methods such as

再水和防止剤の添加量は骨材の粒径分布、組成、再水和
処理の条件等に左右されるが、通常再水和性アルミナに
対して、0.01〜30重量%の範囲で用いられる。
The amount of rehydration inhibitor added depends on the aggregate particle size distribution, composition, rehydration treatment conditions, etc., but is usually in the range of 0.01 to 30% by weight based on rehydration alumina. used in

添加量が0.01重量%より少ない場合には、再水和防
止効果が十分ではなく、所望の成形体に成形後の再水和
処理により、目的とする結合強度を達成しえない。
If the amount added is less than 0.01% by weight, the rehydration prevention effect will not be sufficient, and the desired bonding strength will not be achieved by rehydration treatment after molding into the desired molded article.

本発明方法における成形方法は一般に触媒担体の製造に
用いられているものであれば全ての方法で実施すること
が可能であり、皿型造粒法、押出成形法、プレス法、キ
ャスティング法等が挙げられ、当然成形体の形態も制限
を受けるものではない。
The molding method in the method of the present invention can be carried out by any method that is generally used for manufacturing catalyst carriers, and includes dish granulation method, extrusion molding method, pressing method, casting method, etc. Naturally, the form of the molded product is not limited.

また、成形体を形成するまでの操作、例えば骨材の混合
、混練方法、添加する粘結剤、成形助剤等は各々の成形
方法での公知方法で実施すればよい。
Further, operations up to forming a molded body, such as mixing of aggregates, kneading method, added binder, molding aid, etc., may be carried out by known methods for each molding method.

成形後の成形体は再水和処理に付される。The molded body after molding is subjected to a rehydration treatment.

該処理も活性アルミナ担体の製造等で既に公知の方法を
用いればよく、室温〜100℃の水中あるいは室温〜1
50℃の水蒸気中または水蒸気含有ガス中で1分〜1週
間行われる。
This treatment can also be carried out using a method already known for the production of activated alumina carriers, and can be carried out in water at room temperature to 100°C or in water at room temperature to 100°C.
The test is carried out in water vapor at 50°C or in a water vapor-containing gas for 1 minute to 1 week.

また常温、常圧下の密閉容器中で長時間放置し再水和す
ることも可能である。
It is also possible to rehydrate by leaving it in a closed container at room temperature and pressure for a long time.

この様にして再水和された成形体は次いで自然乾燥、熱
風乾燥、高周波乾燥等の公知方法で付着水分を除去せし
めた後、1100〜1350℃の温度にて焼結される。
The molded body rehydrated in this manner is then sintered at a temperature of 1100 to 1350°C after removing adhering moisture by a known method such as natural drying, hot air drying, or high frequency drying.

焼結温度が1100℃未満の場合には十分な耐圧強度、
耐熱衝撃性を付与することができず一方1350℃を越
える場合には比表面積の低下が著しいので好ましくない
If the sintering temperature is less than 1100℃, sufficient pressure resistance,
If the temperature exceeds 1350° C., the specific surface area will drop significantly, which is not preferable.

焼結時間は焼結温度、成形体構成組成物、最終目的とす
る成形体の物性により異なるが、通常30分〜24時間
焼成される。
The sintering time varies depending on the sintering temperature, the constituent composition of the molded body, and the physical properties of the final molded body, but it is usually sintered for 30 minutes to 24 hours.

この様にして得た成形体はその比表面積が5〜100r
rr/g、耐圧強度100kt/cd以上、耐熱衝撃温
度500℃以上で焼結後のアルミナ成分は主にr−5θ
−アルミナからなる物性を有するものである。
The molded product thus obtained has a specific surface area of 5 to 100 r.
rr/g, compressive strength 100kt/cd or more, thermal shock resistance temperature 500℃ or more, and the alumina component after sintering is mainly r-5θ.
- It has physical properties consisting of alumina.

