JP4747337B2 - Hollow structure, purification and catalyst system using the structure - Google Patents

Hollow structure, purification and catalyst system using the structure Download PDF

Info

Publication number
JP4747337B2
JP4747337B2 JP2005254312A JP2005254312A JP4747337B2 JP 4747337 B2 JP4747337 B2 JP 4747337B2 JP 2005254312 A JP2005254312 A JP 2005254312A JP 2005254312 A JP2005254312 A JP 2005254312A JP 4747337 B2 JP4747337 B2 JP 4747337B2
Authority
JP
Japan
Prior art keywords
purification
catalyst
hollow body
hollow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005254312A
Other languages
Japanese (ja)
Other versions
JP2007061779A (en
Inventor
英紀 北
秀樹 日向
克己 吉田
直樹 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005254312A priority Critical patent/JP4747337B2/en
Publication of JP2007061779A publication Critical patent/JP2007061779A/en
Application granted granted Critical
Publication of JP4747337B2 publication Critical patent/JP4747337B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Filtering Materials (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

本発明は、中空構造体、該中空構造体を用いた浄化、触媒システムに関するものであり、更に詳しくは、例えば、自動車等の移動体、非自動車用の建機、農業用車両、船、芝刈り機等の各種エンジン及び定置式のプラント等に好適に使用することが可能な、新規浄化、触媒システムに関するものである。本発明は、従来のハニカムタイプに代替し得る新しい担体あるいはフィルター部材であって、特定の中空構造体を用いることで、多様な形状及び構造に対応することが可能な新規浄化、触媒システム及び該浄化、触媒システムに関する新技術・新製品を提供するものである。   The present invention relates to a hollow structure, purification using the hollow structure, and a catalyst system, and more specifically, for example, a moving body such as an automobile, a non-automotive construction machine, an agricultural vehicle, a ship, and a lawn. The present invention relates to a novel purification and catalyst system that can be suitably used for various engines such as mowers and stationary plants. The present invention is a new carrier or filter member that can replace the conventional honeycomb type, and is capable of dealing with various shapes and structures by using a specific hollow structure, and the catalyst system and the catalyst system It provides new technologies and products related to purification and catalyst systems.

現在、自動車等の移動体用には、主に、ハニカム形状の担体、フィルターが使用されている。また、今後、自動車用以外の建機、農業用車両、船、芝刈り機といった各種エンジンに対しても、排ガス規制が施行されることとなる。こうした非自動車、自動車においては、その種類を問わず、担体やフィルターの取り付けできる位置やスペースは限られている。特に、非自動車の場合には、エンジンユニットと浄化システムをセットとして、多様な設計の車両に取り付けなければならないことが多い。こうした要求に対して、セラミックハニカムでは、形や構造が決まっているので、多様化する搭載位置やスペースに対応できないという問題がある。   Currently, honeycomb-shaped carriers and filters are mainly used for moving bodies such as automobiles. In the future, exhaust gas regulations will also be enforced for various engines such as construction machines other than automobiles, agricultural vehicles, ships, and lawn mowers. In such non-automobiles and automobiles, positions and spaces where carriers and filters can be attached are limited regardless of the type. In particular, in the case of a non-automobile, it is often necessary to install an engine unit and a purification system as a set on a vehicle having various designs. In response to such demands, the ceramic honeycomb has a predetermined shape and structure, and thus has a problem that it cannot cope with diversified mounting positions and spaces.

ハニカムが多用される以前には、中実のセラミックボールの表面に触媒を担持した担体も使用されていたことがあるが、自動車の場合では、運転中の振動によりボールどうしがこすれ合い、表面の触媒が短時間ではがれてしまうという問題があった。一方、定置式のプラントにおいては、アルミナ等のボールに触媒を担持した構造体が使用されている。ガス流体は、ボールどうしの空隙をぬうように移動するが、空隙部分が限定されるために、大掛かりな体積となってしまうという問題があり、また、熱容量が大きいために、初期に活性化されにくいという問題もある。   Before honeycombs were frequently used, a carrier carrying a catalyst on the surface of a solid ceramic ball was also used, but in the case of an automobile, the balls rub against each other due to vibration during driving, and the surface There was a problem that the catalyst peeled off in a short time. On the other hand, in a stationary plant, a structure in which a catalyst is supported on a ball of alumina or the like is used. The gas fluid moves so as to pass through the gaps between the balls. However, since the gaps are limited, there is a problem that the volume becomes large, and because the heat capacity is large, the gas fluid is activated in the initial stage. There is also a problem that it is difficult.

ここで、これらの技術に関連する先行技術をいくつか例示すると、例えば、燃料等の燃焼用物質の燃焼効率を向上させ、省エネルギー、排ガスによる公害問題を解決する方法及び装置として、燃焼装置に供給する燃焼前の燃焼用物質を、ケイ素を主要成分としたセラミックスボールからなる低温遠赤外線放射体の触媒に触れさせる方法及び装置が提案されている(特許文献1)。   Here, some prior arts related to these technologies are exemplified. For example, as a method and apparatus for improving the combustion efficiency of combustion substances such as fuel and solving the problem of pollution caused by energy saving and exhaust gas, it is supplied to the combustion apparatus. A method and an apparatus have been proposed in which a combustion substance before combustion is brought into contact with a catalyst of a low-temperature far-infrared radiator made of ceramic balls containing silicon as a main component (Patent Document 1).

また、排ガス浄化装置として、各種廃棄物の焼却、化石燃料の燃焼等によって生じる排ガス中の有害成分等を、吸着除去してクリーンな状態で大気中に放散し、有害成分等を吸着したフィルター部は、簡易、迅速に交換でき、吸着性能を安定的に保持する装置が提案されている(特許文献2)。   In addition, as an exhaust gas purification device, a filter unit that adsorbs and removes harmful components, etc. in exhaust gas generated by incineration of various wastes, combustion of fossil fuels, etc., and dissipates them into the atmosphere in a clean state. Has been proposed (Patent Document 2), which can be exchanged simply and quickly, and stably maintains the adsorption performance.

また、ガス等の流体との接触面積を大きくした窒化ケイ素質多孔体及びその製造方法として、平均粒子直径が1〜150μmの金属ケイ素粒子と、ケイ素酸化物粒子を含む混合物を混練し、貫通孔を有する押出成形体を押出成形後、該押出成形体を窒素中で熱処理して貫通孔の表面から柱状結晶が析出している窒化ケイ素質多孔体を製造する方法が提案されている(特許文献3)。これは、貫通孔に針状粒子を生成する内容であるが、超微粒子の捕集に重要なのは、壁面に形成された空隙内部への針状結晶である。また、この例では、焼成温度を1800℃以下と規定しているが、その場合、粒子成長は生じにくくなる。   Further, as a silicon nitride porous body having a large contact area with a fluid such as a gas and a method for producing the same, a mixture containing silicon silicon particles having an average particle diameter of 1 to 150 μm and silicon oxide particles is kneaded, and through-holes are obtained. A method of producing a silicon nitride porous body in which columnar crystals are precipitated from the surface of through-holes by extruding an extrusion-molded body having a heat treatment in nitrogen is proposed (Patent Document) 3). This is the content of generating acicular particles in the through-holes, but what is important for collecting ultrafine particles is acicular crystals inside the voids formed on the wall surface. In this example, the firing temperature is defined as 1800 ° C. or lower, but in this case, particle growth is less likely to occur.

また、上記方法では、混合物に含まれているケイ素酸化物粒子は、熱処理の過程でバインダー等の有機成分の分解によって形成された炭素成分と反応して一酸化ケイ素の気相を形成する。多孔体の流路内に生成した一酸化ケイ素の気相が残留炭素及び窒素と反応して(還元−窒化反応)、窒化ケイ素粒子を生成する。生成した窒化ケイ素粒子は、貫通孔の表面に形成された窒化ケイ素粒子を核として成長し、貫通孔の内側に向けて柱状結晶を形成するものと推定される。   In the above method, the silicon oxide particles contained in the mixture react with a carbon component formed by decomposition of an organic component such as a binder in the course of heat treatment to form a gas phase of silicon monoxide. The gas phase of silicon monoxide generated in the flow path of the porous body reacts with residual carbon and nitrogen (reduction-nitridation reaction) to generate silicon nitride particles. The generated silicon nitride particles are estimated to grow with the silicon nitride particles formed on the surface of the through-holes as nuclei and form columnar crystals toward the inside of the through-holes.

