JPS6220140B2 - - Google Patents

Info

Publication number
JPS6220140B2
JPS6220140B2 JP55157564A JP15756480A JPS6220140B2 JP S6220140 B2 JPS6220140 B2 JP S6220140B2 JP 55157564 A JP55157564 A JP 55157564A JP 15756480 A JP15756480 A JP 15756480A JP S6220140 B2 JPS6220140 B2 JP S6220140B2
Authority
JP
Japan
Prior art keywords
base material
glass
cladding
porous
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55157564A
Other languages
Japanese (ja)
Other versions
JPS5782133A (en
Inventor
Takao Edahiro
Yutaka Sasaki
Tetsuo Mya
Katsunari Okamoto
Toshito Hosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55157564A priority Critical patent/JPS5782133A/en
Publication of JPS5782133A publication Critical patent/JPS5782133A/en
Publication of JPS6220140B2 publication Critical patent/JPS6220140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/30Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/16Non-circular ports, e.g. square or oval
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/50Multiple burner arrangements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】 本発明はコヒーレント光伝送方式に使用される
偏波保存性の良い光フアイバとして、クラツドの
屈折率分布が互いに90゜の角度で非対称となつて
いる単一偏波単一モード光フアイバの製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is an optical fiber with good polarization preservation properties used in coherent optical transmission systems. The present invention relates to a method for manufacturing a one-mode optical fiber.

従来、単一偏波単一モード光フアイバの構造と
して、コア形状が楕円のものが提案され、その光
フアイバの製造方法として、MCVD法として知
られた光フアイバ製造技術を適用し、円形断面を
もつ光フアイバ母材を作り、これを平行面で両側
面を研磨し、次いで高温度にして線引きする方法
が用いられていた。
Conventionally, a single-polarized single-mode optical fiber with an elliptical core structure has been proposed, and an optical fiber manufacturing method known as the MCVD method has been applied to create a circular cross-section. The method used was to create an optical fiber base material, polish both sides with parallel surfaces, and then draw it at high temperature.

この方法は母材の製造方法として、MCVD法
を適用していたので、得られる母材寸法が、光フ
アイバ長として高々10Km程度と短く、また母材の
両側面を機械的手段で研磨するので、得られる母
材表面が研磨剤により微小な傷がつき易いこと
と、母材研磨という工程を含み複雑なものであつ
た。また得られる光フアイバの物性も必ずしも実
際の光伝送方式に適用するには、充分なものが得
られていない現状である。
This method applied the MCVD method as the base material manufacturing method, so the dimensions of the base material obtained were short, at most 10 km in terms of optical fiber length, and both sides of the base material were polished by mechanical means. However, the surface of the obtained base material is easily scratched by the abrasive, and the process involves polishing the base material, which is complicated. Furthermore, the physical properties of the resulting optical fibers are not necessarily sufficient to be applied to actual optical transmission systems.

本発明の目的は従来の単一偏波単一モード光フ
アイバ製造法がもつ欠点を除去するため、生産性
の高い、低損失かつ長尺の単一偏波単一モード光
フアイバの製造方法を提供することにある。以下
本発明の詳細を実施例に従つて説明する。
The purpose of the present invention is to develop a method for manufacturing a single-polarization, single-mode optical fiber with high productivity, low loss, and long length in order to eliminate the drawbacks of the conventional method of manufacturing a single-polarization, single-mode optical fiber. It is about providing. The details of the present invention will be explained below based on examples.

第1図は本発明の一実施例図であつて、1はコ
ア用多孔質母材合成用トーチ、2は第1のクラツ
ド用多孔質ガラス堆積用トーチ、3は第2のクラ
ツド用多孔質ガラス堆積用トーチ、4は多孔質母
材を支持し回転、引き上げる支持棒、5は支持棒
を回転、引き上げるための駆動装置、6は反応用
の余剰ガス、ガラス微粒子を除去、処理する排ガ
ス処理装置、7は反応容器、8はコア用多孔質母
材、9はクラツドを形成した多孔質母材である。
FIG. 1 shows an embodiment of the present invention, in which 1 is a torch for synthesizing a porous base material for a core, 2 is a torch for depositing porous glass for a first cladding, and 3 is a porous torch for a second cladding. A torch for glass deposition; 4 is a support rod that supports, rotates, and pulls up the porous base material; 5 is a drive device that rotates and pulls up the support rod; 6 is an exhaust gas treatment that removes and processes excess gas for reaction and glass particles. In the apparatus, 7 is a reaction vessel, 8 is a porous base material for a core, and 9 is a porous base material in which a cladding is formed.

