JPS5915015B2 - Transition alumina-based hollow catalyst support - Google Patents

Transition alumina-based hollow catalyst support

Info

Publication number
JPS5915015B2
JPS5915015B2 JP54037546A JP3754679A JPS5915015B2 JP S5915015 B2 JPS5915015 B2 JP S5915015B2 JP 54037546 A JP54037546 A JP 54037546A JP 3754679 A JP3754679 A JP 3754679A JP S5915015 B2 JPS5915015 B2 JP S5915015B2
Authority
JP
Japan
Prior art keywords
alumina
weight
catalyst carrier
parts
rewatering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54037546A
Other languages
Japanese (ja)
Other versions
JPS55129149A (en
Inventor
興一 山田
州男 中里
和夫 堀ノ内
誠一 浜野
正英 毛利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Aluminum Smelting Co
Original Assignee
Sumitomo Aluminum Smelting Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Aluminum Smelting Co filed Critical Sumitomo Aluminum Smelting Co
Priority to JP54037546A priority Critical patent/JPS5915015B2/en
Publication of JPS55129149A publication Critical patent/JPS55129149A/en
Publication of JPS5915015B2 publication Critical patent/JPS5915015B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は遷移アルミナ系ホロー状触媒担体に関するもの
で、更に詳しくは細孔容積、比表面積の極めて大きい遷
移アルミナ系ホロー状触媒担体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transition alumina hollow catalyst carrier, and more particularly to a transition alumina hollow catalyst carrier having extremely large pore volume and specific surface area.

従来、セラミック質ホロー状構造体、特にマルチセル構
造体は平行した多数の均一なガス流路を持つため圧力損
失が非常ρJ・さく、該溝造体内のガスの流量分布がよ
いこと、また薄壁からなっているため単位重量当りの有
効表面積が大きく、さらに軽量にもかかわらず強度が犬
で、耐熱性に優れている等の種々の利点より触媒担体、
支持体、熱交換器、断熱材、防音材などの用途があり、
特に一体化物で耐衝撃性、耐摩耗性が良いことから自動
車排ガス処理用や脱硝用触媒担体として注目されている
Conventionally, ceramic hollow structures, especially multi-cell structures, have a large number of parallel and uniform gas flow paths, resulting in very low pressure loss, ρJ・, and good gas flow distribution within the groove structure, as well as thin walls. The catalyst carrier has various advantages such as a large effective surface area per unit weight, high strength despite being lightweight, and excellent heat resistance.
It has applications such as supports, heat exchangers, insulation materials, and soundproofing materials.
In particular, it is attracting attention as a catalyst carrier for automobile exhaust gas treatment and denitrification because it is an integrated product with good impact resistance and abrasion resistance.

これらのセラミック質構造体の原料としてはタルク、ベ
ントナイト、α−アルミナ等を混練焼成してなるコーデ
ィエライト、スポジュメン、α−アルミナ、チタニア、
ジルコニア、ムライト、焼成カオリン等が用いられてい
る。
Raw materials for these ceramic structures include cordierite, which is obtained by kneading and firing talc, bentonite, α-alumina, etc., spodumene, α-alumina, titania,
Zirconia, mullite, calcined kaolin, etc. are used.

特にコーディエライト、スポジュメン、α−アルミナ、
ムシイトなどからなるセラミック質の構造体は低熱膨張
で機械的強度がすぐれ、触媒担体として優れた特性を有
している。
Especially cordierite, spodumene, α-alumina,
A ceramic structure made of musito has low thermal expansion and excellent mechanical strength, and has excellent properties as a catalyst carrier.

しかしながらこれらの構造体は一般に比表面積が5 r
rl/ g以下で細孔容積も0.2 CC7g以下と小
さいため触媒活性物質の付着担持性が悪くこのままでは
触媒担体として好適なものであるとは言難い。
However, these structures generally have a specific surface area of 5 r
rl/g or less and the pore volume is as small as 0.2 CC7g or less, the ability to adhere and support catalytically active substances is poor, and as it is, it cannot be said to be suitable as a catalyst carrier.

このため活性物質の付着担持性を増大させ、触媒特性を
向上させるために触媒担持能の高い活性アルミナを該る
セラミック質構造体の薄壁表面に浸漬法、あるいはスプ
レィ法等で被覆する方法が実行されている。
Therefore, in order to increase the adhesion and support of active substances and improve the catalytic properties, there is a method of coating the thin wall surface of the ceramic structure with activated alumina, which has a high catalyst support ability, by dipping or spraying. It is running.

しかし、このような方法で処理された担体は該る構造体
の薄壁表面に対する活性アルミナの付着性自体を改良す
るものではないので、活性アルミナの付着力は極めて弱
く、従って使用中ζこ活性アルミナ被覆層が剥離し、触
媒の耐久性は期待しがたいという欠点を有する。
However, since the carrier treated in this way does not improve the adhesion of activated alumina to the thin wall surface of the structure, the adhesion of activated alumina is extremely weak, and therefore, during use, the The disadvantage is that the alumina coating layer peels off and the durability of the catalyst is difficult to expect.

これに対して本発明は、上述せるごとき公知のセラミッ
ク質ホロー状構造体からなる触媒担体の欠点を克服し、
基体が一体成形されたものであってかつ比表面積、細孔
容積が大きく、触媒担持性並びに触媒活性の秀でた遷移
アルミナ系ホロー状触媒担体を提供しようとするもので
ある。
In contrast, the present invention overcomes the drawbacks of the catalyst carrier made of the known ceramic hollow structure as described above, and
The object of the present invention is to provide a transition alumina-based hollow catalyst carrier which has an integrally molded substrate, has a large specific surface area and pore volume, and has excellent catalyst support and catalytic activity.

すなわち本発明は再水利性アルミナを含む粉体を原料と
して押出成形手段により一体成形し、再水利処理後焼成
活性化した焼成体であって、その主成分が遷移アルミナ
で構成され、開孔率が3%以上、比表面積が5 m’/
9以上、嵩密度が0.1〜1.2g/cnl、細孔容
積がo、3crl/g以上である押出方向に少なくとも
1個の開孔を有することを特徴とする遷移アルミナ系ホ
ロー状触媒担体を提供するものである。
That is, the present invention is a fired body that is integrally molded by extrusion molding using powder containing re-waterable alumina as a raw material, and is fired and activated after being treated for re-watering, the main component of which is transition alumina, and the porosity is low. is 3% or more, and the specific surface area is 5 m'/
9 or more, a bulk density of 0.1 to 1.2 g/cnl, a pore volume of o, 3 crl/g or more, and having at least one opening in the extrusion direction. It provides a carrier.

なお、本文中において遷移アルミナとはX線回析により
η、γ、X1δ、θ−態等の形で同定される比表面積の
大きな中間アルミナであって主体はγ−アルミナである
In this text, transition alumina is an intermediate alumina with a large specific surface area identified in the form of η, γ, X1δ, θ-forms, etc. by X-ray diffraction, and is mainly γ-alumina.

また、押出成形によって得られるホロー状構造体とは円
形、方形、その他異形の開孔を1個有するパイプ状の押
出成形品から、平方インチ当り400個とか600個の
開孔を有するいわゆるマルチセル状(ハニカム)構造体
をも包含するものである。
Hollow-shaped structures obtained by extrusion molding range from pipe-shaped extrusion-molded products with one round, rectangular, or other irregularly shaped holes to so-called multi-cell structures with 400 to 600 holes per square inch. (Honeycomb) structures are also included.

以下本発明の遷移アルミナ系ホロー状触媒担体について
詳細に説明する。
The transition alumina hollow catalyst carrier of the present invention will be explained in detail below.

本発明の触媒担体の構成原料となる再水利性アルミナと
はアルミナ水和物を熱分解したα−アルミナ以外の遷移
アルミナ例えばρ−アルミナ及び無定形アルミナ等、工
業的には例えばバイヤ一工程から得られるアルミナ三水
和物等のアルミナ水和物を約400〜1200℃の熱ガ
スに通常数分の1〜10秒間接触させたり、あるいはア
ルミナ水和物を減圧下で約250〜900℃に通常1分
〜4時間加熱保持することにより得ることができる約0
.5〜15重量係の世襲減量を有するもの等再水利可能
なアルミナを含有するものである。
Re-waterable alumina, which is a raw material for the catalyst carrier of the present invention, is transitional alumina other than α-alumina obtained by thermally decomposing alumina hydrate, such as ρ-alumina and amorphous alumina. The obtained alumina hydrate such as alumina trihydrate is brought into contact with hot gas at about 400 to 1200°C for usually a fraction of a second to 10 seconds, or the alumina hydrate is heated to about 250 to 900°C under reduced pressure. Usually about 0 can be obtained by heating and holding for 1 minute to 4 hours.
.. Those containing re-waterable alumina, such as those having an inherited weight loss of 5 to 15 weight units.

再水利性アルミナは、一般に約50μ以下の粒子径のも
のが使用され、ホロー状触媒担体を構成する骨材中、少
なくとも約10重世襲以上、好ましくは20重量世襲上
、より好ましくは30重量世襲上で用いられる。
Re-waterable alumina is generally used with a particle size of about 50μ or less, and in the aggregate constituting the hollow catalyst carrier, it has a particle size of at least about 10 or more, preferably 20 or more, more preferably 30 or more. used above.