本発明に於いて得られた成形体が何故単なる再水和性ア
ルミナとコージェライトの混合割合による算術平均以上
に耐圧強度、比表面積の向上効果を見ることができるの
か理由は詳らかではないが、恐らく再水和反応により活
性化された微粒アルミナ粒子表面がコージェライト粒子
の焼結による収縮に引きずられ、その接触表面積を増し
、従来では考えられぬ低温で焼結を開始するかあるいは
コージェライト粒子との化学反応により焼結が促進され
、而して形成された粒子間結合により強度が著しく増加
するとともに耐熱衝撃性もその見掛の熱膨張率の減少及
び強度の増加に依存して増加するものと考えられる。
Although it is not clear why the molded product obtained in the present invention is able to improve compressive strength and specific surface area more than the arithmetic average of the mixing ratio of rehydratable alumina and cordierite, Perhaps the surface of the fine alumina particles activated by the rehydration reaction is dragged by the shrinkage of the cordierite particles due to sintering, increasing their contact surface area and starting sintering at a previously unimaginable low temperature, or the cordierite particles Sintering is promoted by the chemical reaction with the material, and the strength is significantly increased due to the interparticle bonds formed, and the thermal shock resistance is also increased depending on the decrease in the apparent coefficient of thermal expansion and the increase in strength. considered to be a thing.

さらには再水和性アルミナ粒子のアルファ化がコージェ
ライトの存在により抑制され、焼結の進行にもかかわら
ず比表面積の低下が少ないとも推考される。
Furthermore, it is also assumed that the presence of cordierite suppresses the alpha conversion of the rehydratable alumina particles, and that the specific surface area decreases little despite the progress of sintering.

以下、実施例により本発明を更に詳細に説明するが本発
明は以下の実施例により限定されるものではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples.

尚、本発明に於いて耐熱衝撃性、耐圧強度及び比表面積
は以下の方法により測定した。
In the present invention, thermal shock resistance, compressive strength, and specific surface area were measured by the following methods.

耐熱衝撃性:高温に保持した炉より室温のレンガ上に取
り出しクラックの発生し ない最高温度を耐熱衝撃温度とし た。
Thermal shock resistance: The highest temperature at which cracks did not occur was taken out of a furnace kept at a high temperature and placed on a brick at room temperature, which was defined as the thermal shock resistance temperature.

耐圧強度 :インストロン式強度試験機を用い2fl/
minの歪速度により得られ た約10個のサンプル数の平均値 を耐圧強度とした6 比表面積 jBET法による。
Compressive strength: 2fl/ using an Instron strength tester
Based on the jBET method, where the compressive strength is the average value of about 10 samples obtained at a strain rate of min.

実施例1 ギブサイト型アルミナ水和物を暇焼して得られた平均粒
子径6μのρ−アルミナ30重量部含有する活性アルミ
ナ粉末50重量部に原料骨材混練時及び押出成型機内で
ρ−アルミナが再水和反応を生起するのを防止する目的
(以下再水和防止剤と称する。)でワックス2重量部を
加え平均粒子径3μのコージェライト粉末50重量部、
さらに押出助剤としてメチルセルロース4.5重量部、
水32重量部を加えた混合物をスクリューニーダを用い
30分間混練後スクリエー型押出機に供給し、壁厚0.
25 mで−辺1冒菖の正方形のニアユニットを有する
約95龍φ×100龍lのハニカム状触媒担体を成型し
た。
Example 1 50 parts by weight of activated alumina powder containing 30 parts by weight of ρ-alumina with an average particle size of 6 μ obtained by baking gibbsite-type alumina hydrate was mixed with ρ-alumina during kneading raw material aggregate and in an extrusion molding machine. 50 parts by weight of cordierite powder with an average particle size of 3μ, to which 2 parts by weight of wax was added for the purpose of preventing the rehydration reaction from occurring (hereinafter referred to as a rehydration inhibitor);
Furthermore, 4.5 parts by weight of methylcellulose as an extrusion aid;
A mixture to which 32 parts by weight of water was added was kneaded for 30 minutes using a screw kneader and then fed to a screw extruder with a wall thickness of 0.
A honeycomb-shaped catalyst carrier measuring approximately 95 mm in diameter and 100 mm in length and having a square near unit with a length of 25 m and a side of 1 side was molded.