これを動作させるには、駆動装置5により回転
数5rpmで回転させた支持棒4上に、トーチ1を
通して6/minの酸素ガス、4/minの水素
ガスとともにArガスで輸送される100c.c./minの
SiCl4ガス、10c.c./minのGeCl4、5c.c./minの
POCl3ガスを流し、トーチ1の前面でH2―O2
を形成し、火炎内でSiCl4、GeCl4、POCl3を火炎
加水分解反応させて、ガラス微粒子を形成し、コ
ア用多孔質母材(外径10mm)8を合成する。支持
棒4はコア用多孔質母材の成長速度に合わせて上
方に引上げて、常に母材成長端面は一定に保たれ
る。コア用多孔質母材8の成長に従い、該側面に
トーチ2より5/minの酸素ガス、4/min
の水素ガスとともに、アルゴンガスで輸送された
原料ガス200c.c./min SiCl4、100c.c./min BBr3
または100c.c./min SiF4ガスを流し、トーチ2の
前面でH2―O2火炎を形成し、火炎内でSiCl4
BBr3またはSiF4ガスを反応させ、B2O3またはF
の添加されたガラス微粒子を合成して堆積させ
る。
To operate this, 100 c.c. ./min
SiCl 4 gas, 10c.c./min GeCl 4 , 5c.c./min
Flow POCl 3 gas to form H 2 - O 2 flame in front of torch 1, flame hydrolyze SiCl 4 , GeCl 4 , and POCl 3 in the flame to form glass particles and create porous core material. The base material (outer diameter 10 mm) 8 is synthesized. The support rod 4 is pulled upward in accordance with the growth rate of the porous base material for the core, so that the growth end surface of the base material is always kept constant. As the core porous base material 8 grows, oxygen gas is applied to the side surface from the torch 2 at a rate of 5/min and 4/min.
Raw material gas 200c.c./min SiCl 4 , 100c.c./min BBr 3 , transported with argon gas along with hydrogen gas
Or, flow 100c.c./min SiF 4 gas to form H 2 - O 2 flame in front of torch 2, and in the flame SiCl 4 ,
React BBr3 or SiF4 gas, B2O3 or F
Synthesize and deposit glass fine particles added with .

また、トーチ2と約90゜の角度に保持したトー
チ3より5/minの酸素ガス、4/minの水
素ガスとともに、アルゴンガスで輸送された200
c.c./minのSiCl4ガスを流し、火炎内でガラス微粒
子を形成し、コア用多孔質母材側面上に堆積さ
せ、組成の異なるガラス微粒子を堆積させた多孔
質母材9を合成する。トーチ1,2,3の上方か
らみた位置関係は第2図に示すとおりであり、必
要に応じてトーチ2、トーチ3の間の角度は20〜
160゜に変えてもよい。
In addition, from torch 3, which was held at an angle of about 90 degrees with torch 2, 200
cc/min of SiCl 4 gas is flowed to form glass particles in a flame and deposited on the side surface of the porous base material for the core to synthesize a porous base material 9 on which glass fine particles of different compositions are deposited. The positional relationship of torches 1, 2, and 3 when viewed from above is as shown in Figure 2, and the angle between torches 2 and 3 may be adjusted from 20 to
You can change it to 160°.