また、コージエライト針状結晶を層状に形成した内壁を有するハニカム構造体が提案されている。しかし、内壁に針状結晶を成長させたセラミックフィルターでは、捕集効率が低いという欠点があった(特許文献4)。また、窒化ケイ素粒子、粘土及び酸化物からなる成形体を焼成して窒化ケイ素多孔体とする方法が提案されているが(特許文献5)、窒化ケイ素粒子を出発原料とするため製造原価の点で問題があった。一方、金属ケイ素粒子と窒化ケイ素粒子からなる混合粉体を出発原料とする成形体を熱処理して窒化ケイ素多孔体とする方法が提案されているが(特許文献6)、窒化率が低いため、金属ケイ素が多く残留し、窒化ケイ素の持つ優れた耐熱性、耐食性などを損なう問題があった。   A honeycomb structure having an inner wall in which cordierite needle crystals are formed in layers has been proposed. However, the ceramic filter in which needle-like crystals are grown on the inner wall has a drawback that the collection efficiency is low (Patent Document 4). Further, a method has been proposed in which a molded body made of silicon nitride particles, clay and oxide is fired to form a silicon nitride porous body (Patent Document 5). However, since silicon nitride particles are used as a starting material, the production cost is low. There was a problem. On the other hand, although a method has been proposed in which a molded body using a mixed powder composed of metal silicon particles and silicon nitride particles as a starting material is heat-treated to form a silicon nitride porous body (Patent Document 6), since the nitriding rate is low, There was a problem that a large amount of metallic silicon remained and the excellent heat resistance and corrosion resistance of silicon nitride were impaired.

また、関連した技術として、特に、コージエライトは融点が1400℃程度と高く、熱膨張係数が極端に小さいので耐熱衝撃性に優れることから、自動車の三元触媒やガスタービン用の燃焼触媒、あるいは高温ガス浄化触媒用など、700℃を超える高温部における触媒の担体としてそのハニカム構造体が用いられていることは公知である(非特許文献1)。ただし、現行のセラミックフィルターで超微粒子を捕集する場合、気孔径を小さくする必要があるが、その場合、圧力損失が大きくなり、燃費の悪化を招く。   In addition, as a related technology, cordierite has a high melting point of about 1400 ° C. and an extremely small thermal expansion coefficient, so it has excellent thermal shock resistance. Therefore, a three-way catalyst for automobiles, a combustion catalyst for gas turbines, or a high temperature It is known that the honeycomb structure is used as a carrier for a catalyst in a high temperature part exceeding 700 ° C., such as for a gas purification catalyst (Non-patent Document 1). However, when ultrafine particles are collected with the current ceramic filter, it is necessary to reduce the pore diameter. However, in this case, the pressure loss increases, resulting in deterioration of fuel consumption.

非自動車、自動車を問わず、担体やフィルターの取り付けできる位置やスペースは限られている。また、フォークリフト等の非自動車の場合には、エンジンユニットと浄化システムをセットとして、多様な設計の車両に取り付けなければならないことも多い。現在、自動車用として広く使用されているセラミックハニカムでは、形や構造が決まっているので、多様な搭載位置、形状、スペースに対応することは困難である。   Regardless of whether it is a non-automobile or an automobile, the positions and spaces where the carrier and filter can be attached are limited. In addition, in the case of non-automobiles such as forklifts, it is often necessary to install an engine unit and a purification system as a set on a vehicle having various designs. At present, ceramic honeycombs that are widely used for automobiles have a predetermined shape and structure, so it is difficult to cope with various mounting positions, shapes, and spaces.

一方、定置式のプラントにおいては、アルミナボールの外周面に触媒を担持した構造体が使用されている。この構造体は、かつて、車両、移動体用に検討されたが、運転時の振動に伴う摩滅により実用化されなかった。また、ガス等の流体はボールどうしの空隙をぬうように移動するが、空隙部分が限定されるために、大掛かりな体積となってしまうという問題があり、また、熱容量が大きいために、初期に活性化されにくいという問題もある。   On the other hand, in a stationary plant, a structure in which a catalyst is supported on the outer peripheral surface of an alumina ball is used. This structure was once studied for vehicles and moving objects, but was not put into practical use due to wear caused by vibration during driving. In addition, fluids such as gas move so as to pass through the gaps between the balls, but since the gaps are limited, there is a problem that the volume becomes large, and because the heat capacity is large, There is also a problem that it is difficult to activate.

特開平7−34893号公報JP-A-7-34893 登録実用新案第3039320号公報Registered Utility Model No. 3039320 特開2001−316188号公報JP 2001-316188 A 特開2004−298709号公報JP 2004-298709 A 特開平6−256069号公報JP-A-6-256069 特開平1−188479号公報JP-A-1-188479 工業材料,日刊工業新聞社,vol.50,No13,pp.22−26,2002年12月号Industrial Materials, Nikkan Kogyo Shimbun, vol. 50, No13, pp. 22-26, December 2002

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上記諸問題を解決できるような新しい浄化、触媒システムを開発することを目標として鋭意研究を重ねた結果、耐熱、耐磨耗性に優れた材料で中空体を構成し、曲面で構成される配管、あるいは金属容器の内部に、該中空体を充填することにより、中空体は、内部形状に応じて流動が可能であり、多様なユニット形状に対応できること、また、中空体の内部には触媒が担持されており、中空体どうしがこすれ合っても触媒が脱落する恐れはないこと、また、内部での乱流形成により、効率的に浄化、触媒が作用すること等の新規知見を見出し、更に研究を重ねて、本発明を完成するに至った。   In such a situation, in view of the above prior art, the present inventors have conducted extensive research with the goal of developing a new purification and catalyst system that can solve the above problems. A hollow body is made of a material with excellent wear resistance, and the hollow body can flow according to the internal shape by filling the hollow body into a curved pipe or metal container. It can handle various unit shapes, and the catalyst is supported inside the hollow body, so that there is no risk of the catalyst falling off even if the hollow bodies rub against each other. As a result of the formation, new findings such as efficient purification and the action of the catalyst were found, and further research was conducted to complete the present invention.