本発明ζこおいて原料どして用いられる再水利性アルミ
ナ以外の骨材構成物は、特に限定されないが、α−アル
ミナ、シリカ、アルミナ水和物、粘土、タルク、ベント
ナイト、ケイソウ士、ゼオライト、コーディエライト、
スポジュメン、チタニア、ジルコニア、シリカゾル、ア
ルミナゾル、ムライト等の触媒担体物質として公知の無
機物質、さらには燃焼性物質および種々の触媒成分等で
ある。
Aggregate constituents other than rewaterable alumina used as raw materials in the present invention are not particularly limited, but include α-alumina, silica, alumina hydrate, clay, talc, bentonite, diatomite, and zeolite. , cordierite,
These include inorganic substances known as catalyst carrier materials such as spodumene, titania, zirconia, silica sol, alumina sol, and mullite, as well as combustible substances and various catalyst components.

これら再水利性アルミナ以外の骨材構成物はホロー状触
媒担体を構成する骨材巾約90重世襲未満、好ましくは
80重量世襲満、より好ましくは70重量世襲満で用い
られる。
These aggregate components other than rewaterable alumina are used in an aggregate width of less than about 90 mm, preferably 80 mm, and more preferably 70 mm.

燃焼性物質は、最終製品であるホロー状の触媒担体の薄
壁の細孔容積を増大せしめる場合、骨材構成物中に添加
混合せしめるもので、従来細孔容積の犬なる活性アルミ
ナの製造に用いられている燃焼性物質等であればいかな
るものでも使用できる。
Combustible substances are added and mixed into the aggregate composition when increasing the pore volume of the thin walls of the final product, the hollow catalyst carrier. Any combustible material can be used.

このような燃焼性物質の例としては木屑、コルク粒、石
炭末、活性炭、木炭、結晶セルロース粉末、メチルセル
ロース、カルボキシメチルセルロース、澱粉、蔗糖、グ
ルコン酸、ポリエチレングリコール、ポリビニルアルコ
ール、ポリアクリルアミド、ポリエチレン、ポリスチレ
ン等およびこれらの混合物が挙げられる。
Examples of such combustible substances include wood chips, cork granules, coal powder, activated carbon, charcoal, crystalline cellulose powder, methylcellulose, carboxymethylcellulose, starch, sucrose, gluconic acid, polyethylene glycol, polyvinyl alcohol, polyacrylamide, polyethylene, and polystyrene. etc. and mixtures thereof.

原料アルミナに対する上記燃焼性物質の添加量が多いほ
ど最終製品である触媒担体の薄壁のマクロポア容積を大
きくすることができるが、薄壁で、かつ燃焼性物質の添
加量を増しマクロポア容積を大きくすると強度が低下す
るので、触媒担体の用途に応じて燃焼性物質の種類およ
び添加量を調整すればよい。
The larger the amount of the above-mentioned combustible substance added to the raw material alumina, the larger the macropore volume of the thin wall of the catalyst carrier, which is the final product, can be increased. Since this reduces the strength, the type and amount of the combustible substance to be added may be adjusted depending on the use of the catalyst carrier.

該る再水利性アルミナ並びに他の骨材構成物を原料とし
て本発明の遷移アルミナ系ホロー状触媒担体を取得する
ための手段について説明すると例えば(1)再水利性ア
ルミナを部分的に、または完全に再水和防止剤で被覆せ
しめた抜水および/または水含有物質と、必要により再
水利性アルミナ以外の骨材構成物、粘結剤等を加えて混
合、混練して可塑性坏土となし、得られた坏土を適当な
パイプあるいはマルチセル成形用ダイスを備えた押出成
形手段に供給して押出成形し、次いで得られた成形体を
再水利処理した後必要により乾燥し、焼成活性化する方
法または(11)再水利性アルミナと100℃以下で液
状を呈する非水物質とを、必要により再水利性アルミナ
以外の骨材構成物、粘結剤等を加えて混合混練して可塑
性坏土となし、得られた坏土を任意形状のパイプあるい
はマルチセル成形用ダイスを備えた適当な押出成形手段
に供給して押出成形し、次いで得られた成形体を再水利
処理した後必要Qこより乾燥し、焼成活性化する方法等
が適用できる。
The means for obtaining the transition alumina-based hollow catalyst carrier of the present invention using the rewaterable alumina and other aggregate constituents as raw materials will be explained. For example, (1) the rewaterable alumina may be partially or completely A water-removed and/or water-containing substance coated with a rehydration inhibitor is mixed and kneaded with aggregate components other than rewaterable alumina, a binder, etc., as necessary, to form a plastic clay. The obtained clay is extruded by supplying it to an extrusion molding means equipped with a suitable pipe or multi-cell molding die, and then the molded body obtained is subjected to rewatering treatment, and then dried if necessary and activated by firing. Method or (11) Mix and knead re-waterable alumina and a non-aqueous substance that becomes liquid at temperatures below 100°C, with the addition of aggregate components other than re-waterable alumina, a binder, etc., as necessary, to create plastic clay. Then, the obtained clay is extruded by supplying it to a suitable extrusion molding means equipped with a pipe of arbitrary shape or a die for multi-cell molding, and then the molded body obtained is subjected to rewatering treatment and then dried for a necessary period of time. However, a method of activating by firing, etc. can be applied.

従来セラミック質粉末等を原料とする押出成形に際して
は、セラミック坏土に可塑性を付与するため水および/
または水含有物質が用いられているが、本発明の触媒担
体の構成原料となる再水利性アルミナに直接水および/
または水含有物質を接触させると再水利可能なアルミナ
の再水利反応が生起し、押出成形機内で発熱硬化して成
形不能となり、目的とする内・外壁、とりわけ内壁表面
の健全な触媒担体を取得することができない。
Conventionally, when extrusion molding is performed using ceramic powder as a raw material, water and/or water are used to impart plasticity to the ceramic clay.
Alternatively, a water-containing substance is used, but water and/or
Or, when a water-containing substance comes into contact with the alumina, a rewatering reaction occurs in alumina, which hardens with heat in the extruder and becomes unmoldable, thereby obtaining the desired healthy catalyst support on the inner and outer walls, especially on the inner wall surface. Can not do it.

このため本発明の触媒担体の押出成形に際しては、前述
のごとく再水利性アルミナを他の骨材構成物等とともに
水または水含有物質と混合混練するに先立ち、再水利性
アルミナを再水利防止剤で部分的に、あるいは完全に被
覆してやる必要があり、または混練に際して水あるいは
水含有物質を使わず液状の非水物質で混練して可塑性坏
土として押出成形に供する必要がある。
Therefore, when extruding the catalyst carrier of the present invention, as mentioned above, before mixing and kneading the rewaterable alumina with water or a water-containing substance together with other aggregate constituents, etc., the rewaterable alumina is mixed with the rewatering prevention agent. Otherwise, it is necessary to knead the material partially or completely with a liquid non-aqueous material without using water or a water-containing material during kneading to form a plastic clay for extrusion molding.

該る再水利防止剤としては、押出成形時、水と再水利可
能なアルミナが再水利反応を生起し、成形不可能となる
のを防止しつるものであればよく、具体的には常温で固
体状の有機物の場合常温ζこおけろ水への溶解度が約2
0重量%以下のもの、好ましくは約10重量%以下のも
のが挙げられる。
The rewatering prevention agent may be any agent that can prevent water and rewaterable alumina from causing a rewatering reaction during extrusion molding, making it impossible to mold. In the case of solid organic substances, the solubility in cold water at room temperature is approximately 2.
0% by weight or less, preferably about 10% by weight or less.

また、常温で液体状の有機物の場合、常温における水に
対する相互溶解度が高々50係以下のもの、好ましくは
25%以下のものが挙げられる。
Further, in the case of organic substances that are liquid at room temperature, examples thereof include those whose mutual solubility in water at room temperature is at most 50 coefficients or less, preferably 25% or less.