次いでこの担体を90℃の温水中にて24時間の再水和
処理を行った後l000℃まで100℃/時間、120
0℃まで30℃/時間の昇温速度で昇温し、更に120
0℃で3時間焼成した。
Next, this carrier was rehydrated in warm water at 90°C for 24 hours, and then heated to 1000°C at 100°C/hour, 120°C.
The temperature was increased to 0°C at a rate of 30°C/hour, and then further heated to 120°C.
It was baked at 0°C for 3 hours.

この様にして得られたハニカム状触媒担体の物性を第1
表に示す。
The physical properties of the honeycomb-shaped catalyst carrier obtained in this way were first evaluated.
Shown in the table.

また、比較のため上記活性アルミナ粉末とコージェライ
ト粉末の混合比を■活性アルミナ粉末95重量部、コー
ジェライト粉末5重量部、■活性アルミナ粉末5重量部
、コージェライト粉末95重量部に代えた他は上記実施
例1と同様にしてハニカム状触媒担体を製造した。
For comparison, the mixing ratio of the above activated alumina powder and cordierite powder was changed to (95 parts by weight of activated alumina powder, 5 parts by weight of cordierite powder), (5 parts by weight of activated alumina powder, and 95 parts by weight of cordierite powder). A honeycomb-shaped catalyst carrier was manufactured in the same manner as in Example 1 above.

この時の物性を第1表に示す。The physical properties at this time are shown in Table 1.

第1表 実施例2 実施例1と同じ活性アルミナ粉末70重量部部に再水和
防止剤としてワックス2.8重量部を加え、中心粒径(
50%粒径)3μのコージェライト粉末30重量部さら
に押出助剤としてメチルセルロース4.7重量部、水3
5重量部を加えた混合物をスクリューニーダを用い30
分間混練後実施例1と同じ方法でハニカム状触媒担体を
成型した。
Table 1 Example 2 2.8 parts by weight of wax as a rehydration inhibitor was added to 70 parts by weight of the same activated alumina powder as in Example 1, and the center particle size (
30 parts by weight of cordierite powder (50% particle size) 3 μm, 4.7 parts by weight of methylcellulose as an extrusion aid, and 3 parts by weight of water.
Using a screw kneader, the mixture containing 5 parts by weight of
After kneading for a minute, a honeycomb catalyst carrier was molded in the same manner as in Example 1.

次いでこの担体を実施例1と同じ条件で再水和処理し、
次いで、実施例1と同じ昇温条件で1220℃まで昇温
し、同温度で2時間焼成した。
This carrier was then rehydrated under the same conditions as in Example 1,
Next, the temperature was raised to 1220° C. under the same temperature raising conditions as in Example 1, and firing was performed at the same temperature for 2 hours.

この様にして得られたハニカム状触媒担体はカサ密度1
.68 g /cm” 、比表面積45rrf/g、耐
圧強度320kg/ai、耐熱衝撃温度700℃であっ
た。
The honeycomb-shaped catalyst carrier obtained in this way has a bulk density of 1
.. 68 g/cm", specific surface area 45 rrf/g, compressive strength 320 kg/ai, and thermal shock resistance temperature 700°C.

実施例3 実施例1と同じ方法で501φ×40龍φ×300■■
lのチューブ状触媒担体を成型した。
Example 3 501 φ x 40 dragon φ x 300 ■■ using the same method as Example 1
1 of tubular catalyst carriers were molded.

次いでこの担体を実施例1と同じ条件で再水和処理、続
いて昇温を行ない1250℃まで3時間焼成した。
Next, this carrier was rehydrated under the same conditions as in Example 1, and then the temperature was raised to 1250° C. for 3 hours.

この様にして得られたチューブ状触媒担体はカサ密度1
.90 g /cta” 、比表面積20rrr/g、
耐圧強度600kir/cd(チューブ軸方向)55k
g/ad(チューブ軸直角方向)、耐熱衝撃温度105
0℃であった。
The tubular catalyst carrier obtained in this way has a bulk density of 1
.. 90 g/cta", specific surface area 20 rrr/g,
Pressure strength 600kir/cd (tube axial direction) 55k
g/ad (tube axis perpendicular direction), thermal shock resistance temperature 105
It was 0°C.