本発明は、ハニカムタイプに比べて、多様な搭載仕様(形状やサイズ、位置)に適合でき、かつ信頼性の高い浄化、触媒システムを提供することを目的とするものである。また、本発明は、中実のセラミックボールを用いた従来材の場合に比べて、軽量化され、反応も早くなり、また、ガスの流動体積が増えるので、コンパクトなシステムとすることが可能な、新規浄化、触媒システムを提供することを目的とするものである。   An object of the present invention is to provide a purification and catalyst system that can meet various mounting specifications (shape, size, position) and has high reliability as compared with a honeycomb type. In addition, the present invention is lighter in weight, faster in response than the conventional material using solid ceramic balls, and the gas flow volume increases, so that a compact system can be achieved. It aims to provide a novel purification and catalyst system.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)セラミックスで構成される多孔質体からなる中空体を、担体あるいはフィルター部として使用した浄化、触媒用の中空構造体であって、
1)上記担体あるいはフィルター部が、所定のサイズの中空体の集合体で構成されており、2)上記中空体を構成する基材が、窒化ケイ素、サイアロン、炭化ケイ素、ムライト、アルミナ、コージエライトのいずれか、あるいはそれらの混合体からなり、3)上記中空体の壁面には、ガス通路となる貫通穴が形成されており、)上記中空体の内壁の表面には、基材と同種の針状結晶粒子が成長しており、)上記中空体の内壁の針状結晶粒には、触媒粒子が担持されていることを特徴とする浄化、触媒用の構造体。
(2)上記中空体の内壁に、径が2から5ミクロン長さ、最長で30ミクロンの針状結晶が成長している、前記(1)に記載の浄化、触媒用の構造体。
(3)上記中空体が、多面体、球状、丸棒状のいずれかである、前記(1)に記載の浄化、触媒用の構造体。
)上記中空体の壁面の厚みが、1ミリ以下、そして壁面を構成する多孔質体の細孔の気孔径が、50ミクロン以上である、前記(1)に記載の浄化、触媒用の構造体。
)上記針状結晶のアスペクト比が、3以上である、前記(1)に記載の浄化、触媒用の構造体。
)上記中空体が、窒化ケイ素とイットリア、窒化ケイ素とケイ素のいずれか、あるいは両方でなる混合粉末の成形体を焼成してなる焼成体から構成される、前記(1)に記載の浄化、触媒用の構造体。
)前記(1)から()のいずれかに記載の中空構造体が、容器あるいは配管の内部の所定位置に配され、その両端がガスが通過するために十分な目開きをもつ固定手段により、中空体が移動しないように固定されていることを特徴とする浄化、触媒システム。
)排ガスの上流から下流方向に沿って、中空体の貫通孔のサイズ、及び中空体どうしの間にできる空隙が徐々に小さくなるように中空体が傾斜配置されている、前記()に記載の浄化、触媒システム。
)曲面で構成される配管の内部に、内部形状に応じて流動が可能な中空体を配置、充填させることにより、多様なユニット形状に対応できる、前記()に記載の浄化、触媒システム。
10)中空体の壁面に設けられた貫通孔から導入されたガス流体が、中空体内部を通過する過程で生じる乱流により、上記中空体の内壁面に形成された触媒との接触確率を向上させ、浄化、触媒反応を進行させるようにした、前記()に記載の浄化、触媒システム。
11)前記(1)から()に記載の浄化、触媒用の中空構造体を、容器あるいは配管の内部の所定位置に配して、被処理ガスの浄化、触媒反応を進行させることを特徴とする浄化、触媒反応方法。
The present invention for solving the above-described problems comprises the following technical means.
(1) a hollow body made of a formed porous body ceramics, purification was used as a carrier or filter unit, a hollow structure for the catalyst,
1) The carrier or the filter part is composed of an aggregate of hollow bodies of a predetermined size. 2) The base material constituting the hollow body is made of silicon nitride, sialon, silicon carbide, mullite, alumina, cordierite. 3 ) A through-hole serving as a gas passage is formed in the wall surface of the hollow body, and 4 ) The surface of the inner wall of the hollow body is of the same type as the base material. needle crystal grains and grow, 5) to the needle-like crystal grains child of the inner wall of the hollow body, purification, wherein the catalyst particles are supported, the structure of the catalyst.
(2) The purification / catalyst structure according to (1), wherein needle crystals having a diameter of 2 to 5 microns and a maximum length of 30 microns are grown on the inner wall of the hollow body.
(3) The purification / catalyst structure according to (1), wherein the hollow body is one of a polyhedron, a sphere, and a round bar.
( 4 ) The purification and catalyst use according to (1) above, wherein the thickness of the wall surface of the hollow body is 1 mm or less, and the pore diameter of the porous body constituting the wall surface is 50 microns or more. Structure.
( 5 ) The purification / catalyst structure according to (1), wherein the needle crystal has an aspect ratio of 3 or more.
( 6 ) The purification according to (1), wherein the hollow body is composed of a fired body formed by firing a mixed powder formed body of silicon nitride and yttria, silicon nitride and silicon, or both. , Structure for catalyst.
( 7 ) The hollow structure described in any one of (1) to ( 6 ) above is disposed at a predetermined position inside the container or the pipe, and the both ends thereof are fixed with sufficient openings so that gas can pass therethrough. A purification and catalyst system characterized in that the hollow body is fixed so as not to move by means.
( 8 ) The said hollow body is inclinedly arranged so that the size of the through-hole of a hollow body and the space | gap formed between hollow bodies may become small gradually from the upstream to the downstream direction of waste gas, ( 7 ) The purification, catalyst system described in.
( 9 ) The purification and catalyst according to ( 7 ), which can accommodate various unit shapes by disposing and filling a hollow body that can flow according to the internal shape inside a pipe constituted by a curved surface. system.
( 10 ) The contact probability with the catalyst formed on the inner wall surface of the hollow body is reduced by the turbulent flow generated in the process in which the gas fluid introduced from the through hole provided in the wall surface of the hollow body passes through the hollow body. The purification and catalyst system according to ( 7 ), wherein the purification and the catalytic reaction are advanced.
( 11 ) The purifying and catalytic hollow structure described in (1) to ( 6 ) above is disposed at a predetermined position inside a container or piping to purify the gas to be treated and to advance the catalytic reaction. Characterized purification and catalytic reaction methods.

次に、本発明について更に詳細に説明する。
本発明は、セラミックスあるいは耐熱金属で構成される中空体を、担体あるいはフィルター部として備えた浄化、触媒用の中空構造体であって、(1)上記担体あるいはフィルター部が、所定のサイズの中空体の集合体で構成されている、(2)上記中空体の壁面には、ガス通路となる貫通穴が形成されている、ことを特徴とする浄化、触媒用の構造体の点、上記中空構造体が、容器あるいは配管の内部の所定位置に配され、その両端がガスが通過するために十分な目開きをもつ固定手段により、中空体が移動しないよう固定されていることを特徴とする浄化、触媒システムの点、及び上記浄化、触媒用の構造体を容器あるいは配管の内部の所定位置に配して、被処理ガスの浄化、触媒反応を進行させることを特徴とする浄化、触媒反応方法の点、に最大の特徴を有するものである。
Next, the present invention will be described in more detail.
The present invention is a purification / catalyst hollow structure comprising a hollow body made of ceramics or a refractory metal as a carrier or filter part. (1) The carrier or filter part is hollow with a predetermined size. (2) The wall of the hollow body is formed with a through-hole serving as a gas passage, and the structure of the structure for purification and catalyst, the hollow The structure is arranged at a predetermined position inside the container or the pipe, and the hollow body is fixed so as not to move by fixing means having sufficient openings for both ends of the structure to pass through the gas. Purification, catalytic reaction, and purification and catalytic reaction characterized by disposing the purification and catalytic structure at a predetermined position inside a container or piping to purify the gas to be treated and promote the catalytic reaction Method Point, those having the greatest features.

本発明においては、上記中空体は、多孔体であ、また、上記中空体の内壁には、触媒粒子を担持することが可能であり、また、上記中空体は、多面体、球状、丸棒状のいずれかであること、が好適な実施の態様として例示される。また、本発明においては、上記中空体は、窒化ケイ素、サイアロン、炭化ケイ素、ムライト、アルミナ、コージエライトのいずれか、あるいはそれらの混合体からなる。 In the present invention, the hollow body is porous Karadadea is, also, the inner wall of the hollow body, it is possible to support the catalyst particles, also, the hollow body, polyhedral, spherical, round It is illustrated as a suitable embodiment that it is either rod-shaped. In the present invention, the hollow body is silicon nitride, sialon, silicon carbide, mullite, alumina, ing from either, or mixtures thereof cordierite.

また、本発明においては、上記中空体の表面には、基材と同種の針状結晶が形成されていることが好適であり、上記中空体の壁面の厚みは、1ミリ以下、そして壁面を構成する多孔質部の気孔径が50ミクロン以下であること、また、上記針状結晶のアスペクト比は、3以上であることが好ましい。更に、上記中空体は、窒化ケイ素とイットリア、窒化ケイ素とケイ素のいずれか、あるいは両方でなる混合粉末の成形体を焼成してなる焼成体からなることが好適な実施の態様として例示される。   In the present invention, it is preferable that the same kind of needle-like crystal as the base material is formed on the surface of the hollow body, the thickness of the wall surface of the hollow body is 1 mm or less, and the wall surface is It is preferable that the pore diameter of the porous part to be formed is 50 microns or less, and the aspect ratio of the needle crystal is 3 or more. Furthermore, it is exemplified as a preferable embodiment that the hollow body is made of a fired body formed by firing a mixed powder formed body of silicon nitride and yttria, silicon nitride and silicon, or both.

次に、本発明では、上記中空構造体を使用して、被処理ガスの浄化、触媒システムを構築することができる。すなわち、上記中空構造体を、容器あるいは配管の内部の所定位置に配置して、その両端をガスが通過するために十分な目開きをもつメッシュ等の固定手段により、中空体が移動しないように固定することにより、本発明の浄化、触媒システムが構築される。本発明において、浄化、触媒システムとは、浄化及び/又は触媒反応を行うための浄化及び/又は触媒装置を意味するものとして定義される。また、本発明において、上記容器あるいは配管とは、容器状あるいは配管状の部材あるいはそれらの類似体を意味するが、それらの形状及び構造は特に制限されるものではなく任意に設計することができる。また、上記被処理ガスとしては、例えば、自動車の排ガス、工場排ガス、アンモニア合成等工業用ガスといった流体が例示されるが、これらに制限されるものではない。   Next, in the present invention, it is possible to construct a purification system for a gas to be treated and a catalyst system using the hollow structure. That is, the hollow structure is arranged at a predetermined position inside the container or the pipe, and the hollow body is prevented from moving by a fixing means such as a mesh having sufficient openings for the gas to pass through both ends thereof. By fixing, the purification and catalyst system of the present invention is constructed. In the present invention, the purification and catalyst system is defined as meaning a purification and / or catalyst device for performing purification and / or catalytic reaction. In the present invention, the container or pipe means a container-like or pipe-like member or an analogue thereof, but their shape and structure are not particularly limited and can be arbitrarily designed. . Examples of the gas to be treated include fluids such as automobile exhaust gas, factory exhaust gas, and industrial gas such as ammonia synthesis, but are not limited thereto.