より具体的には、カプロン酸、パルミチン酸、オレイン
酸、グリコール酸、カプリル酸、ステアリン酸、サルチ
ル酸、トリメチル酢酸、ラウリル酸、セロチン酸、桂皮
酸、マロン酸、ミリスチン酸、セバシン酸、安息香酸、
無水マレイン酸、ロウ等の脂肪酸及びその塩類、または
これらのスルホン酸、リン酸置換体、t−ブチルアルコ
ール、ラウリルアルコール、セチルアルコール、ステア
リルアルコール、シクロヘキサノール、メントール、コ
レステリン、ナフトール等のアルコール、ラウリルアミ
ン、テトラメチレンジアミン、ジェタノールアミン、ジ
フェニルアミン等のアミン、n−ヘプタデカン、n−オ
クタデカン、n−ノナデカン、n−エイコサン等のアル
カン、ナフタリン、ジフェニル、アントラセン等の芳香
族化合物、澱粉、カゼイン、セルロース、及びその誘導
体、アルギン酸塩等の天然高分子化合物、ポリエチレン
、ポリビニルアルコール、ポリ塩化ビニル、ポリプロピ
レン、ポリアクリル酸ソーダ、ポリブタジェン、イソプ
レンゴム、ウレタン樹脂等の合成高分子化合物、流動パ
ラフィン、大豆油、白絞油、軽油、灯油等のパラフィン
類、カプリル酸、ペラルゴン酸等のカルボン酸類、ベン
ゼン、トルエン、キシレン、キュメン等の芳香族炭化水
素が挙げられる。
More specifically, caproic acid, palmitic acid, oleic acid, glycolic acid, caprylic acid, stearic acid, salicylic acid, trimethylacetic acid, lauric acid, cerotic acid, cinnamic acid, malonic acid, myristic acid, sebacic acid, benzoic acid. ,
Fatty acids and their salts such as maleic anhydride and wax, or sulfonic acids, phosphoric acid substituted products thereof, alcohols such as t-butyl alcohol, lauryl alcohol, cetyl alcohol, stearyl alcohol, cyclohexanol, menthol, cholesterin, and naphthol, Amines such as laurylamine, tetramethylenediamine, jetanolamine, diphenylamine, alkanes such as n-heptadecane, n-octadecane, n-nonadecane, n-eicosane, aromatic compounds such as naphthalene, diphenyl, anthracene, starch, casein, Cellulose and its derivatives, natural polymer compounds such as alginate, synthetic polymer compounds such as polyethylene, polyvinyl alcohol, polyvinyl chloride, polypropylene, sodium polyacrylate, polybutadiene, isoprene rubber, urethane resin, liquid paraffin, soybean oil , paraffins such as white squeeze oil, light oil, and kerosene; carboxylic acids such as caprylic acid and pelargonic acid; and aromatic hydrocarbons such as benzene, toluene, xylene, and cumene.

これら再水和防止剤は、再水利性アルミナ表面を部分的
あるいは完全に被覆せしめ得る割合で添加混合するが、
被覆方法としては直接粉体に添加混合、あるいは混練し
被覆せしめる方法、あるいは再水和防止剤が固体状物で
直接粉体に被覆するのが困難なものの場合にはアルコー
ル、エーテル等の適切な溶媒中に予め再水利防止剤を溶
解せしめた後被覆せしめるとか、また、液状物の場合に
は直接再水和防止剤中に浸漬せしめるか、あるいは液体
を蒸気化して、粉体表面に被覆せしめる等の種々の方法
が挙げられる。
These rehydration inhibitors are added and mixed in such a proportion that they can partially or completely cover the rewaterable alumina surface.
Coating methods include adding and mixing directly to the powder, or kneading to coat the powder, or if the rehydration inhibitor is a solid substance that is difficult to coat directly on the powder, an appropriate coating method such as alcohol or ether may be used. The anti-rehydration agent can be dissolved in a solvent in advance and then coated, or in the case of a liquid, it can be directly immersed in the anti-rehydration agent, or the liquid can be vaporized and coated on the powder surface. There are various methods such as

勿論、これらを組合せて用いてもよい。Of course, these may be used in combination.

再水利防止剤の添加量は骨材の粒径分布、組成、押出成
形及びその後の再水利処理の条件にも左右されるが、通
常再水和性アルミナに対して0.01重量%〜30重量
世襲範囲で用いられる。
The amount of rewatering inhibitor added depends on the particle size distribution and composition of the aggregate, the conditions of extrusion molding and subsequent rewatering treatment, but it is usually 0.01% to 30% by weight based on the rehydrating alumina. Used in the heavy hereditary range.

添加量がo、oi重重量上り少ない場合には、再水利防
止効果が十分ではなく、押出成形中に発熱硬化し、成形
不能となるので好ましくない。
If the amount added is less than o or oi, the effect of preventing rewatering will not be sufficient, and it will harden due to heat during extrusion molding, making molding impossible, which is not preferable.

但し、再水利防止剤が後述の粘結剤を兼ねる場合は添加
量を粘結剤の添加量の上限まで増加することが可能であ
る。
However, if the rewatering prevention agent also serves as a binder, which will be described later, the amount added can be increased up to the upper limit of the amount added of the binder.

本発明のホロー状の触媒担体の押出成形に必要に応じて
用いられる粘結剤としては、アルミナ系触媒担体製造時
に用いられている公知の粘結剤であれば、特に制限され
るものではないが、例えば、ポリビニルアルコール、澱
粉、セルロース等が挙げられる。
The binder used as necessary in the extrusion molding of the hollow catalyst carrier of the present invention is not particularly limited as long as it is a known binder used in the production of alumina catalyst carriers. Examples include polyvinyl alcohol, starch, cellulose, and the like.

粘結剤の添加量はホロー状構造体を構成する骨材組成、
粒径、押出成形条件、再水利処理条件Qこも左右され一
義的に決めることはできないが、通常、骨材に対して3
0重量世襲下の範囲である。
The amount of binder added depends on the composition of the aggregate that makes up the hollow structure,
Particle size, extrusion molding conditions, and rewatering treatment conditions Q are also affected and cannot be determined unambiguously, but usually 3
This is the range under 0 weight hereditary.

粘結剤が多いと押出成形体から再水利防止剤を消失せし
める際、成形体に歪みが発生し、寸法安定性が悪く、加
えて強度が低下する原因となる。
If the amount of binder is too large, distortion occurs in the molded product when the rewatering prevention agent disappears from the extruded product, resulting in poor dimensional stability and a decrease in strength.

再水利防止剤が粘結効果を有するものの場合には、粘結
剤としての不足分のみを加えて使用することも勿論可能
である。
If the rewatering prevention agent has a caking effect, it is of course possible to use it by adding only the amount lacking as a caking agent.

一方粘結剤と再水和防止剤は総量で骨材重量に対して少
なくとも2.5重世襲、また非水物質により押出成形用
骨材構成分を混練する場合には、非水物質が粘結剤の効
果を有するものにあっては粘結剤の添加は必要なく、非
水物質が粘結剤として作用しない場合には粘結剤を少な
くとも1.5重世襲添加使用することが必要である。
On the other hand, the total amount of binders and anti-rehydration agents should be at least 2.5 times the total weight of the aggregate. If the material has the effect of a binder, it is not necessary to add a binder, and if the non-aqueous substance does not act as a binder, it is necessary to add at least 1.5 times the binder. be.

以上のごとくして骨材原料、粘結剤等を選択調整した後
、再水利防止処理を行なった場合には再水和防止剤を被
覆処理した再水利性アルミナをその他の骨材構成物、粘
結剤等とともに水あるいは水含有物質と、また再水和防
止処理を行なわない場合には再水利性アルミナをその細
骨材構成物、粘結剤等とともに非水物質と混練して可塑
性坏土となし押出成形に供される。
After selecting and adjusting aggregate raw materials, binders, etc. as described above, if rewatering prevention treatment is performed, rewatering alumina coated with a rehydration inhibitor is used as a material for other aggregate components. A plastic adhesive is formed by kneading water or a water-containing substance together with a binder, etc., or, if rehydration prevention treatment is not performed, rewaterable alumina with its fine aggregate constituents, a binder, etc., and a non-aqueous substance. Soil and pear are used for extrusion molding.

該る可塑性坏土は押出成形機に供給するに先立ち、予め
骨材と水あるいは水含有物質と、または非水物質と混練
して調整することも、また混練機能を有する押出成形機
を使用する場合ζこは押出成形機内で該る混練操作を実
施することも当然可能である。
Before supplying the plastic clay to an extrusion molding machine, it may be prepared by kneading aggregate and water or a water-containing substance, or a non-aqueous substance in advance, or an extrusion molding machine with a kneading function may be used. In this case, it is of course possible to carry out the kneading operation in an extruder.

成形に際して加えられる水あるいは非水物質の量はその
機能により必ずしも同一とはならず水の場合には一般に
骨材構成分に対して約20〜70重世襲の範囲で、また
非水物質の場合には骨材構成物の粒径分布、組成、押出
成形及びその後の再水利処理の条件によって異なるが、
再水和性アルミナに対して約2〜100重世襲の範囲で
用いられる。
The amount of water or non-aqueous substances added during molding is not necessarily the same depending on its function, but in the case of water it is generally in the range of about 20 to 70 times the aggregate component, and in the case of non-aqueous substances varies depending on the particle size distribution and composition of the aggregate constituents, extrusion molding and subsequent rewatering treatment conditions, but
It is used in the range of about 2 to 100 times the rehydratable alumina.

ここで使用する水含有物質とは酸、アルカリ、触媒成分
、粘結剤、その他各種添加物を含有させた水溶液を意味
するものであり、他方非水物質としては約100℃以下
で液状を呈するも゛のが適当で、具体的にはメタノール
、エタノール、プロピルアルコール等の炭素数1〜4の
アルコール、ヘキサン、ヘプタン等の炭化水素、エチレ
ングリコール、グリセリン等の多価アルコール、流動パ
ラフィン、大豆油、白絞油、軽油、灯油等のパラフィン
類、カプリル酸、ペラルゴン酸等のカルボン酸類、エチ
ルシリケート、酢酸メチル等のエステル類、ベンゼン、
トルエン、キシレン、キュメン等の芳香族炭化水素、ジ
オキサン及びこれらの混合物が挙げられる。
The term water-containing substance used here refers to an aqueous solution containing acids, alkalis, catalyst components, binders, and other various additives, while non-aqueous substances are liquid substances at temperatures below about 100°C. Suitable examples include alcohols with 1 to 4 carbon atoms such as methanol, ethanol, and propyl alcohol, hydrocarbons such as hexane and heptane, polyhydric alcohols such as ethylene glycol and glycerin, liquid paraffin, and soybean oil. , paraffins such as white squeeze oil, diesel oil, and kerosene, carboxylic acids such as caprylic acid and pelargonic acid, esters such as ethyl silicate and methyl acetate, benzene,
Aromatic hydrocarbons such as toluene, xylene, cumene, dioxane, and mixtures thereof may be mentioned.