比較例1 ベーマイト型アルミナ水和物を600℃で暇焼して得ら
れた平均粒子径8μの主にγ−アルミナからなる焼成ア
ルミナ粉末50重量部に平均粒径3μのコージェライト
粉末50重量部さらに押出助剤としてメチルセルロース
4重量部、水30重量部を加えた混合物をスクリューニ
ーダを用い30分間混練後、スクリュー型押出機に供給
し実施例1と同じハニカム状触媒担体を成型した。
Comparative Example 1 50 parts by weight of cordierite powder with an average particle size of 3 μm was added to 50 parts by weight of calcined alumina powder mainly composed of γ-alumina with an average particle size of 8 μm obtained by baking boehmite type alumina hydrate at 600°C. Further, a mixture containing 4 parts by weight of methylcellulose and 30 parts by weight of water as extrusion aids was kneaded for 30 minutes using a screw kneader, and then fed to a screw extruder to form the same honeycomb-shaped catalyst carrier as in Example 1.

次いで、この担体を実施例1と同じ条件で焼結した。This carrier was then sintered under the same conditions as in Example 1.

この様にして得られたハニカム状触媒担体はカサ密度1
−5 g/cm” 、比表面積15rrr/g、耐圧強
度120kg/cd、耐熱衝撃温度300℃であった。
The honeycomb-shaped catalyst carrier obtained in this way has a bulk density of 1
-5 g/cm", specific surface area of 15 rrr/g, compressive strength of 120 kg/cd, and thermal shock resistance of 300°C.

比較例2 実施例1と同じ条件で成型したハニカム状触媒担体を再
水和処理を行わないで実施例1と同じ条件で焼成した。
Comparative Example 2 A honeycomb-shaped catalyst carrier molded under the same conditions as in Example 1 was fired under the same conditions as in Example 1 without performing rehydration treatment.

この様にして得られたハニカム状触媒担体はカサ密度1
.55 g /cm!、比表面積比表面積20耐/強度
150kg/aJ、耐熱衝撃温度350℃であった。
The honeycomb-shaped catalyst carrier obtained in this way has a bulk density of 1
.. 55 g/cm! , specific surface area specific surface area 20 resistance/strength 150 kg/aJ, and thermal shock resistance temperature 350°C.

比較例3 実施例1と同じ条件で成型、再水和処理を行なったハニ
カム状触媒担体を実施例1と同し条件で昇温し1050
℃で5時間焼成した。
Comparative Example 3 A honeycomb-shaped catalyst carrier that had been molded and rehydrated under the same conditions as Example 1 was heated to 1050 ml under the same conditions as Example 1.
It was baked at ℃ for 5 hours.

この様にして得られたハニカム状触媒担体はカサ密度1
.40 g /cm” 、比表面積60n?/g、耐圧
強度80kg/cd、耐熱衝撃温度200℃であった。
The honeycomb-shaped catalyst carrier obtained in this way has a bulk density of 1
.. 40 g/cm", specific surface area 60 n?/g, compressive strength 80 kg/cd, and thermal shock resistance temperature 200°C.

比較例4 比較例3のハニカム状触媒担体を1400℃で1時間焼
成した。
Comparative Example 4 The honeycomb-shaped catalyst carrier of Comparative Example 3 was fired at 1400° C. for 1 hour.

この様にして得られたハニカム状触媒担体はカサ密度2
.Q g/cm” 、比表面積1rrr/g以上、耐圧
強度390kg/−であった。
The honeycomb-shaped catalyst carrier obtained in this way has a bulk density of 2
.. Q g/cm", specific surface area of 1 rrr/g or more, and pressure resistance of 390 kg/-.