本発明では、上記中空体を、排ガスの上流から下流方向に沿って、中空体の貫通孔のサイズ、及び中空体どうしの間にできる空隙が徐々に小さくなるように傾斜配置して浄化効率を向上させた、浄化、触媒システムを構成することができる。また、本発明では、曲面で構成される配管の内部に、内部形状に応じて流動が可能な中空体を配置、充填させることにより、多様なユニット形状に対応できる、浄化、触媒システムを構成することができる。ここで、上記容器あるいは配管の材質としては、ステンレス等の耐熱金属が例示される。   In the present invention, the hollow body is inclined and disposed so that the size of the through hole of the hollow body and the gap formed between the hollow bodies gradually become smaller from the upstream to the downstream of the exhaust gas. An improved purification and catalyst system can be constructed. Further, in the present invention, a purification and catalyst system that can cope with various unit shapes is configured by arranging and filling a hollow body that can flow according to the internal shape inside a curved pipe. be able to. Here, the material of the container or the pipe is exemplified by a heat-resistant metal such as stainless steel.

また、本発明では、中空体の壁面に設けられた貫通孔から導入されたガス等の流体が、中空内部を通過する過程で生じる乱流により、上記中空体の内壁面に形成された触媒との接触確率を向上させ、効果的に浄化、触媒反応を進行させるようにした、浄化、触媒システムを構成することができる。更に、本発明では、上記浄化、触媒用の中空構造体を、容器あるいは配管の内部の所定位置に配置して、被処理ガス等の浄化、触媒反応を進行させることからなる、浄化、触媒反応方法を構成することができる。   Further, in the present invention, the catalyst formed on the inner wall surface of the hollow body by a turbulent flow generated in a process in which a gas or the like introduced from a through hole provided in the wall surface of the hollow body passes through the hollow interior, Thus, it is possible to construct a purification and catalyst system that improves the contact probability and effectively advances the purification and catalytic reaction. Furthermore, in the present invention, the purification and catalytic reaction comprising the purification and catalytic hollow structure disposed at a predetermined position inside the container or the pipe to purify the gas to be treated and the catalytic reaction proceeds. A method can be configured.

本発明では、セラミックスが中空体の原料として用いられる。これらの原料として、窒化ケイ素、サイアロン、炭化ケイ素、ムライト、アルミナ、コージエライトが示される。次に、本発明の浄化、触媒用の中空構造体の作製方法及び浄化、触媒システムについて説明すると、例えば、窒化ケイ素粉末等の原料粉末を所定の組成になるように秤量し、これに水を配合し、ボールミル等により混合し、その後、乾燥させて水を除去する。該混合粉末は、造孔剤、成形助剤等を加えて、加圧ニーダ等を使って混練して成形用組成物を作製する。次に、得られた組成物を射出成形機等を使って半球状の成形体を作製する。この場合、上記成形体の壁面に所定の径の貫通孔が形成されるように、所定の成形型を使用する。造孔剤としては、好適には、例えば、黒鉛や、比較的融点の低い金属(アルミ等)が例示される。また、成形助剤としては、好適には、例えば、ポリエチレン、ワックス、ステアリン酸、エチレン酢酸ビニルが例示される。 In the present invention, ceramics are used as a raw material of the hollow body. As these raw materials, silicon nitride, sialon, silicon carbide, mullite, alumina, is Kojierai Toga示. Next, the purification of the present invention, the production method and purification of a hollow structure for a catalyst, and the catalyst system will be described. For example, raw material powder such as silicon nitride powder is weighed to have a predetermined composition, and water is added to this. It mix | blends and mixes by a ball mill etc., Then, it is made to dry and water is removed. The mixed powder is kneaded using a pressure kneader or the like with the addition of a pore-forming agent, a molding aid and the like to produce a molding composition. Next, a hemispherical shaped product is produced from the obtained composition using an injection molding machine or the like. In this case, a predetermined mold is used so that a through-hole having a predetermined diameter is formed on the wall surface of the molded body. Preferable examples of the pore-forming agent include graphite and a metal (aluminum or the like) having a relatively low melting point. Moreover, as a shaping | molding adjuvant, polyethylene, wax, a stearic acid, and ethylene vinyl acetate are illustrated suitably, for example.

次に、2つの半球状の成形体を合せた状態で、大気中600〜700℃程度で脱脂し、更に、窒素雰囲気中1700〜1850℃で焼成する。この際に、バインダーは融着され、一体化された貫通孔を有する中空状の球体が得られる。焼結後、大気中で造孔剤を焼き飛ばすことで多孔質とすることができる。上記プロセスにより、約50〜100ミクロン程度の径をもつ気孔の内壁に、径が約2〜5ミクロン長さ、最長で約30ミクロン程度の針状結晶が成長している中空体が得られる。中空体は、直径約12〜20ミリ、厚さ約0.5〜2ミリで、壁面には約3〜5ミリの径の貫通孔が、全体で5〜10個程度形成されるが、これらの形状及び構造、貫通孔の数、大きさ等は、任意に設計することができる。   Next, in a state where the two hemispherical molded bodies are combined, the mixture is degreased at about 600 to 700 ° C. in the air and further fired at 1700 to 1850 ° C. in a nitrogen atmosphere. At this time, the binder is fused to obtain a hollow sphere having an integrated through hole. After sintering, it can be made porous by burning off the pore former in the atmosphere. By the above process, a hollow body is obtained in which needle-like crystals having a diameter of about 2 to 5 microns and a maximum length of about 30 microns are grown on the inner wall of a pore having a diameter of about 50 to 100 microns. The hollow body has a diameter of about 12 to 20 mm, a thickness of about 0.5 to 2 mm, and about 5 to 10 through-holes with a diameter of about 3 to 5 mm are formed on the wall surface. The shape and structure, the number of through holes, the size, and the like can be arbitrarily designed.

本発明では、上記中空体の内面に、例えば、ウォッシュコート等により、ガンマアルミナ粒子をコーティングした後、白金超微粒子等を担持して、上記中空体の内面に触媒を担持させることができる。この場合、触媒の担持方法、触媒の種類は、特に制限されるものではなく、上記中空体の内面に、適宜の手段及び方法で、適宜の触媒を担持させることができる。本発明では、触媒を上記中空体の内面に担持させることができるため、中空体どうしの接触による触媒の脱落等の問題がなく、触媒を安定した形で担持させることができる。   In the present invention, after the gamma alumina particles are coated on the inner surface of the hollow body by, for example, wash coating, platinum ultrafine particles and the like are supported, and the catalyst can be supported on the inner surface of the hollow body. In this case, the catalyst loading method and the type of the catalyst are not particularly limited, and an appropriate catalyst can be supported on the inner surface of the hollow body by an appropriate means and method. In the present invention, since the catalyst can be supported on the inner surface of the hollow body, there is no problem of the catalyst falling off due to contact between the hollow bodies, and the catalyst can be supported in a stable form.

次に、本発明では、上記中空構造体を、例えば、ケーシング用金属容器内に充填し、固定用メッシュを両サイドに配置し、また、ケーシングとの隙間をヒル石等で埋めて、本発明の浄化、触媒システムを構成することができる。この場合、上記ケーシング容器の形状、構造及び材料等は、特に制限されるものではなく、任意に設計することができる。また、本発明では、上記中空構造体を、湾曲した配管内に配置し、両サイドを固定用メッシュを配した後、溶接で固定し、もとの配管部と連続させ、上記中空体を曲面を有する配管部へ搭載した、浄化、触媒システムを構成することができる。この方法によると、本発明の中空体は、球状中空体であるため、多様な形状の配管に適合させることが可能である。   Next, in the present invention, for example, the hollow structure is filled in a casing metal container, the fixing mesh is arranged on both sides, and the gap with the casing is filled with leeches or the like. Purification and catalyst system can be configured. In this case, the shape, structure, material, and the like of the casing container are not particularly limited and can be arbitrarily designed. Further, in the present invention, the hollow structure is disposed in a curved pipe, a fixing mesh is arranged on both sides, and then fixed by welding, and is continuous with the original pipe, and the hollow body is curved. It is possible to configure a purification and catalyst system mounted on a piping section having According to this method, since the hollow body of the present invention is a spherical hollow body, it can be adapted to various shapes of piping.