コア用多孔質母材8の成長速度は50〜100mm/
hourであるので、クラツド用の多孔質体ガラス
9の形成は、成長に合わせてらせん状に多孔質母
材8の側面に形成され、トーチ2およびトーチ3
から流されるガラス微粒子の組成は、トーチ2か
らBまたはFを含むSiO2であるので、該ガラス
微粒子の屈折率は、SiO2の屈折率に比べて0.3%
程度低いものになり、トーチ3からはSiO2と同
じ屈折率のガラス微粒子が形成されることにな
る。
The growth rate of the porous base material 8 for the core is 50 to 100 mm/
hour, the porous glass 9 for the cladding is formed spirally on the side surface of the porous base material 8 in accordance with the growth, and the torches 2 and 3
The composition of the glass particles flowing from the torch 2 is SiO 2 containing B or F, so the refractive index of the glass particles is 0.3% compared to the refractive index of SiO 2 .
Glass particles having the same refractive index as SiO 2 are formed from the torch 3.

このようにして得られる多孔質母材9は、上方
に設けるかまたは他に設けた電気炉により脱水透
明化される。コア部の多孔質母材は透明化され、
屈折率がSiO2の屈折率より0.3%程度高いものに
なる。また、透明化されたガラス母材の外径/コ
ア径の比は2程度である。
The porous base material 9 thus obtained is dehydrated and made transparent using an electric furnace provided above or elsewhere. The porous base material of the core is made transparent,
The refractive index is approximately 0.3% higher than that of SiO 2 . Further, the ratio of the outer diameter/core diameter of the transparent glass base material is about 2.

透明化されたガラス母材は、単一モード動作す
る波長(カツトオフ波長λc)に合わせて、適当
な内径、外径を有する石英ガラス管でジヤケツト
し、単一偏波単一モード用光フアイバ母材とな
る。
The transparent glass base material is jacketed with a quartz glass tube having an appropriate inner diameter and outer diameter according to the wavelength for single mode operation (cutoff wavelength λc), and is made into a single polarized single mode optical fiber base material. Becomes wood.

第3図は本発明の他の実施例図であつて、第1
図に示したものと大略同じであり、新たにコア用
多孔質母材8、第1,第2クラツド合成後の多孔
質母材9上に、トーチ11から8/minの酸素
ガス、6/minの水素ガスとともに、400c.c./
minのSiCl4ガスを流し、火炎内で形成される
SiO2ガラス微粒子を堆積させる。最終的な多孔
質母材は電気炉により脱水透明化されて透明母材
となる。
FIG. 3 is a diagram showing another embodiment of the present invention.
This is roughly the same as that shown in the figure, and a new porous base material 8 for the core and a porous base material 9 after synthesizing the first and second claddings are heated with oxygen gas from a torch 11 at a rate of 8 min. With min hydrogen gas, 400c.c./
Formed in the flame by flowing min SiCl4 gas
Deposit SiO 2 glass particles. The final porous base material is dehydrated and made transparent in an electric furnace to become a transparent base material.

第4図は、本発明により合成された透明母材の
長手軸、たとえば第5図a〔第1図の実施例によ
り形成された光フアイバ母材を示す。〕のA―
A′面で切断した断面でみた屈折率分布を示して
いる。第4図aはクラツド部がBまたはFが添加
されたSiO2でできているので、コア中心部の屈
折率n1、SiO2の屈折率n0より低い屈折率n2が形成
されている。第4図bは第4図aの直角の方向で
の周折率分布を示し、クラツド部はSiO2からで
きているので、屈折率はSiO2と同じn0となつてい
る。また第5図bは第3図の実施例により形成さ
れた光フアイバ母材を示している。
FIG. 4 shows the longitudinal axis of a transparent preform synthesized according to the present invention, for example an optical fiber preform formed according to the embodiment of FIG. 5a [FIG. 1]. ] of A-
It shows the refractive index distribution seen in a cross section cut along the A′ plane. In Figure 4a, the cladding is made of SiO 2 doped with B or F, so it has a refractive index n 2 lower than the refractive index n 1 of the core center and the refractive index n 0 of SiO 2 . . FIG. 4b shows the refractive index distribution in the direction perpendicular to FIG. 4a. Since the cladding portion is made of SiO 2 , the refractive index is n 0 , which is the same as that of SiO 2 . FIG. 5b shows an optical fiber preform formed according to the embodiment of FIG.