実施例4 実施例1と同じ活性アルミナ粉末50重量部、コージェ
ライト粉末50重量部を混合し、さらに水28重量部添
加し皿型造粒機により4〜6鶴φの球状触媒担体を成型
した。
Example 4 50 parts by weight of the same activated alumina powder and 50 parts by weight of cordierite powder as in Example 1 were mixed, 28 parts by weight of water was further added, and a spherical catalyst carrier with a diameter of 4 to 6 cranes was molded using a dish-type granulator. .

次いでこの担体を24時間室温(20℃)で予備再水和
処理後90℃の温水中にて24時間の再水和処理を行な
った。
Next, this carrier was preliminarily rehydrated at room temperature (20°C) for 24 hours, and then rehydrated in warm water at 90°C for 24 hours.

焼成は1000℃まで100℃/Hr1200℃まで5
0℃/Hrの昇温速度で昇温し更に1200℃で3時間
焼成した。
Firing up to 1000℃ 100℃/Hr up to 1200℃ 5
The temperature was raised at a temperature increase rate of 0°C/Hr, and further baked at 1200°C for 3 hours.

この様にして得られた球状触媒担体はカサ密度1.85
 g /c+s3、比表面積30ボ/g、耐圧強度90
kg(5mφ粒径品)であった。
The spherical catalyst carrier obtained in this way has a bulk density of 1.85.
g/c+s3, specific surface area 30bo/g, pressure resistance 90
kg (5 mφ particle size product).

比較例5 実施例1と同じ活性アルミナ粉末100重量部に水35
重量部添加し、実施例4と同じ方法、条件により球状触
媒担体を成形、再水和処理後焼成した。
Comparative Example 5 35 parts by weight of water was added to 100 parts by weight of the same activated alumina powder as in Example 1.
A spherical catalyst carrier was formed by the same method and conditions as in Example 4, rehydrated, and then fired.

この様にして得られた球状触媒担体はカサ密度1.40
 g /cm″、比表面積8n?/g、耐圧強度10k
g(5■1φ粒径品)であった。
The spherical catalyst carrier obtained in this way has a bulk density of 1.40.
g/cm'', specific surface area 8n?/g, pressure resistance 10k
g (5×1φ particle size product).

実施例5 実施例1と同じ活性アルミナ粉末40重量部に再水和防
止剤としてワックス1.6重量部を加え平均粒子径3μ
のコージェライト粉末30重量部、平均粒子径6μのα
−アルミナ30重量部、さらに押出助剤としてメチルセ
ルロース4゜4重量部、水30重量部を加えた混合物を
スクリューニーダを用い30分間混練後実施例1と同じ
方法でハニカム状触媒担体を成型した。
Example 5 1.6 parts by weight of wax was added as a rehydration inhibitor to 40 parts by weight of the same activated alumina powder as in Example 1 to give an average particle size of 3 μm.
30 parts by weight of cordierite powder, α with an average particle size of 6μ
- A mixture of 30 parts by weight of alumina, 4.4 parts by weight of methyl cellulose and 30 parts by weight of water as extrusion aids was kneaded for 30 minutes using a screw kneader, and then a honeycomb-shaped catalyst carrier was formed in the same manner as in Example 1.

次いでこの担体を実施例1と同じ条件で再水和処理後、
続いて昇温を行ない1200℃で3時間焼成した。
Next, this carrier was rehydrated under the same conditions as in Example 1, and then
Subsequently, the temperature was raised to 1200° C. for 3 hours.

この様にして得られたハニカム状触媒担体はカサ密度1
.90 g /cm2.比表面積25rrr/g、耐圧
強度280kg/d、耐熱衝撃温度65(1であった。
The honeycomb-shaped catalyst carrier obtained in this way has a bulk density of 1
.. 90 g/cm2. The specific surface area was 25 rrr/g, the compressive strength was 280 kg/d, and the thermal shock resistance temperature was 65 (1).