本発明の浄化、触媒用の構造体は、中空状の球体からなる中空構造体であり、その気孔部分には、例えば、約50ミクロンの径をもつ気孔の内壁には、径が約2〜5ミクロン長さ、最長で約30ミクロンの針状結晶が成長している。この中空構造体は、従来のハニカムタイプに比べて、例えば、上記中空構造体は、金属容器あるいは曲面で構成される配管の内部形状に応じて流動可能に配置できること、金属容器あるいは配管を任意の形状及び構造に設計できること、中空体どうしがこすれあっても、中空体の内部に担持された触媒が脱落することがないこと、従来品に比べて微粒子のPMを高効率で浄化できること、貴金属の使用量を減らした場合でも、高い性能を維持できること、中空体のサイズの大きさが、上流側から下流側へ小さくなるように傾斜配置することにより、PM捕集効率、圧力損失を改善できること、等の利点を有する。   The purification / catalyst structure of the present invention is a hollow structure composed of hollow spheres, and the pore portion thereof has, for example, an inner wall of a pore having a diameter of about 50 microns having a diameter of about 2 to 2. Needle-like crystals that are 5 microns long and up to about 30 microns are growing. Compared to the conventional honeycomb type, for example, the hollow structure can be arranged to be flowable according to the internal shape of a pipe formed of a metal container or a curved surface, and the metal container or pipe can be arbitrarily connected. It can be designed in shape and structure, the catalyst supported inside the hollow body will not fall off even if the hollow bodies are rubbed, the PM of fine particles can be purified more efficiently than the conventional product, Even when the amount used is reduced, high performance can be maintained, and the PM collection efficiency and pressure loss can be improved by inclining the size of the hollow body so that the size of the hollow body decreases from the upstream side to the downstream side, And so on.

従来のセラミックハニカムでは、形態が固定されていることから、非自動車、自動車に搭載する位置、形状、構造、及びスペース等に制約があり、車両の多様な設計に対応した搭載は困難であった。一方、定置式のプラントにおいては、例えば、アルミナボールの外周面に触媒を担持した構造体の使用が試みられていたが、運転時の振動に伴う摩滅や、それによる触媒の脱落の発生、ガスが通過できる空隙部分が限定されることによる大きい圧損、熱容量が大きいことによる初期活性の低下、等の問題点があった。   In the conventional ceramic honeycomb, since the form is fixed, there are restrictions on the position, shape, structure, space, etc. for mounting in non-automobiles and automobiles, and mounting corresponding to various designs of vehicles has been difficult. . On the other hand, in a stationary plant, for example, the use of a structure having a catalyst supported on the outer peripheral surface of an alumina ball has been attempted. However, wear due to vibration during operation, occurrence of catalyst falling off, There are problems such as a large pressure loss due to the limitation of the voids that can pass through, and a decrease in initial activity due to a large heat capacity.

これに対して、本発明では、耐熱、耐磨耗性に優れた材料で壁面に貫通孔を有する中空体を構成し、該中空体の内部に触媒を担持し、これを担体あるいはフィルター部として金属容器、配管等の構造体の内部に充填して浄化、触媒システムを構成したので、上述の問題点がなく、しかも、多様な形状及び構造に対応して設計及び搭載が可能な浄化、触媒システムに関する新技術・新製品を提供することが実現できる。   On the other hand, in the present invention, a hollow body having a through-hole on the wall surface is formed of a material having excellent heat resistance and wear resistance, and a catalyst is supported inside the hollow body, which is used as a carrier or a filter part. Since the purification and catalyst system is configured by filling the inside of a structure such as a metal container or piping, the purification and catalyst that do not have the above-mentioned problems and that can be designed and mounted corresponding to various shapes and structures It is possible to provide new technologies and products related to the system.

本発明により、次のような効果が奏される。
(1)本発明により、中空体の壁面に、ガス通路となる貫通孔が形成されている中空体の集合体で構成される浄化、触媒用の中空構造体を提供できる。
(2)担体あるいはフィルター部として従来品のハニカムタイプに代替して使用可能な新規中空構造体を提供できる。
(3)中空体の内部に触媒を担持した、中空体どうしがこすれ合っても触媒の脱落がない、新規触媒用中空構造体を提供できる。
(4)上記中空構造体を担体あるいはフィルター部として容器あるいは配管に配置した、浄化、触媒システムを提供できる。
(5)多様なユニット形状及び構造に自由に対応できる、自由設計が可能な浄化、触媒システムを提供できる。
(6)従来品に比べて高効率で浄化、触媒作用を発揮する新しい浄化、触媒システムを提供できる。
(7)非自動車、自動車において、エンジンユニットと浄化システムを多様な搭載位置、形状、構造、及びスペースに対応してセットすることが可能な浄化、触媒システムを提供できる。
(8)中空体であるため、中実品に比べて熱容量が小さく、従って、排ガスに曝された場合、温度上昇しやすく、早期活性化が可能となる。
(9)ガスの上流から下流に向けて気孔率の異なる中空体を配することにより圧損を抑えつつ効率良く微粒子を捕集できる。
The present invention has the following effects.
(1) According to the present invention, it is possible to provide a purification / catalyst hollow structure composed of an aggregate of hollow bodies in which through holes serving as gas passages are formed on the wall surface of the hollow body.
(2) It is possible to provide a novel hollow structure that can be used in place of the conventional honeycomb type as a carrier or filter part.
(3) It is possible to provide a novel hollow structure for a catalyst in which a catalyst is supported inside the hollow body and the catalyst does not fall off even when the hollow bodies are rubbed together.
(4) A purification and catalyst system can be provided in which the hollow structure is disposed in a container or pipe as a carrier or filter part.
(5) It is possible to provide a purification and catalyst system that can be freely designed and can be freely adapted to various unit shapes and structures.
(6) It is possible to provide a new purification and catalyst system that exhibits purification and catalytic action with higher efficiency than conventional products.
(7) It is possible to provide a purification and catalyst system capable of setting an engine unit and a purification system corresponding to various mounting positions, shapes, structures, and spaces in non-automobiles and automobiles.
(8) Since it is a hollow body, its heat capacity is smaller than that of a solid product. Therefore, when exposed to exhaust gas, the temperature is likely to rise, and early activation becomes possible.
(9) By arranging hollow bodies having different porosity from upstream to downstream of the gas, fine particles can be efficiently collected while suppressing pressure loss.

次に、本発明を実施例に基づいて具休的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   Next, the present invention will be described casually based on examples, but the present invention is not limited to the following examples.

平均粒径が1ミクロン程度の窒化ケイ素粉末、アルミナ、イットリアを、それぞれ93:2:5となるように秤量した。粉末総重量に対して140wt%の水を配合し、ボールミルにより混合した。その後、乾燥させ、水分を除去した。該混合粉末100%に粒径70ミクロンの黒鉛粉末(造孔剤)を外掛で10%、成形助剤として40%のポリエチレン、ワックスを加えて、加圧ニーダーを使って約1時間混練して成形組成物を作製した。得られた組成物を射出成形機を使って半球状の成形体を作製した。   Silicon nitride powder having an average particle diameter of about 1 micron, alumina, and yttria were weighed so as to be 93: 2: 5, respectively. 140 wt% of water was blended with respect to the total weight of the powder and mixed by a ball mill. Then, it was made to dry and the water | moisture content was removed. 100% of the mixed powder is added with graphite powder (pore forming agent) having a particle size of 70 microns, and 10% of polyethylene and wax are added as molding aids and 40% as molding aids, and kneaded for about 1 hour using a pressure kneader. A molding composition was prepared. A hemispherical molded product was produced from the obtained composition using an injection molding machine.