以上説明したように、本発明の非軸対称単一モ
ード光フアイバの製造方法は、単一偏波単一モー
ド用光フアイバ母材の一つとして、コアを取り囲
むクラツドの屈折率分布を非対称とする母材合成
を、軸方向に連続に合成するので、得られる母材
の寸法も大きく、長尺かつ低損失な光フアイバを
作製するのに適している。
As explained above, the method for manufacturing a non-axisymmetric single mode optical fiber of the present invention is to make the refractive index distribution of the cladding surrounding the core asymmetrical, as one of the optical fiber base materials for single polarization single mode. Since the base materials are synthesized continuously in the axial direction, the dimensions of the resulting base materials are large, making it suitable for producing long, low-loss optical fibers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例図、第2図はトーチ
1,2,3の位置関係を示す図、第3図は本発明
の他の実施例図、第4図は本発明により合成され
た透明母材の屈折率分布図、第5図a,bは第1
図および第3図における実施例で形成された母材
を示す図である。 1…コア用多孔質母材合成トーチ、2…第1ク
ラツド用多孔質ガラス堆積用トーチ、3…第2ク
ラツド用多孔質ガラス堆積用トーチ、4…支持
棒、5…駆動装置、6…排ガス処理装置、7…反
応容器、8…コア用多孔質母材、9…多孔質母
材、11…SiO2用トーチ、12…反応容器、1
3…SiO2クラツド。
Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing the positional relationship of torches 1, 2, and 3, Fig. 3 is a diagram showing another embodiment of the present invention, and Fig. 4 is a composite diagram according to the present invention. The refractive index distribution diagram of the transparent base material, Figure 5 a and b are the first
FIG. 4 is a diagram showing a base material formed in the embodiment shown in FIGS. DESCRIPTION OF SYMBOLS 1... Porous base material synthesis torch for core, 2... Torch for porous glass deposition for first cladding, 3... Torch for porous glass deposition for second cladding, 4... Support rod, 5... Drive device, 6... Exhaust gas Processing device, 7... Reaction container, 8... Porous base material for core, 9... Porous base material, 11... Torch for SiO2 , 12... Reaction container, 1
3... SiO2 clad.

Claims (1)

【特許請求の範囲】 1 ガラス形成原料ガスを可燃性ガスと助燃性ガ
スとともにバーナから吹き出し、火炎中でガラス
微粒子を合成し、該ガラス微粒子を回転、上昇す
る出発棒端面上に堆積させ、軸方向にコアとなる
多孔質ガラス体を成長させ、該多孔質母材側面よ
りクラツドとなる多孔質ガラス体を堆積させ、次
いで高温に加熱して透明ガラス化する単一モード
用ガラス母材の製造方法において、該クラツド用
多孔質ガラスを合成、堆積するに際して、該クラ
ツド合成を互いに屈折率の異なる組成のガラス形
成原料を互いに異なるバーナから吹き出し、互い
に90゜の角度をもつて該コア用多孔質母材側面上
に、該クラツド用多孔質ガラス体を合成、堆積す
ることを特徴とする非軸対称単一モード光フアイ
バの製造方法。 2 特許請求の範囲第1項記載の非軸対称単一モ
ード光フアイバの製造方法において、コア用多孔
質母材として本質的にSiO2―GeO2からなり、一
つのクラツド用組成としてSiO2にB2O3またはF
またはB2O3とFまたはSiO2にB2O3とP2O5または
FとP2O5またはB2O3とFとP2O3からなり、他の
クラツド用組成として、本質的にSiO2からな
り、かつ該コア母材、クラツド層を合成した後、
その上にSiO2多孔質ガラス層を形成した後、透
明ガラス化することを特徴とする非軸対称単一モ
ード光フアイバの製造方法。
[Scope of Claims] 1 Glass forming raw material gas is blown out from a burner together with combustible gas and combustion assisting gas, glass fine particles are synthesized in the flame, and the glass fine particles are deposited on the end face of a rotating and rising starting rod. Manufacturing a single-mode glass base material by growing a porous glass body that will become a core in the same direction, depositing a porous glass body that will become a cladding from the side of the porous base material, and then heating it to a high temperature to make it transparent vitrification. In the method, when synthesizing and depositing the porous glass for the cladding, glass-forming raw materials having different refractive indexes are blown from different burners to form the porous glass for the core at an angle of 90° to each other. A method of manufacturing a non-axisymmetric single mode optical fiber, comprising synthesizing and depositing the porous glass body for the cladding on the side surface of the base material. 2. In the method for manufacturing a non-axisymmetric single mode optical fiber according to claim 1, the porous matrix for the core consists essentially of SiO 2 -GeO 2 and the composition for one cladding consists of SiO 2 . B 2 O 3 or F
or B 2 O 3 and F or SiO 2, B 2 O 3 and P 2 O 5 , or F and P 2 O 5 , or B 2 O 3 and F and P 2 O 3 , as other cladding compositions. After synthesizing the core base material and the cladding layer,
A method for producing a non-axisymmetric single mode optical fiber, which comprises forming a SiO 2 porous glass layer thereon and then vitrifying it to be transparent.
JP55157564A 1980-11-11 1980-11-11 Preparation of single mode optical fiber of axis unsymmetry Granted JPS5782133A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55157564A JPS5782133A (en) 1980-11-11 1980-11-11 Preparation of single mode optical fiber of axis unsymmetry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55157564A JPS5782133A (en) 1980-11-11 1980-11-11 Preparation of single mode optical fiber of axis unsymmetry

Publications (2)

Publication Number Publication Date
JPS5782133A JPS5782133A (en) 1982-05-22
JPS6220140B2 true JPS6220140B2 (en) 1987-05-06

Family

ID=15652431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55157564A Granted JPS5782133A (en) 1980-11-11 1980-11-11 Preparation of single mode optical fiber of axis unsymmetry

Country Status (1)

Country Link
JP (1) JPS5782133A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717440A (en) * 1980-07-07 1982-01-29 Nippon Telegr & Teleph Corp <Ntt> Manufacture of porous glass base material for single- polarization single-mode optical fiber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717440A (en) * 1980-07-07 1982-01-29 Nippon Telegr & Teleph Corp <Ntt> Manufacture of porous glass base material for single- polarization single-mode optical fiber

Also Published As

Publication number Publication date
JPS5782133A (en) 1982-05-22

Similar Documents

Publication Publication Date Title
US4217027A (en) Optical fiber fabrication and resulting product
US4406684A (en) Core torch for fabricating single-mode optical fiber preforms
Schultz Fabrication of optical waveguides by the outside vapor deposition process
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
CN102149648B (en) Process for producing optical-fiber base material
JPH0380740B2 (en)
EP0164103A2 (en) Method for producing glass preform for optical fiber containing fluorine in cladding
JPH0236535B2 (en)
JPH07230015A (en) Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture
CN113461322A (en) Optical fiber and method for manufacturing optical fiber preform
JPS6220140B2 (en)
JPS63315530A (en) Production of optical fiber preform
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JPS6086047A (en) Manufacture of glass preform for optical fiber
JPH0316930A (en) Production of optical fiber having complicate refractive index distribution
JPS63139028A (en) Production of optical fiber glass base material
JPH085685B2 (en) Method for manufacturing base material for dispersion-shifted optical fiber
JPH0798671B2 (en) Method for manufacturing preform for optical fiber
JP3174682B2 (en) Method for producing glass preform for optical fiber
JPH0460930B2 (en)
JPS59141438A (en) Manufacture of optical fiber preform
Schultz Vapor phase materials and processes for glass optical waveguides
JP2618260B2 (en) Method for producing intermediate for optical fiber preform
JPS593944B2 (en) Optical fiber manufacturing method
JPS59137332A (en) Manufacture of base material for optical fiber