Claims (1)

【特許請求の範囲】[Claims] 1)再水和性アルミナ90〜10重量%、コージェライ
ト10〜90重量%でかつ再水和性アルミナとコージェ
ライトの合計が少なくとも50重量%以上からなる骨材
組成物を成形し、該成形体を再水和処理した後これを1
100〜1350℃の温度にて焼結することを特徴とす
る触媒および触媒担体の製造方法。
1) Molding an aggregate composition consisting of 90 to 10% by weight of rehydratable alumina and 10 to 90% by weight of cordierite, in which the total of rehydratable alumina and cordierite is at least 50% by weight, and the molding. After rehydrating the body, use this 1
A method for producing a catalyst and a catalyst carrier, comprising sintering at a temperature of 100 to 1350°C.
JP62032238A 1987-02-13 1987-02-13 Production of catalyst and catalytic carrier Granted JPS62201644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62032238A JPS62201644A (en) 1987-02-13 1987-02-13 Production of catalyst and catalytic carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62032238A JPS62201644A (en) 1987-02-13 1987-02-13 Production of catalyst and catalytic carrier

Publications (2)

Publication Number Publication Date
JPS62201644A true JPS62201644A (en) 1987-09-05
JPS642418B2 JPS642418B2 (en) 1989-01-17

Family

ID=12353408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62032238A Granted JPS62201644A (en) 1987-02-13 1987-02-13 Production of catalyst and catalytic carrier

Country Status (1)

Country Link
JP (1) JPS62201644A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105469A1 (en) * 2007-02-27 2008-09-04 Nippon Shokubai Co., Ltd. Catalyst for exhaust gas treatment and exhaust gas treatment method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105469A1 (en) * 2007-02-27 2008-09-04 Nippon Shokubai Co., Ltd. Catalyst for exhaust gas treatment and exhaust gas treatment method
JPWO2008105469A1 (en) * 2007-02-27 2010-06-03 株式会社日本触媒 Exhaust gas treatment catalyst and exhaust gas treatment method
JP5215990B2 (en) * 2007-02-27 2013-06-19 株式会社日本触媒 Exhaust gas treatment catalyst and exhaust gas treatment method

Also Published As

Publication number Publication date
JPS642418B2 (en) 1989-01-17

Similar Documents

Publication Publication Date Title
US4295892A (en) Cordierite ceramic honeycomb and a method for producing the same
CA2745034C (en) Ceramic honeycomb structure skin coating
EP1452512B1 (en) Method for producing porous ceramic article
KR930005309B1 (en) Preparation of monolithic catalyst support structures having an integrated high surface area phase
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
US4950628A (en) Material and process to produce low thermal expansion cordierite structures
JPS61212329A (en) Preparation of high surface area flocculated substance for catalyst carrier and preparation of monolithic carrier structure containing the same
ZA200500852B (en) Alumina-bound high strength ceramic honeycombs.
JP2009521388A (en) High porosity cordierite ceramic honeycomb articles and methods
CN109414691A (en) The manufacturing method of honeycomb structure and the honeycomb structure
JP2010502547A (en) Cordierite honeycomb body having high strength and substantially no microcrack and manufacturing method
US4224302A (en) Process for producing an alumina catalyst carrier
US4277376A (en) Process for the manufacture of a monolithic support for catalysts suitable for use in controlling carbon monoxide emissions
JP2006265034A (en) Method for producing cleavage index of kaolinite particle and production method of cordierite honeycomb structure
US3943064A (en) High strength alumina-silica catalyst substrates having high surface area
JP4455786B2 (en) Method for producing porous material and method for producing hollow granules used therefor
US5275771A (en) Expansion reduction of cordierite
WO2005049191A2 (en) Method of producing alumina-silica catalyst supports
JPS62201644A (en) Production of catalyst and catalytic carrier
JP2008081324A (en) METHOD FOR PRODUCING alpha-ALUMINA MOLDING
JPS6325814B2 (en)
RU2233700C2 (en) Composition of charge for high-porous cellular- structure material for catalyst carriers
EP0019674A1 (en) Process for the production of a hollow catalyst carrier made of transition-alumina
KR820001901B1 (en) Process for producing hollow catalyst carrier made of transition-alumina
JPS5915015B2 (en) Transition alumina-based hollow catalyst support