直径12ミリ、厚さ0.8ミリで、壁面には約3ミリの径の貫通孔が全体で5個形成されていた。2つの半球を合せた状態で大気中700℃で脱脂し、更に、窒素雰囲気中1850℃で焼成した。この際に、バインダーは融着され、一体化された中空状の球体が得られた。焼結後、大気中で黒鉛部を焼き飛ばし、多孔質とした。図1に、中空体の微細構造を示す。得られた焼結体の気孔部分を観察した結果、約50ミクロンの径をもつ気孔の内壁には、径が2から5ミクロン長さ、最長で30ミクロンの針状結晶が成長していることが確認された。   A total of five through-holes having a diameter of 12 mm and a thickness of 0.8 mm and a diameter of about 3 mm were formed on the wall surface. The two hemispheres were combined, degreased at 700 ° C. in the air, and further fired at 1850 ° C. in a nitrogen atmosphere. At this time, the binder was fused and an integrated hollow sphere was obtained. After sintering, the graphite part was burned off in the atmosphere to make it porous. FIG. 1 shows the microstructure of the hollow body. As a result of observing the pore portion of the obtained sintered body, acicular crystals having a diameter of 2 to 5 microns and a maximum length of 30 microns grow on the inner wall of the pore having a diameter of about 50 microns. Was confirmed.

本例は、参考実施例、すなわち参考例を示すものである。平均粒径が1ミクロン程度の窒化ケイ素粉末及びイットリアを、それぞれ95:5となるように秤量した。粉末総重量に対して140wt%の水を配合し、ボールミルにより混合した。内面に部分的にワセリンにて目止めした石膏型内にスラリーを注入した。石膏体に吸水固化させ、中空球状体を得た。これを、実施例1と同じく、窒素雰囲気中1850℃で焼成した。形状等は、実施例1と同じであった。得られた焼結体の気孔部分を観察した結果、約50ミクロンの径をもつ気孔の内壁には、径が2から5ミクロン長さ、最長で30ミクロンの針状結晶が成長していることが確認された。 This example shows a reference example, that is, a reference example. Silicon nitride powder and yttria having an average particle diameter of about 1 micron were weighed so as to be 95: 5, respectively. 140 wt% of water was blended with respect to the total weight of the powder and mixed by a ball mill. The slurry was poured into a gypsum mold partially sealed with petrolatum on the inner surface. The gypsum body was water-absorbed and solidified to obtain a hollow sphere. This was fired at 1850 ° C. in a nitrogen atmosphere as in Example 1. The shape and the like were the same as in Example 1. As a result of observing the pore portion of the obtained sintered body, acicular crystals having a diameter of 2 to 5 microns and a maximum length of 30 microns grow on the inner wall of the pore having a diameter of about 50 microns. Was confirmed.

実施例1、2で作製した中空体の内面に、ウォッシュコートによりガンマアルミナ粒子をコーティングした後、白金超微粒子を担持した。加熱後、中空体をケーシング用金属容器内に入れ、固定用メッシュ(目開き6ミリ)を両サイドに配し、また、ケーシングとの隙間をヒル石(バーミキュライト)で埋めた。図2に、中空体をケーシング用金属容器に充填して作製した浄化、触媒用システムの概念図を示す。   After coating the gamma alumina particles with the wash coat on the inner surface of the hollow body produced in Examples 1 and 2, platinum ultrafine particles were supported. After heating, the hollow body was put in a metal container for casing, a fixing mesh (mesh opening 6 mm) was arranged on both sides, and the gap with the casing was filled with leeches (vermiculite). FIG. 2 shows a conceptual diagram of a purification and catalyst system produced by filling a hollow body with a casing metal container.

図3に、PM捕集効率、圧力損失の経時間変化、ならびに排出ガスに含まれるPMの粒子径を測定した結果を示す。データ中において、本発明とは、針状粒子形成中空体を設けたDPFであり、比較例とは、通常のウォールフロータイプのDPFである。DPFをディーゼルエンジンの排気マニホールドとマフラーとを繋ぐ排気管に装着し、ディーゼルエンジンから排出される排気ガスのPM浄化を行なった。 FIG. 3 shows the results of measuring the PM collection efficiency, the change in pressure loss over time, and the particle size of PM contained in the exhaust gas. In the data, the present invention is a DPF provided with a needle-like particle-forming hollow body , and the comparative example is a normal wall flow type DPF. The DPF was installed in the exhaust pipe connecting the exhaust manifold and the muffler of the diesel engine, and PM purification of the exhaust gas discharged from the diesel engine was performed.

その結果を図3〜4に示す。図3〜4に示されるように、本発明は、従来品に比べて高い浄化率、捕集時間を示した。また、本発明によれば、従来のDPFに比べて、微粒子のPMが浄化できることが分かった。大きな粒子は、その運動は慣性が主体のため、気孔入り口で捕集(ケークろ過方式)し、気孔をすり抜け、あるいは凝結によって生成する超微粒子は、ブラウン運動が主体のため、壁面で捕集できることが分かった。 The results are shown in Figure 3-4. As shown in FIG. 3-4, the present invention has a high purification rate than the conventional product showed a collection time. Moreover, according to this invention, it turned out that PM of fine particle can be purified compared with the conventional DPF. Large particles are mainly collected by inertia, so they can be collected at the entrance of the pores (cake filtration method). Ultrafine particles generated by passing through the pores or condensing can be collected on the wall because they are mainly Brownian. I understood.

湾曲した配管内に、上記触媒担持中空体を配し、両サイドに固定用メッシュ部を配した後、溶接で固定し、もとの配管部と連結させ、触媒担持中空体を曲面を有する配管部へ搭載した(図5)。本発明の中空体は、球状中空体であるため、多様な形状の配管に適合させることができることが分かった。 The catalyst-carrying hollow body is arranged in a curved pipe, the fixing mesh parts are arranged on both sides, then fixed by welding, and connected to the original pipe part, and the catalyst-carrying hollow body has a curved surface (Fig. 5) . Since the hollow body of this invention is a spherical hollow body, it turned out that it can adapt to piping of various shapes.

本例は、参考実施例、すなわち参考例を示すものである。
ムライト粉末総重量に対して140wt%の水を配合し、ボールミルにより混合した。その後、乾燥させ、水分を除去した。該混合粉末100%に、あらかじめポリエチレンと酸化鉄でなる、粒径70ミクロンの混合物(造孔剤)を外掛で10%、成形助剤として該混合粉末100%に粒径70ミクロンの黒鉛粉末(造孔剤)を外掛で10%、成形助剤として40%のポリエチレン、ワックスを加えて、加圧ニーダーを使って、約1時間混練して、成形組成物を作製した。得られた組成物を射出成形機を使って半球状の成形体を作製した。
This example shows a reference example, that is, a reference example.
140 wt% of water was blended with respect to the total weight of the mullite powder and mixed by a ball mill. Then, it was made to dry and the water | moisture content was removed. 10% of a mixture (pore forming agent) made of polyethylene and iron oxide in advance and having a particle size of 70 microns is added to 100% of the mixed powder, and a graphite powder having a particle size of 70 microns is added to 100% of the mixed powder as a molding aid. A molding composition was prepared by adding polyethylene and wax of 10% on the outside and 40% as molding aids and kneading for about 1 hour using a pressure kneader. A hemispherical molded product was produced from the obtained composition using an injection molding machine.

2つの半球を合せた状態で、大気中700℃で脱脂し、更に、大気中1600℃で焼成した。この際に、バインダーは融着され、一体化された中空状の球体を得た。表面において、ムライトも針状に成長しているのが確認された。次いで、ウォッシュコートによりγアルミナを担持後、貴金属を担持させた。エンジンベンチ試験機を使って性能評価を行い、窒素酸化物、ハイドロカーボン濃度の計測を実施した。その結果、従来のハニカムタイプに対して、貴金属使用量を減らした場合でも、高い性能を維持していることが確認された。   In a state where the two hemispheres were combined, they were degreased at 700 ° C. in the atmosphere, and further fired at 1600 ° C. in the atmosphere. At this time, the binder was fused to obtain an integrated hollow sphere. On the surface, it was confirmed that mullite also grew in a needle shape. Next, noble metal was supported after γ-alumina was supported by washcoat. Performance evaluation was performed using an engine bench tester, and nitrogen oxide and hydrocarbon concentrations were measured. As a result, it was confirmed that high performance was maintained even when the amount of noble metal used was reduced compared to the conventional honeycomb type.