より好ましい非水物質としては混線温度(常温+10°
C)以下で液状を呈するジオキサン、エタノール、プロ
ピルアルコール、エチレンクリコール、グリセリン、白
絞油等の非水物質が挙げられる。
A more preferable non-aqueous substance is a crosstalk temperature (room temperature + 10°
C) Non-aqueous substances such as dioxane, ethanol, propyl alcohol, ethylene glycol, glycerin, and white squeezed oil that are liquid in the following manner can be mentioned.

なお押出成形に際して離型剤は特に必要とはしないが、
飽和脂肪酸またはその塩類、より具体的にはステアリン
酸、ステアリン酸カルシウム等を混線時添加してもよい
Although a mold release agent is not particularly required during extrusion molding,
Saturated fatty acids or salts thereof, more specifically stearic acid, calcium stearate, etc., may be added at the time of crosstalk.

使用量は通常骨材に対して0重量係〜5重量%の範囲で
ある。
The amount used is usually in the range of 0% to 5% by weight based on the aggregate.

本発明のホロー状触媒担体を成形するための押出成形手
段としては開孔率が3係以上、好ましくは20〜90係
のパイプ状あるいはマルチセル形状を構成せしめ得る成
形機であれば、その機構を特に限定するものではないが
例えばマルチセル状成形体用の押出成形機としては米国
特許第3.559,252号、特公昭51−1232号
公報、特開昭48−55960号公報等に記載されたご
ときダイスを有するものが挙げられる。
As an extrusion molding means for molding the hollow catalyst carrier of the present invention, any molding machine capable of forming a pipe-like or multi-cell shape with a porosity of 3 or more, preferably 20 to 90, can be used. Although not particularly limited, for example, extrusion molding machines for multi-cell shaped bodies are described in U.S. Pat. Examples include those with dice.

また、マルチセル触媒担体および触媒の各コア中を通過
する処理ガス等との接触時間を改良する目的でコアを形
成する薄壁部に各コア中心部に向かって延びるフィンを
取付けたマルチセル成形体(例えば特開昭50−127
886号公報)、マルチセル成形体の乾燥、焼成時にマ
ルチセル構成物質の膨張、収縮による割れ、歪み等を防
止する目的で押出方向において少なくとも一方向の薄壁
が曲げられて構成されているマルチセル成形体(例えば
特開昭51−565号公報)、更にマルチセル成形体の
外周を構成する薄壁をカラーリングの取付け、あるいは
ダイス構造により肉厚の外周を形成せしめ衝撃強度を向
上せしめた押出成形体を形成しうる押出機などが採用可
能である。
In addition, in order to improve the contact time with processing gas etc. passing through the multi-cell catalyst carrier and each core of the catalyst, we have developed a multi-cell molded body (with fins extending toward the center of each core) attached to the thin wall portion forming the core. For example, JP-A-50-127
No. 886), a multi-cell molded body in which a thin wall in at least one direction is bent in the extrusion direction for the purpose of preventing cracking, distortion, etc. due to expansion and contraction of multi-cell constituent materials during drying and firing of the multi-cell molded body. (For example, Japanese Patent Application Laid-Open No. 51-565), furthermore, an extrusion molded product is produced in which a collar ring is attached to the thin wall constituting the outer periphery of the multi-cell molded product, or a thick outer periphery is formed using a die structure to improve impact strength. An extruder or the like that can be used can be used.

ホロー状成形体の外形およびコア形状は正方形、短形、
三角形、六角形および円形等の幾何学形状のいずれでも
良く、また、コアの数、コアを形状するセルの厚さ、及
び成形体の長さ、個々のコア断面積及びパイプ状あるい
はマルチセル状成形体のコア形成面(外形)の全断面積
は用途に応じ任意に決定すればよい。
The outer shape and core shape of the hollow molded body are square, rectangular,
The geometric shape may be triangular, hexagonal or circular, and the number of cores, the thickness of the cells forming the core, the length of the molded body, the cross-sectional area of each core, and the pipe-like or multi-cell shape The total cross-sectional area of the core forming surface (outer shape) of the body may be arbitrarily determined depending on the purpose.

本発明の触媒担体の開孔率を3%以上と制限したのは従
来公知の球状あるいは円柱状の活性アルミナ系触媒担体
と区別するためであり、これら公知の球状あるいは円柱
状触媒担体に比較し、本発明のホロー状触媒担体は単位
重量当りの比表面積が大きく、また排ガス処理時の圧力
損失が小さいなど極めて秀れた特性を有する。
The reason why the porosity of the catalyst carrier of the present invention is limited to 3% or more is to distinguish it from conventionally known spherical or cylindrical activated alumina catalyst carriers. The hollow catalyst carrier of the present invention has extremely excellent properties such as a large specific surface area per unit weight and a small pressure loss during exhaust gas treatment.

本発明のホロー状触媒担体を得る方法として押出成形を
主体として説明したが、射出成形、トランスファー成形
機でも製造可能である。
Although extrusion molding has been mainly described as the method for obtaining the hollow catalyst carrier of the present invention, it can also be produced using injection molding or a transfer molding machine.

この様にして押出成形されたホロー状成形体は次いで最
終製品である触媒担体の耐衝撃強度、機械的強度を高め
るために再水利処理される。
The hollow shaped body extruded in this manner is then subjected to rewatering treatment in order to increase the impact strength and mechanical strength of the final product, the catalyst carrier.

本発明の再水利性アルミナを骨材構成物として成形した
ホロー状成形体は再水和せしめることにより、十分に実
用に供しうる強度を焼結によるセラミック結合を形成せ
ずに達成することができる。
By rehydrating the hollow-shaped compact formed by using the rewaterable alumina of the present invention as an aggregate constituent, sufficient strength for practical use can be achieved without forming a ceramic bond by sintering. .

再水利処理法としては活性アルミナの製造に常用されて
いる手段を採用すればよく、一般には再水和するに足る
時間、室温〜150℃、特に好ましくは80〜100℃
の水蒸気中または水蒸気含有ガス中あるいは室温以上の
温度、特に好ましくは80°C以上の水中に保持して再
水和される。
As the rewatering treatment method, any method commonly used in the production of activated alumina may be adopted, and generally the treatment is carried out at room temperature to 150°C, preferably at 80 to 100°C, for a sufficient period of time for rehydration.
or in water vapor at a temperature above room temperature, particularly preferably above 80°C.

再水利防止剤として上記温度で水に不溶のものを使用し
た場合、例えばポリ塩化ビニルを用いた場合にはアルコ
ール、エーテル、エステル等の溶媒中に浸漬し、被覆層
を破壊、あるいは溶出させることにより押出成形構造体
中に含有される水分で再水和される。
When using an agent that is insoluble in water at the above temperatures as a rewatering prevention agent, for example, when polyvinyl chloride is used, it must be immersed in a solvent such as alcohol, ether, or ester to destroy or dissolve the coating layer. rehydrated with water contained in the extruded structure.

また押出成形時に非水物質を使用し、その水に対する溶
解度が室温で5重世襲以上の場合は水利反応に供する水
をアルコール等の親水性溶媒で希釈して水の活量を低下
するか、あるいはスチーム中で再水和せしめる方法が製
品の保形性の点で有効である。
In addition, if a nonaqueous substance is used during extrusion molding and its solubility in water is 5 or more at room temperature, the water used for the water utilization reaction may be diluted with a hydrophilic solvent such as alcohol to reduce the activity of the water. Alternatively, a method of rehydration in steam is effective in terms of the shape retention of the product.

再水利は一般に1分〜1週間行われる。Rewatering generally takes place for 1 minute to 1 week.

再水利時間が長いほど、また温度が高いほど成形体の固
結化がすすみ機械的強度の大きな製品が得られるので再
水利温度が高い程再水利時間を短かくすることができる
The longer the rewatering time and the higher the temperature, the more solidification of the molded body progresses, resulting in a product with greater mechanical strength, so the higher the rewatering temperature, the shorter the rewatering time.

また、常温、常圧での密閉容器中で放置し長時間で再水
和することも可能である。
It is also possible to leave it in a closed container at room temperature and pressure for rehydration over a long period of time.

この様にして再水和された成形体は次いで自然乾燥、熱
風乾燥、真空乾燥等の公知方法で付着水分を除去せしめ
た後、約100〜1100℃の温度で加熱処理し、前記
成形体中の水分を除去して活性化する。
The molded product rehydrated in this way is then subjected to a known method such as natural drying, hot air drying, or vacuum drying to remove adhering moisture, and then heat-treated at a temperature of about 100 to 1100°C to remove the moisture inside the molded product. Removes moisture and activates.

再水利処理後の乾燥工程は必須ではない。A drying process after rewatering treatment is not essential.

即ち、焼成時の温度匂配を緩やかにすることにより、例
えば常温〜300℃までを48時間で焼成し、300℃
以上〜1100℃までを6〜12時間で焼成することに
より行うこともできる。
That is, by slowing down the temperature distribution during firing, for example, it can be fired from room temperature to 300°C in 48 hours, and at 300°C.
It can also be carried out by firing at a temperature of 6 to 12 hours at temperatures above 1100°C.

焼成に際し成形体中に燃焼性物質が混合されている場合
には約250℃以上の温度で加熱処理し、燃焼性物質を
消失させる。
If a combustible substance is mixed in the molded article during firing, heat treatment is performed at a temperature of about 250° C. or higher to eliminate the combustible substance.

活性化と燃焼性物質の除去を同時に行う場合には、例え
ば燃焼性物質を含む成形体をベッド上に置き、燃焼性物
質を燃焼させるに十分な酸素を含有する所定の温度の熱
風または燃焼ガスを通すことによって行うことができる
When activation and removal of combustible substances are performed at the same time, for example, a compact containing a combustible substance is placed on a bed, and hot air or combustion gas at a predetermined temperature containing sufficient oxygen to burn the combustible substance is heated. This can be done by passing.

以上の方法で得たホロー状の触媒担体は焼成活性化後の
結晶相が実質的にγ−アルミナなどの遷移アルミナで構
成され、比表面積が約5mj/g以上、更には10m1
g以上で、嵩密度が0.1〜t2g/=、細孔容積0.
3 cml 9以上、圧縮強度が押出方向で約20kg
/C1?L以上、さらには30ゆ/cIIL以上であり
、セラミック質マルチセル触媒担体と同様に1 mm以
下の壁厚のマルチセル触媒担体を得ることができるとと
もに、従来のセラミック質ホロー状触媒担体に比較し比
表面積、細孔容積において極めて優れており、加えて本
発明のホロー状触媒担体に付与される圧縮強度等の機体
的強度は、従来のセラミック質構造体が約1200〜2
000℃での高温焼成によるセラミック結合による強度
付与であるのとは異なり再水利反応に基因して付与され
るものであり、100〜1100℃の焼成で活性化を付
与せしめるのみであるため、物性的に比表面積が優れて
いるのみならず、焼成温度が低いため、焼成装置材料、
設備保全費用、燃料コストが極めて低廉であり、その工
業的価値は頗る犬なるものである。
In the hollow catalyst carrier obtained by the above method, the crystal phase after firing activation is substantially composed of transition alumina such as γ-alumina, and the specific surface area is about 5 mj/g or more, furthermore, 10 m
g or more, the bulk density is 0.1 to t2g/=, and the pore volume is 0.
3 cml 9 or more, compressive strength is approximately 20 kg in the extrusion direction
/C1? L or more, and even more than 30 Yu/cIIL, it is possible to obtain a multi-cell catalyst carrier with a wall thickness of 1 mm or less, similar to the ceramic multi-cell catalyst carrier, and it has a lower wall thickness than the conventional ceramic hollow catalyst carrier. It is extremely superior in surface area and pore volume, and in addition, the mechanical strength such as compressive strength imparted to the hollow catalyst carrier of the present invention is about 1200 to 200% higher than that of conventional ceramic structures.
Unlike the strength imparted by ceramic bonding through high-temperature firing at 100 to 1100 degrees Celsius, strength is imparted based on the rewatering reaction, and activation is only imparted by firing at 100 to 1100 degrees Celsius, so the physical properties are Not only does it have an excellent specific surface area, but also the firing temperature is low, making it an ideal material for firing equipment.
Equipment maintenance costs and fuel costs are extremely low, and its industrial value is outstanding.

本発明において押出成形体構成骨材中に特殊な物質を混
入するか、押出成形された成形体に特殊な物質を含浸さ
せることにより、特定用途に適したホロー状触媒担体を
得ることもできる。
In the present invention, a hollow catalyst carrier suitable for a specific use can also be obtained by mixing a special substance into the aggregate constituting the extruded body or by impregnating the extruded body with a special substance.

例えば自動車用触媒担体のごとく、極めて優れた耐熱性
、耐衝撃性が要求され、加えてγ−アルミナからα−ア
ルミナへの転移を遅らせ、長期間の高活性能を要求され
るホロー状触媒担体を得る場合にはセル構成骨材成分中
に有機ケイ素化合物を混合するか、あるいは再水利処理
前または再水利処理後有機ケイ素化合物を押出成形体(
こ担持せしめる方法が挙げられる。
For example, hollow catalyst carriers, such as automotive catalyst carriers, require extremely excellent heat resistance and impact resistance, as well as slowing down the transition from γ-alumina to α-alumina and requiring long-term high activity. In order to obtain an organosilicon compound, an organosilicon compound is mixed into the cell-constituting aggregate components, or an organosilicon compound is extruded into a molded product (before or after rewatering treatment).
One example is a method of supporting this.

該る成形体に含有、あるいは担持された有機ケイ素化合
物は押出成形体に活性化を付与せしめる焼成工程におい
て、酸化または熱分解され、上記性能を有するホロー状
触媒担体となる。
The organosilicon compound contained or supported in the molded body is oxidized or thermally decomposed in the firing step for activating the extruded molded body, and becomes a hollow catalyst carrier having the above-mentioned performance.

上記有機ケイ素化合物としては酸化または熱分解して二
酸化ケイ素を生ずるものであれば如伺なる有機ケイ素化
合物でもよいが、具体的にはアセトキシトリメチルシラ
ン、アセトキシトリエチルシラン、ジアセトキシジメチ
ルシラン、ジアセトキシジエチルシラン等のオルガノア
セトキシシラン、メトキシトリエチルシラン、ジメトキ
シジメチルシラン等のオルガノアルコキシシラン、ヘキ
サメチルジシラン、ヘキサエチルジシラン等のオルガノ
ジシラン、トリメチルシラノール、ジメチルフェニルシ
ラノール、トリエチルシラノール、ジエチルシラノール
、トリフェニルシラノール等のオルガノシラノール、オ
ルガノシランカルボン酸、オルガンシルメチレン、オル
ガノポリシロキサン、オルガノヒドロゲノシラン、オル
ガノポリシラン、四塩化ケイ素等があげられる。
The above organosilicon compound may be any organosilicon compound as long as it produces silicon dioxide through oxidation or thermal decomposition, but specific examples include acetoxytrimethylsilane, acetoxytriethylsilane, diacetoxydimethylsilane, and diacetoxydiethyl. Organoacetoxysilane such as silane, organoalkoxysilane such as methoxytriethylsilane, dimethoxydimethylsilane, organodisilane such as hexamethyldisilane, hexaethyldisilane, trimethylsilanol, dimethylphenylsilanol, triethylsilanol, diethylsilanol, triphenylsilanol, etc. Examples include organosilanol, organosilane carboxylic acid, organosylmethylene, organopolysiloxane, organohydrogenosilane, organopolysilane, silicon tetrachloride, and the like.

該る成形体に対する有機ケイ素化合物の相持量はアルミ
ナに対して一般に5in2換算として0.01〜30重
量係、好世襲くは0.1〜10重量係で世襲重量世襲越
えると経済的ではなく、一方0,01重量世襲満では耐
熱性の改良効果が小さいので好しくない。
The amount of organosilicon compound supported in the molded body is generally 0.01 to 30% by weight when converted to 5in2 with respect to alumina, and 0.1 to 10% by weight hereditary, which is not economical if it exceeds the hereditary weight. On the other hand, if the weight is less than 0.01, the effect of improving heat resistance is small, which is not preferable.

有機ケイ素化合物を担持せしめて得た遷移アルミナ系触
媒担体が何故反応性の経時的低下が少なく、耐衝撃強度
、耐熱性に極めて優れているのか理由は詳らかではない
が、有機ケイ素化合物から生じる二酸化ケイ素が極めて
微細でかつ極めて反応性が高いために該る触媒担体中の
活性アルミナのアルファー化が起こらない温度条件下で
二酸化ケイ素と活性アルミナが反応し、活性アルミナ表
面にアルミナー二酸化ケイ素反応物が形成するためにこ
の様な効果を生ずるものと推定される。
It is not clear why the transition alumina-based catalyst carrier obtained by supporting an organosilicon compound exhibits little reduction in reactivity over time and has extremely excellent impact strength and heat resistance, but the reason is that the transition alumina catalyst carrier obtained by supporting an organosilicon compound exhibits excellent impact strength and heat resistance. Because silicon is extremely fine and highly reactive, silicon dioxide and activated alumina react under temperature conditions that do not cause the active alumina in the catalyst carrier to become pregelatinized, and alumina-silicon dioxide reactants are formed on the surface of the activated alumina. It is presumed that this effect is produced due to the formation of

また、本発明方法によって得られた遷移アルミナ系触媒
担体は、活性化後、鉱酸と接触させ、水で洗浄し、次い
て乾燥することによってマクロポア−容積の大きな高活
性な触媒担体を得ることもできる。
Furthermore, after activation, the transition alumina-based catalyst carrier obtained by the method of the present invention is brought into contact with a mineral acid, washed with water, and then dried to obtain a highly active catalyst carrier with a large macropore volume. You can also do it.

上記鉱酸としては例えば塩酸、硝酸、硫酸、が好ましく
使用される。
As the mineral acid, for example, hydrochloric acid, nitric acid, and sulfuric acid are preferably used.

使用される鉱酸水溶液の濃度は特に制限されないが好ま
しくは0.1規定〜10規定濃度のものが使用される。
The concentration of the mineral acid aqueous solution used is not particularly limited, but preferably one having a concentration of 0.1N to 10N is used.

遷移アルミナ系触媒担体と鉱酸の接触は一般に鉱酸中へ
該る触媒担体を浸漬することによって行なわれ、処理時
間は一般に10分以上であれば′よG)。
Contact between the transitional alumina catalyst carrier and the mineral acid is generally carried out by immersing the catalyst carrier in the mineral acid, and the treatment time is generally 10 minutes or more.

処理時間が10分以下であればマクロポア−容積を大き
くするという効果が顕著でなくなる。
If the treatment time is 10 minutes or less, the effect of enlarging the macropore volume will not be significant.

処理温度は特に限定されるものではないが、一般に10
0℃以下の温度で処理するのが操業上望ましい。
Although the treatment temperature is not particularly limited, it is generally 10
Operationally, it is desirable to process at a temperature of 0° C. or lower.

本発明において遷移アルミナ系ホロー状触媒担体は構成
骨材成分中に触媒成分を混合し、ホロー状触媒を構成す
ることもできるし、ホロー状触媒担体へ触媒成分を含浸
あるいはスプレー処理等により担持させることもできる
In the present invention, the transition alumina-based hollow catalyst carrier can be formed by mixing the catalyst component into the constituent aggregate components to form a hollow catalyst, or the catalyst component can be supported on the hollow catalyst carrier by impregnation or spray treatment. You can also do that.

担持および/または含有させる触媒成分は用途により異
なるが、少くとも活性アルミナを担体とし触媒成分を組
合せた公知の組合せは担体を本発明のホロー状触媒体と
置換して用いることは可能である。
The catalyst components to be supported and/or contained vary depending on the application, but at least known combinations of activated alumina as a carrier and catalyst components can be used by replacing the carrier with the hollow catalyst of the present invention.

例えば本発明の押出成形によるホロー状触媒担体にPt
、Ru、Rh、Pdの少くとも一種を担持または含有し
た触媒は各種固定発生源よりの排ガス中のNOxの非選
択還元、NH3によるNOxの選択還元、自動車排ガス
中のCO1炭化水素類の酸化若しくはNOxの還元、各
種産業排ガスの脱臭等に用いられ、Cu、Fe、Co、
NilMnおよびVの酸化物の少くとも一種を担持また
は含有した触媒は排ガス中の■九によるNOxの選択還
元、自動車排ガス中のCO1炭化水素類の酸化、NOx
の還元、各種産業排ガスの脱臭用、NOの分解触媒等に
用いられ、V、Mo、W、Cr、Ti1Zn、Zr、N
b、Ag、Ce1Sn、ReおよびTaの酸化物の少く
とも一種を相持または含有した触媒は排ガス中のNH4
−こよるNOxの選択還元、自動車排ガス中のCO1炭
化水素類の酸化、NOxの還元用触媒として用いられる
For example, Pt may be added to the extrusion-molded hollow catalyst carrier of the present invention.
A catalyst supporting or containing at least one of Ru, Rh, and Pd can be used for non-selective reduction of NOx in exhaust gas from various fixed sources, selective reduction of NOx by NH3, oxidation of CO1 hydrocarbons in automobile exhaust gas, etc. It is used for reducing NOx, deodorizing various industrial exhaust gases, etc., and contains Cu, Fe, Co,
A catalyst supporting or containing at least one of the oxides of NilMn and V can be used for selective reduction of NOx in exhaust gas, oxidation of CO1 hydrocarbons in automobile exhaust gas, NOx
It is used as a catalyst for reducing NO, deodorizing various industrial exhaust gases, and decomposing NO.
A catalyst that supports or contains at least one of the oxides of B, Ag, Ce1Sn, Re, and Ta can reduce NH4 in exhaust gas.
- It is used as a catalyst for selective reduction of NOx, oxidation of CO1 hydrocarbons in automobile exhaust gas, and reduction of NOx.

これら触媒成分の触媒担体への含浸方法、スプレ一方法
は公知方法で実施すればよく、他方押出成形体中へ触媒
成分を含有せしめる場合には再水利性アルミナを再水利
防止剤で処理後あるいは処理前、または非水物質と混合
混練する前、あるいは混線時に添加混合すればよい。
The method of impregnating or spraying these catalyst components onto a catalyst carrier may be carried out by a known method.On the other hand, when the catalyst component is incorporated into an extruded product, the rewaterable alumina is treated with a rewatering inhibitor or It may be added and mixed before treatment, before mixing and kneading with a non-aqueous substance, or at the time of crosstalk.

以下実施例により本発明を更に詳細に説明するが、本発
明は以下の実施例に限定されるものではない。
The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to the following Examples.

実施例 1 ギブサイト型アルミナ水利物を■焼して得られた平均粒
径約6μのρ−アルミナ30重量部含有する活性アルミ
ナ粉末100重量部にステアリン酸2重量部を加え、捕
潰機で2時間混合してアルミナ表面をステアリン酸で被
覆した後、更にメチルセルロース5重量部、水50重量
部を加えて、混線機で30分間混練後、スクリュー型押
出機に供給し壁厚0.4 mmで一辺2mmの正方形の
コアユニットを有する約100mmX100mmX15
0闘J(開孔率69.4%)のマルチセル成形体を得た
Example 1 2 parts by weight of stearic acid was added to 100 parts by weight of activated alumina powder containing 30 parts by weight of ρ-alumina with an average particle size of about 6μ obtained by burning a gibbsite-type alumina aquarium, and 2 parts by weight of stearic acid was crushed with a crusher. After mixing for a period of time to coat the alumina surface with stearic acid, 5 parts by weight of methyl cellulose and 50 parts by weight of water were further added, and after kneading for 30 minutes in a mixer, the mixture was fed to a screw extruder with a wall thickness of 0.4 mm. Approximately 100mmX100mmX15 with a square core unit of 2mm on each side
A multi-cell molded body with 0 to J (porosity 69.4%) was obtained.

次いで、このマルチセル成形体をスチーム中で2時間再
水和反応せしめた後、100℃/時間の昇温速度で70
0℃まで昇温し、更に700℃で1時間焼成した。
Next, this multi-cell molded body was subjected to a rehydration reaction in steam for 2 hours, and then heated at a heating rate of 100°C/hour to 70°C.
The temperature was raised to 0°C, and further baked at 700°C for 1 hour.

この様にして得られたマルチセル触媒担体は圧縮強度6
0kg/Cr?L、比表面積150cr?L/g、細孔
容積0.6 cI7L/ g、嵩密度0.37g/cr
?Lで、X線回析ではマルチセルを構成するアルミナは
γ−アルミナが主成分であった。
The multi-cell catalyst carrier thus obtained has a compressive strength of 6
0kg/Cr? L, specific surface area 150 cr? L/g, pore volume 0.6 cI7L/g, bulk density 0.37g/cr
? According to X-ray diffraction, the main component of the alumina constituting the multicell was γ-alumina.

実施例 2 平均粒径約5μのρ−アルミナ50重量部含有する活性
アルミナ粉末70重量部と平均粒径約5μのα−アルミ
ナ粉末30重量部からなる粉末にアルギン酸ソーダ0.
5重量部を加え、捕潰機で1時間混合してアルミナ粉末
表面をアルギン酸ソーダで被覆した後、更にメチルセル
ロース10重量部、水40重量部を加えて、混練機で3
0分分間混練ススクリユー押出機に供給し、壁厚1mm
で一辺4mmの正方形のコアユニットを有するi o
QmmφX150mm1、開孔率64係のマルチセル成
形体を得た。
Example 2 A powder consisting of 70 parts by weight of activated alumina powder containing 50 parts by weight of ρ-alumina with an average particle size of about 5 μm and 30 parts by weight of α-alumina powder with an average particle size of about 5 μm was mixed with 0.0% sodium alginate.
After adding 5 parts by weight and mixing with a crusher for 1 hour to coat the surface of the alumina powder with sodium alginate, further adding 10 parts by weight of methylcellulose and 40 parts by weight of water, and mixing with a crusher for 3 hours.
Kneaded for 0 minutes, fed to screw extruder, wall thickness 1mm
i o has a square core unit with a side of 4 mm.
A multi-cell molded body with QmmφX150mm1 and a porosity of 64 was obtained.

次いで、このマルチセル成形体を密閉室に入れ、常温で
1週間再水和反応させた後、50℃/時間の昇温速度で
600℃まで昇温し、更に600℃で1時間焼成した。
Next, this multi-cell molded body was placed in a closed chamber, and after a rehydration reaction was performed at room temperature for one week, the temperature was raised to 600°C at a temperature increase rate of 50°C/hour, and further baked at 600°C for 1 hour.

この様にして得られたマルチセル触媒担体はX線回析し
た所、主成分はγ−アルミナであり圧縮強度は55kg
/ffl、比表面積160m/、9、細孔容積0.45
i/g、嵩密度0.5g/iであった。
X-ray diffraction of the multi-cell catalyst carrier thus obtained revealed that the main component was γ-alumina and the compressive strength was 55 kg.
/ffl, specific surface area 160m/, 9, pore volume 0.45
i/g, and the bulk density was 0.5 g/i.

実施例 3 平均粒径約5μのρ−アルミナ40重量部、X−アルミ
ナ40重量部、α−アルミナ20重量部よりなる粉末1
00重量部に白絞油1重量部を加え、捕潰機で1時間混
合してアルミナ粉末表面を白絞油で被覆した後、更にメ
チルセルロース8重量部、スポジュメン15重量部、水
60重量部を加えて、混線機で30分間混線後スクリュ
ー押出機に供給し、壁厚0.3 mmで一辺2mmの正
方形コアユニットを有する約100mmX100mi1
00mmX100、開孔率75.6%のマルチセル成形
体を得た。
Example 3 Powder 1 consisting of 40 parts by weight of ρ-alumina, 40 parts by weight of X-alumina, and 20 parts by weight of α-alumina with an average particle size of about 5 μm
Add 1 part by weight of white squeezed oil to 00 parts by weight and mix for 1 hour in a crusher to coat the surface of the alumina powder with white squeezed oil, and then add 8 parts by weight of methylcellulose, 15 parts by weight of spodumene, and 60 parts by weight of water. In addition, after being mixed in a mixer for 30 minutes, it was fed to a screw extruder to form a 100mm x 100mil square core unit with a wall thickness of 0.3 mm and a side of 2 mm.
A multi-cell molded body having a size of 00 mm x 100 mm and a porosity of 75.6% was obtained.

次いで、このマルチセル成形体を95℃の温水中に゛2
40分間浸漬し再水和せしめた後、80℃の熱風で5時
間乾燥し、乾燥後100℃/時間の昇温速度で700℃
まで昇温し、更ζこ700℃で1時間焼成した。
Next, this multi-cell molded body was placed in warm water at 95°C for 2 hours.
After soaking for 40 minutes to rehydrate, dry with hot air at 80°C for 5 hours, and after drying, heat to 700°C at a heating rate of 100°C/hour.
The temperature was raised to 700° C. for 1 hour.

この様にして得られたマルチセル触媒担体は圧縮強度9
0kg/Cn!L、比表面積120m′/g、細孔容積
0.47 crit/ El、嵩密度0.45g/ff
lでX線回析を行なった所マルチセルを構成するアルミ
ナはγ−アルミナが主成分であった。
The multi-cell catalyst carrier obtained in this way has a compressive strength of 9
0kg/Cn! L, specific surface area 120 m'/g, pore volume 0.47 crit/El, bulk density 0.45 g/ff
When X-ray diffraction was performed on the multicell, it was found that the main component of the alumina constituting the multicell was γ-alumina.

実施例 4 バイヤー法により得られたアルミナ水オ[]物を700
〜800℃の熱ガスで瞬間力焼(約10秒間)して得ら
れた再水利可能なアルミナ100重量部にエチレングリ
コール40重量部とメチルセルロース5重量部を加え、
捕潰機で混練後、スクリュー型押出機に供給し、壁厚0
.4 ynm、一辺27n7JLのハニカム状断面を有
する約100mmX 100mm×150mr/Ll、
開孔率69.9%のマルチセル成形体を得た。
Example 4 700% of alumina aqueous solution obtained by Bayer method
40 parts by weight of ethylene glycol and 5 parts by weight of methyl cellulose were added to 100 parts by weight of re-waterable alumina obtained by instantaneous calcining (about 10 seconds) with hot gas at ~800°C.
After kneading with a crusher, feed it to a screw type extruder and reduce the wall thickness to 0.
.. Approximately 100mm x 100mm x 150mr/Ll, with a honeycomb-shaped cross section of 4 ynm and 27n7JL on each side,
A multi-cell molded body with a porosity of 69.9% was obtained.

次いでこのマルチセル成形体をスチーム中で2日間再水
和した後80℃の恒温槽で1昼夜乾燥し、50°C/時
間の昇温速度で300℃まで、100’C/時間の昇温
速度で600℃まで昇温し更に600℃で5時間焼成し
た。
Next, this multi-cell molded body was rehydrated in steam for 2 days, then dried in a constant temperature bath at 80°C for 1 day and night, and heated at a heating rate of 50°C/hour to 300°C, and then at a heating rate of 100°C/hour. The temperature was raised to 600°C, and the mixture was further fired at 600°C for 5 hours.

この様にして得られたマルチセル触媒担体は圧縮強度5
0kg/ffl、比表面積150 m”/ & 、 M
孔容積0.6 antl 9、嵩密度o379/cAで
X線回析ではマルチセルを構成するアルミナはγ−アル
ミナが主成分であった。
The multi-cell catalyst carrier thus obtained has a compressive strength of 5
0kg/ffl, specific surface area 150 m”/&, M
The pore volume was 0.6 antl 9, the bulk density was o379/cA, and X-ray diffraction revealed that the main component of the alumina constituting the multicell was γ-alumina.

実施例 5 実施例4と同一方法で製造された再水利性アルミナ10
0重量部にコージェライト50重量部、澱粉10重量部
、グリセリン30重量部を加え、捕潰機で混練後スクリ
ュー型押出機に供給し、壁厚0.4mm、一辺2m11
Lの四角形状断面を有する約100m1X 100mm
X 150mm111開孔率69.9係のマルチセル成
形体を得た。
Example 5 Re-waterable alumina 10 produced by the same method as Example 4
50 parts by weight of cordierite, 10 parts by weight of starch, and 30 parts by weight of glycerin were added to 0 parts by weight, and after kneading with a crusher, the mixture was fed to a screw type extruder with a wall thickness of 0.4 mm and a side of 2 m11.
Approximately 100m1 x 100mm with L rectangular cross section
A multi-cell molded body having a size of 150 mm x 111 and a porosity of 69.9 was obtained.

次いでこのマルチセル成形体をスチーム中で2日間再水
和した後80℃の恒温槽で1昼夜乾燥し、100℃/時
間の昇温速度で700℃まで昇温し、更に700℃で1
時間焼成した。
Next, this multi-cell molded body was rehydrated in steam for 2 days, dried in a constant temperature bath at 80°C for 1 day and night, heated to 700°C at a heating rate of 100°C/hour, and further heated at 700°C for 1 hour.
Baked for an hour.

この様にして得られたマルチセル触媒担体は圧縮強度5
0kg/crA、比表面積120m/g、細孔容積0.
35i/E11嵩密度0.4°4g/=でX線回析では
マルチセルを構成するアルミナはγ−アルミナが主成分
であった。
The multi-cell catalyst carrier thus obtained has a compressive strength of 5
0kg/crA, specific surface area 120m/g, pore volume 0.
At a bulk density of 35i/E11 of 0.4°4g/=, X-ray diffraction revealed that the main component of the alumina constituting the multicell was γ-alumina.

実施例 6 実施例1と同様にして成形、再水利処理したマルチセル
成形体を100℃/時間の昇温速度で1100℃まで昇
温し、更に1100℃で1時間焼成した。
Example 6 A multi-cell molded body formed and rewatered in the same manner as in Example 1 was heated to 1100°C at a temperature increase rate of 100°C/hour, and further fired at 1100°C for 1 hour.

この様にして得られたマルチセル触媒担体は圧縮強度5
0 kg/cril、比表面積20 m”/ 9、細孔
容積0.4 critl 9、嵩密度0.45.9/i
で、X線回析ではマルチセルを構成するアルミナはθ−
アルミナが主成分であった。
The multi-cell catalyst carrier thus obtained has a compressive strength of 5
0 kg/cril, specific surface area 20 m”/9, pore volume 0.4 critl 9, bulk density 0.45.9/i
According to X-ray diffraction, the alumina that makes up the multicell is θ-
Alumina was the main component.

比較例 1 平均粒径的8μのコーディエライト粉末100重量部に
メチルセルローズ4.5重量部、水25重量部を加え混
練機で30分間混線後実施例1で用いたと同様の押出成
形機を用いて成形後、乾燥し、引き続き100℃/時間
の割合で1300℃まで昇温し、同温度で5時間焼成し
た。
Comparative Example 1 4.5 parts by weight of methyl cellulose and 25 parts by weight of water were added to 100 parts by weight of cordierite powder with an average particle size of 8 μm, mixed in a kneader for 30 minutes, and then mixed in an extrusion molding machine similar to that used in Example 1. After molding using the same material, it was dried, and then the temperature was raised to 1300°C at a rate of 100°C/hour, and baked at the same temperature for 5 hours.

この様にして得たセラミック質マルチセル触媒担体は圧
縮強度250ky/i、比表面積0.2rn”7g、細
孔容積0.20c11t/、yであった。
The ceramic multi-cell catalyst carrier thus obtained had a compressive strength of 250 ky/i, a specific surface area of 0.2rn''7g, and a pore volume of 0.20c11t/y.

比較例 2 平均粒径的5μのムライト粉末100重量部にメチルセ
ルローズ5重量部、水26重量部を加え混練機で30分
間混線後、実施例1で用いたと同様の押出機を用いて成
形後、乾燥、続いて100℃/時間の昇温速度で145
0°Cまで昇温、同温度で10時間焼成した。
Comparative Example 2 5 parts by weight of methyl cellulose and 26 parts by weight of water were added to 100 parts by weight of mullite powder with an average particle size of 5 μm, mixed in a kneader for 30 minutes, and then molded using the same extruder as used in Example 1. , drying followed by heating at 145°C at a heating rate of 100°C/h.
The temperature was raised to 0°C and baked at the same temperature for 10 hours.

この様にして得られたマルチセル触媒担体は圧縮強度3
00kg/i、比表面積0.3 cyrt/ El、細
孔容積0.15 crrt/ 9であった。
The multi-cell catalyst carrier obtained in this way has a compressive strength of 3
00 kg/i, specific surface area 0.3 cyrt/El, and pore volume 0.15 crrt/9.

比較例 3 ギブサイト型アルミナ水和物を■焼して得られた平均粒
径的6μのρ−アルミナ30重量部を含有する活性アル
ミナ粉末100重量部と結晶性セルローズ10重量部を
混合し、これに水50重量部を加えながら皿型造粒機を
用い3mmφの球状に成形した。
Comparative Example 3 100 parts by weight of activated alumina powder containing 30 parts by weight of ρ-alumina with an average particle size of 6μ obtained by calcining gibbsite-type alumina hydrate and 10 parts by weight of crystalline cellulose were mixed. While adding 50 parts by weight of water, the mixture was molded into a sphere with a diameter of 3 mm using a dish-type granulator.

次いでこの球状体をスチーム中で2日間再水和処理した
後乾燥し、引き続き100℃/時間の昇温速度で700
℃まで昇温し、同温度で1時間焼成した。
The spheres were then rehydrated in steam for 2 days, dried, and then heated to 700 °C at a heating rate of 100 °C/hour.
The temperature was raised to .degree. C. and baked at the same temperature for 1 hour.

この様にして得られた球状活性アルミナ成形体は圧縮強
度が10kg、比表面積180i/g、細孔容積0.7
critl &であり、後の実施例7の比較試験用触
媒担体として使用した。
The spherical activated alumina molded body thus obtained has a compressive strength of 10 kg, a specific surface area of 180 i/g, and a pore volume of 0.7.
critl & was used as a catalyst support for the comparative test in Example 7 later.

比較例 4 実施例1で用いたと同様の活性アルミナ粉末50重量部
と平均粒径5μのα−アルミナ粉末50重量部にステア
リン酸0.5重量部を加え、捕潰機で2時間混合してア
ルミナ表面をステアリン酸で被覆した後、更にメチルセ
ルローズ1.5重量部、水35重量部を加えて混練機で
30分間混練後、実施例1と同一の押出機を用いて成形
を試みたところ、押出不能であった。
Comparative Example 4 0.5 parts by weight of stearic acid was added to 50 parts by weight of activated alumina powder similar to that used in Example 1 and 50 parts by weight of α-alumina powder with an average particle size of 5μ, and mixed for 2 hours using a crusher. After coating the alumina surface with stearic acid, 1.5 parts by weight of methyl cellulose and 35 parts by weight of water were added and kneaded for 30 minutes in a kneader, and then molding was attempted using the same extruder as in Example 1. , it was impossible to extrude.

上記方法で水を45重量部に代えて実施したところ押出
は可能であったが、得られた成形体は保形性が著しく悪
いものであった。
When the above method was carried out using 45 parts by weight of water, extrusion was possible, but the resulting molded product had extremely poor shape retention.

実施例 7 実施例1〜6および比較例1〜3により得られた触媒担
体に担体重量に対し155重量部■205を担持させた
後これを入口温度350°Cに保持した反応器に充填し
、NOlooppm、NH3100卿、0□12%、H
2O18,0係、残部N2よりなる合成ガスを第1表ζ
こ示す空間速度で導入し脱硝率及び圧損を測定した。
Example 7 After 155 parts by weight of 205 was supported on the catalyst carriers obtained in Examples 1 to 6 and Comparative Examples 1 to 3 based on the carrier weight, this was charged into a reactor maintained at an inlet temperature of 350°C. , NOlooppm, NH3100 Sir, 0□12%, H
Synthesis gas consisting of 2O18,0 part and the balance N2 is shown in Table 1 ζ
The nitrogen removal rate and pressure drop were measured by introducing the gas at the space velocity shown above.

その結果を第1表に示す。第1表より明らかな如く、本
発明のマルチセル触媒担体は他のマルチセル触媒担体に
くらべ、著しく脱硝率にすぐれ、また球状活性アルミナ
粒子に比較して圧力損失の小さいことが理解できる。
The results are shown in Table 1. As is clear from Table 1, it can be seen that the multi-cell catalyst carrier of the present invention has a significantly better denitrification rate than other multi-cell catalyst carriers, and has a smaller pressure loss than spherical activated alumina particles.

Claims (1)

【特許請求の範囲】[Claims] 1 再水利性アルミナを含む粉体を原料として押出成形
手段により一体成形し、再水利処理後焼成活性化した焼
成体であって、その主成分が遷移アルミナで構成され、
開孔率が3係以上、比表面積が5m”/g以上、嵩密度
が0.1〜1.2//i、細孔容積が0.3 crit
l 9以上で押出方向に少なくとも1個の開孔を有する
ことを特徴とする遷移アルミナ系ホロー状触媒担体。
1. A fired body formed integrally by extrusion molding using powder containing rewaterable alumina as a raw material, and activated by firing after rewatering treatment, the main component of which is composed of transitional alumina,
Porosity is 3 coefficient or more, specific surface area is 5 m''/g or more, bulk density is 0.1-1.2//i, pore volume is 0.3 crit.
A transitional alumina-based hollow catalyst carrier characterized by having at least one opening in the extrusion direction with a diameter of 9 or more.
JP54037546A 1979-03-28 1979-03-28 Transition alumina-based hollow catalyst support Expired JPS5915015B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54037546A JPS5915015B2 (en) 1979-03-28 1979-03-28 Transition alumina-based hollow catalyst support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54037546A JPS5915015B2 (en) 1979-03-28 1979-03-28 Transition alumina-based hollow catalyst support

Publications (2)

Publication Number Publication Date
JPS55129149A JPS55129149A (en) 1980-10-06
JPS5915015B2 true JPS5915015B2 (en) 1984-04-07

Family

ID=12500518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54037546A Expired JPS5915015B2 (en) 1979-03-28 1979-03-28 Transition alumina-based hollow catalyst support

Country Status (1)

Country Link
JP (1) JPS5915015B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142406U (en) * 1984-03-01 1985-09-20 日本板硝子株式会社 light duct

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030013916A (en) * 2001-08-10 2003-02-15 권성현 Biofilter Media for Removing Odor and VOCs Using Carbonized Cork

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142406U (en) * 1984-03-01 1985-09-20 日本板硝子株式会社 light duct

Also Published As

Publication number Publication date
JPS55129149A (en) 1980-10-06

Similar Documents

Publication Publication Date Title
US4260524A (en) Hollow catalyst carrier and hollow catalyst made of transition-alumina and process for production thereof
JP2604876B2 (en) Method for manufacturing ceramic honeycomb structure
US20040051196A1 (en) Method for producing porous ceramic article
JPS61212331A (en) Preparation of monolithic catalyst carrier having integratedhigh surface area phase
JPS61212329A (en) Preparation of high surface area flocculated substance for catalyst carrier and preparation of monolithic carrier structure containing the same
JPS6141611B2 (en)
EP2315732B1 (en) Method for making porous acicular mullite bodies
CN101585005A (en) Honeycomb structure
US5106812A (en) Catalyst carrier for use in high-temperature combustion
US4277376A (en) Process for the manufacture of a monolithic support for catalysts suitable for use in controlling carbon monoxide emissions
US3943064A (en) High strength alumina-silica catalyst substrates having high surface area
CN101543707B (en) Honeycomb structure
JP4747337B2 (en) Hollow structure, purification and catalyst system using the structure
JPS5915015B2 (en) Transition alumina-based hollow catalyst support
EP0019674A1 (en) Process for the production of a hollow catalyst carrier made of transition-alumina
KR820001901B1 (en) Process for producing hollow catalyst carrier made of transition-alumina
JP2004196597A (en) Honeycomb structure, catalyst body using the same, catalyst-supporting filter, and their production processes
JP3372336B2 (en) Honeycomb type adsorbent and method for producing the same
JPS603029B2 (en) Manufacturing method of multi-cell structure
JPS6225416B2 (en)
JPS6325814B2 (en)
JPS6058186B2 (en) Method for manufacturing high-strength carbonaceous structure using extrusion molding method
JPS62201644A (en) Production of catalyst and catalytic carrier
JPS5820903B2 (en) Manufacturing method of activated alumina extrusion molded product
JPH0275341A (en) Heat-resistant catalyst carrier molding and catalyst prepared therefrom