本例は、参考実施例、すなわち参考例を示すものである。
カオリン粉末総重量に対して140wt%の水を配合し、ボールミルにより混合した。その後、乾燥させ、水分を除去した。該混合粉末100%に、あらかじめポリエチレンと酸化鉄でなる、粒径70ミクロンの混合物(造孔剤)を外掛で10%、成形助剤として12%のメチルセルロース、1.5%のグリセリン及び15%の水を加えて、加圧ニーダーを使って、約1時間混練して成形組成物を作製した。得られた組成物を、ハニカム成形金型を配した押出成形機を使ってハニカム成形体とした。
This example shows a reference example, that is, a reference example.
140 wt% of water was blended with respect to the total weight of the kaolin powder and mixed by a ball mill. Then, it was made to dry and the water | moisture content was removed. 10% of a mixture (pore-forming agent) made of polyethylene and iron oxide in advance and having a particle size of 70 microns, 12% methylcellulose, 1.5% glycerin and 15% as a molding aid. Was added and kneaded for about 1 hour using a pressure kneader to prepare a molding composition. The obtained composition was formed into a honeycomb molded body using an extrusion molding machine provided with a honeycomb molding die.

上記カオリン粉末として、カオリン、タルク、アルミナ、シリカ粉末を用いた。カオリンは、アルミナ、シリカ、マグネシアを主成分とした複酸化物の総称である。本実施例で用いたカオリン及びタルクの組成は、モル比で、カオリン(Al:SiO:MgO:K=34.69:50.64:0.47:2.59:1.08)、タルク(SiO:MgO=62.85:31.33)の組成である。カオリンは、焼結時に針状結晶を成長させる核となる。 As the kaolin powder, kaolin, talc, alumina and silica powder were used. Kaolin is a generic name for double oxides mainly composed of alumina, silica, and magnesia. The composition of kaolin and talc used in this example was kaolin (Al 2 O 3 : SiO 2 : MgO: K 2 O 3 = 34.69: 50.64: 0.47: 2.59) in molar ratio. 1.08) and talc (SiO 2 : MgO = 62.85: 31.33). Kaolin becomes a nucleus for growing acicular crystals during sintering.

末総重量に対して140wt%の水を配合し、ボールミルにより混合した。内面に部分的にワセリンにて目止めした石膏型内にスラリーを注入した。石膏体に吸水固化させ、中空球状体を得た。この中空状体を大気雰囲気中1350℃で焼成し、実施例5と同様の試験を実施し、その有効性を確認した。 Blended 140Wt% water based on the total weight end flour, and mixed by a ball mill. The slurry was poured into a gypsum mold partially sealed with petrolatum on the inner surface. The gypsum body was water-absorbed and solidified to obtain a hollow sphere. This hollow body was fired at 1350 ° C. in an air atmosphere, and the same test as in Example 5 was performed to confirm its effectiveness.

実施例1と同様の材料を使い、中空体のサイズ(外径)を5,10,15ミリと3種作製した。それぞれ壁面の気孔率は40%前後と同じであった。これらをほぼ3等分となるようにして、大きな玉が上流側となるよう配管内に配した。図6に、そのPM捕集効率、圧力損失の経時間変化を計測した結果を示す。均一な玉を使用した場合に比べて、圧損が小さく捕集効率も向上していることが分かった。これは、上流側では流速が大きく、空隙を小さくすると圧損のみ上昇するため、比較的大きな空隙とすることが望ましく、下流の流速が小さなところでは、空隙を小さくし、壁面との接触が多い方が効率的であるためと考えられた。   Using the same material as in Example 1, three hollow body sizes (outer diameters) of 5, 10, and 15 mm were produced. The porosity of each wall surface was the same as around 40%. These were divided into approximately three equal parts, and the large balls were placed in the piping so that they were on the upstream side. FIG. 6 shows the results of measuring the PM collection efficiency and the change in pressure loss over time. It was found that the pressure loss is small and the collection efficiency is improved as compared with the case where uniform balls are used. This is because the flow velocity is large on the upstream side and only the pressure loss increases when the gap is reduced. Therefore, it is desirable to make the gap relatively large. Where the downstream flow velocity is small, the gap is made smaller and there is more contact with the wall surface. This is considered to be efficient.

以上詳述したように、本発明は、中空構造体、該構造体を用いた浄化、触媒システムに係るものであり、本発明により、貫通孔を有する中空体からなる新規浄化、触媒用構造体、及び浄化、触媒システムを提供することができる。非自動車、自動車を問わず、担体やフィルターの取り付けできる位置やスペースは限られている中で、エンジンユニットと浄化システムをセットとして、多様な設計の車両に取り付けることが可能な浄化、触媒システムを提供できる。本発明の浄化、触媒システムは、多様な搭載位置、形状、スペースに対応することが困難であり、しかも、搭載方法が簡便で、多様なユニットに適応することができる。   As described above in detail, the present invention relates to a hollow structure, purification using the structure, and a catalyst system. According to the present invention, a novel purification and catalyst structure comprising a hollow body having a through hole is provided. And purification and catalyst systems can be provided. Regardless of whether it is a non-automobile or automobile, there are limited positions and spaces where the carrier and filter can be attached. Can be provided. The purification and catalyst system of the present invention is difficult to cope with various mounting positions, shapes, and spaces, has a simple mounting method, and can be applied to various units.

従来品のアルミナボールの外周面に触媒を担持した構造体の有する運転時の振動に伴う摩滅の問題、また、ガスや流体が移動するが空隙部分が限定される問題、また、熱容量が大きいために初期に活性化されにくいという問題を解決して、本発明は、多様な容器あるいは配管形状に対応でき、また、効率的に排ガス等を浄化できる新規浄化、触媒システムに関する新技術・新製品を提供することを実現するものとして高い技術的意義を有する。   Due to the problem of wear due to vibration during operation of the structure having the catalyst supported on the outer peripheral surface of the conventional alumina ball, the problem that gas and fluid move but the gap is limited, and the heat capacity is large The present invention solves the problem that it is difficult to activate at the initial stage, and the present invention provides new technologies and new products related to a new purification and catalyst system that can deal with various containers or piping shapes and can efficiently purify exhaust gas. It has a high technical significance as something that can be provided.

図1は、中空体の微細構造を示す。FIG. 1 shows the microstructure of the hollow body. 図2は、浄化、触媒システムの概念図を示す。FIG. 2 shows a conceptual diagram of the purification and catalyst system. 図3は、本発明と比較例のPM捕集特性を示す。FIG. 3 shows the PM collection characteristics of the present invention and the comparative example. 図4は、本発明と比較例におけるPM粒径個数分布を示す。FIG. 4 shows the PM particle number distribution in the present invention and the comparative example. 図5は、曲面を有する配管部への搭載方法を示す。FIG. 5 shows a method of mounting on a piping part having a curved surface. 図6は、サイズの異なる中空体を組み合わせたフィルター、及びその性能を示す。FIG. 6 shows a filter in which hollow bodies of different sizes are combined and its performance.

Claims (11)

セラミックスで構成される多孔質体からなる中空体を、担体あるいはフィルター部として使用した浄化、触媒用の中空構造体であって、
(1)上記担体あるいはフィルター部が、所定のサイズの中空体の集合体で構成されており、(2)上記中空体を構成する基材が、窒化ケイ素、サイアロン、炭化ケイ素、ムライト、アルミナ、コージエライトのいずれか、あるいはそれらの混合体からなり、)上記中空体の壁面には、ガス通路となる貫通穴が形成されており、()上記中空体の内壁の表面には、基材と同種の針状結晶粒子が成長しており、()上記中空体の内壁の針状結晶粒には、触媒粒子が担持されていることを特徴とする浄化、触媒用の構造体。
A hollow body made of formed porous body ceramics, purification was used as a carrier or filter unit, a hollow structure for the catalyst,
(1) The carrier or the filter part is composed of an aggregate of hollow bodies of a predetermined size. (2) The base material constituting the hollow body is silicon nitride, sialon, silicon carbide, mullite, alumina, either cordierite, or made of a mixture of them, (3) on the wall of the hollow body is formed with a through hole serving as a gas passage, (4) the surface of the inner wall of the hollow body, group has grown acicular crystal grains of wood and the same kind, (5) the acicular grains child of the inner wall of the hollow body, purification, wherein the catalyst particles are supported, the structure of the catalyst .
上記中空体の内壁に、径が2から5ミクロン長さ、最長で30ミクロンの針状結晶が成長している、請求項1に記載の浄化、触媒用の構造体。   The purifying and catalytic structure according to claim 1, wherein needle crystals having a diameter of 2 to 5 microns and a maximum length of 30 microns are grown on the inner wall of the hollow body. 上記中空体が、多面体、球状、丸棒状のいずれかである、請求項1に記載の浄化、触媒用の構造体。   The purification / catalyst structure according to claim 1, wherein the hollow body is a polyhedron, a sphere, or a round bar. 上記中空体の壁面の厚みが、1ミリ以下、そして壁面を構成する多孔質体の細孔の気孔径が、50ミクロン以上である、請求項1に記載の浄化、触媒用の構造体。 2. The purification / catalyst structure according to claim 1, wherein a thickness of the wall surface of the hollow body is 1 mm or less, and a pore diameter of the pores of the porous body constituting the wall surface is 50 microns or more. 上記針状結晶のアスペクト比が、3以上である、請求項1に記載の浄化、触媒用の構造体。   The purification / catalyst structure according to claim 1, wherein the needle crystal has an aspect ratio of 3 or more. 上記中空体が、窒化ケイ素とイットリア、窒化ケイ素とケイ素のいずれか、あるいは両方でなる混合粉末の成形体を焼成してなる焼成体から構成される、請求項1に記載の浄化、触媒用の構造体。   2. The purification and catalyst catalyst according to claim 1, wherein the hollow body is composed of a fired body formed by firing a mixed powder formed body of silicon nitride and yttria, silicon nitride and silicon, or both. Structure. 請求項1からのいずれかに記載の中空構造体が、容器あるいは配管の内部の所定位置に配され、その両端がガスが通過するために十分な目開きをもつ固定手段により、中空体が移動しないように固定されていることを特徴とする浄化、触媒システム。 The hollow structure according to any one of claims 1 to 6 is disposed at a predetermined position inside the container or pipe, and the hollow body is formed by a fixing means having sufficient openings for gas to pass through at both ends thereof. A purification and catalyst system characterized by being fixed so as not to move. 排ガスの上流から下流方向に沿って、中空体の貫通孔のサイズ、及び中空体どうしの間にできる空隙が徐々に小さくなるように中空体が傾斜配置されている、請求項に記載の浄化、触媒システム。 The purification according to claim 7 , wherein the hollow bodies are inclined so that the size of the through-holes of the hollow bodies and the gaps formed between the hollow bodies are gradually reduced from the upstream side to the downstream side of the exhaust gas. , Catalytic system. 曲面で構成される配管の内部に、内部形状に応じて流動が可能な中空体を配置、充填させることにより、多様なユニット形状に対応できる、請求項に記載の浄化、触媒システム。 The purification and catalyst system according to claim 7, which can accommodate various unit shapes by arranging and filling a hollow body that can flow according to the internal shape inside a curved pipe. 中空体の壁面に設けられた貫通孔から導入されたガス流体が、中空体内部を通過する過程で生じる乱流により、上記中空体の内壁面に形成された触媒との接触確率を向上させ、浄化、触媒反応を進行させるようにした、請求項に記載の浄化、触媒システム。 The gas fluid introduced from the through-hole provided in the wall surface of the hollow body improves the contact probability with the catalyst formed on the inner wall surface of the hollow body by turbulent flow generated in the process of passing through the inside of the hollow body, The purification and catalyst system according to claim 7 , wherein the purification and catalytic reaction are allowed to proceed. 請求項1からに記載の浄化、触媒用の中空構造体を、容器あるいは配管の内部の所定位置に配して、被処理ガスの浄化、触媒反応を進行させることを特徴とする浄化、触媒反応方法。 Purification according to claims 1 6, the hollow structure of the catalyst, by arranging a predetermined position inside the container or pipe, cleaning, characterized in that to proceed purification of the gas to be treated, the catalytic reaction, the catalyst Reaction method.
JP2005254312A 2005-09-02 2005-09-02 Hollow structure, purification and catalyst system using the structure Expired - Fee Related JP4747337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254312A JP4747337B2 (en) 2005-09-02 2005-09-02 Hollow structure, purification and catalyst system using the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254312A JP4747337B2 (en) 2005-09-02 2005-09-02 Hollow structure, purification and catalyst system using the structure

Publications (2)

Publication Number Publication Date
JP2007061779A JP2007061779A (en) 2007-03-15
JP4747337B2 true JP4747337B2 (en) 2011-08-17

Family

ID=37924603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254312A Expired - Fee Related JP4747337B2 (en) 2005-09-02 2005-09-02 Hollow structure, purification and catalyst system using the structure

Country Status (1)

Country Link
JP (1) JP4747337B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101379414B1 (en) 2012-02-21 2014-03-31 (주)하이에코텍 Filter for air cleaning
GB201506325D0 (en) 2015-04-14 2015-05-27 Johnson Matthey Plc Shaped catalyst particle
KR101925897B1 (en) * 2016-12-08 2018-12-06 주식회사 300엠 Filterring particle assembly for fluid filter and filter including thereof
CL2019002517A1 (en) * 2019-09-02 2019-11-15 Univ Tecnica Federico Santa Maria Utfsm Inert porous medium reactor for combustion or gasification comprising a plurality of hollow spheres of inert material
CN112569917A (en) * 2019-09-27 2021-03-30 中国石油化工股份有限公司 Catalyst carrier, catalyst and method for producing unsaturated hydrocarbon by dehydrogenating saturated hydrocarbon

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868487A (en) * 1971-12-21 1973-09-18
JPS4897761A (en) * 1972-03-28 1973-12-12
JPS5250987A (en) * 1975-10-22 1977-04-23 Nippon Denso Co Ltd Method of producing sphrical catalyst carrier
JPH01188479A (en) * 1988-01-22 1989-07-27 Nkk Corp Production of silicon nitride porous body
JPH04341347A (en) * 1991-02-14 1992-11-27 Akiyoshi Asaki Catalyst carrier and its preparation
JP3236644B2 (en) * 1991-12-11 2001-12-10 川鉄鉱業株式会社 Method for producing hollow particles
JP2002210333A (en) * 2001-01-22 2002-07-30 Shin Nippon Air Technol Co Ltd Photocatalyst filter
JP2003093891A (en) * 2001-09-25 2003-04-02 Toshiba Corp Photocatalyst module and method for manufacturing the same
JP4106433B2 (en) * 2003-03-31 2008-06-25 独立行政法人産業技術総合研究所 Oxide ceramic honeycomb structure for catalyst support having dust collecting function and method for producing the same

Also Published As

Publication number Publication date
JP2007061779A (en) 2007-03-15

Similar Documents

Publication Publication Date Title
US8388721B2 (en) Ceramic honeycomb filter and its production method
JP6809942B2 (en) Honeycomb structure
JP5313658B2 (en) Ceramic structure and manufacturing method thereof
CA2396471C (en) Catalytic devices
TWI272965B (en) Cleanup filters for diesel exhaust gas
JP3999001B2 (en) Honeycomb structure and canning structure containing the same
JP5237630B2 (en) Honeycomb structure
JP4421858B2 (en) Honeycomb structure and manufacturing method thereof
JP5379039B2 (en) Exhaust gas purification device and exhaust gas purification method
JP2009504389A (en) Honeycomb ceramics particulate collection filter substrate, particulate collection filter composed of the substrate, particulate collection filter device, and manufacturing method thereof
JP2007289926A (en) Honeycomb structure and honeycomb catalytic body
KR101296106B1 (en) Diesel Oxidation Catalyst Comprising Excellent Low Temperature Activity
JP4747337B2 (en) Hollow structure, purification and catalyst system using the structure
JP2009508047A (en) Device for removing harmful components from exhaust gas of internal combustion engines
JP2007229700A (en) Honeycomb structure
JP4320702B2 (en) Exhaust gas purification device
JP4174976B2 (en) Exhaust purification device and method for manufacturing the same
JP2007138875A (en) Exhaust emission control system and purification method
JP2005052750A (en) Ceramic honeycomb catalyst for exhaust gas cleaning apparatus and exhaust gas cleaning apparatus
JP5495890B2 (en) Honeycomb structure and exhaust gas treatment apparatus using the same
JP2011206636A (en) Honeycomb structure, and exhaust gas treatment device using the same
RU2307723C1 (en) Porous ceramic filter manufacturing method
JP5773716B2 (en) Method for firing honeycomb structure
JP2014148923A (en) Exhaust gas purification device
CN113332810A (en) Method for manufacturing honeycomb filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100521

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees