JPS62201406A - Optical wavelength multiplexer/demultiplexer - Google Patents

Optical wavelength multiplexer/demultiplexer

Info

Publication number
JPS62201406A
JPS62201406A JP1862786A JP1862786A JPS62201406A JP S62201406 A JPS62201406 A JP S62201406A JP 1862786 A JP1862786 A JP 1862786A JP 1862786 A JP1862786 A JP 1862786A JP S62201406 A JPS62201406 A JP S62201406A
Authority
JP
Japan
Prior art keywords
dispersion
wavelength
light
diffraction grating
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1862786A
Other languages
Japanese (ja)
Other versions
JPH0561607B2 (en
Inventor
Masataka Shirasaki
白崎 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1862786A priority Critical patent/JPS62201406A/en
Priority to CA000528106A priority patent/CA1280921C/en
Priority to EP87101177A priority patent/EP0231874B1/en
Priority to DE8787101177T priority patent/DE3773687D1/en
Priority to US07/008,346 priority patent/US4747655A/en
Publication of JPS62201406A publication Critical patent/JPS62201406A/en
Publication of JPH0561607B2 publication Critical patent/JPH0561607B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/2931Diffractive element operating in reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1086Beam splitting or combining systems operating by diffraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain a wide transmission band width in each wavelength channel by arranging a dispersing/dividing prism consisting of tetrahedron and having a grating formed like steps on one side of the tetrahedron on an optical path from an input optical fiber to an output optical fiber. CONSTITUTION:The I/O fiber 1 and the dispersing/dividing prism 3 are arranged on one focal surface of a lens 4 and a diffraction grating 2 is arranged near the other focal surface. A light beam inputted from the input fiber is dispersed at its wavelength by the diffraction grating 2 and divided in each wavelength channel by the prism 3. Although the divided beams are passed through the diffraction grating again 2, dispersion is canceled in the same channel, the beam in the same channel is coupled with the same output fiber and the beam in different wavelength channels are coupled with output fibers on other positions. Thus, the transmission band width is expanded.

Description

【発明の詳細な説明】 〔概要〕 光路上の回折格子間に、分散分割プリズム、すなわち、
分散分割機能をもつ格子部を有するプリズムを設置した
、各波長チャネル内の透過帯域(バンド)幅の広い回折
格子型光波長合分波器を提起する。
[Detailed Description of the Invention] [Summary] A dispersion splitting prism, that is,
We propose a diffraction grating type optical wavelength multiplexer/demultiplexer with a wide transmission band in each wavelength channel, which is equipped with a prism having a grating section with a dispersion splitting function.

〔産業上の利用分野〕[Industrial application field]

本発明は光通信システムを構成する光波長合分波器に関
する。
The present invention relates to an optical wavelength multiplexer/demultiplexer constituting an optical communication system.

波長多重通信は波長の異なる光(各波長チャネル)毎に
それぞれ別個の情報をのせ、それらを1つの光路に合成
し、光ファイバを通して伝送するという方法がとられて
いる。
Wavelength multiplexing communication uses a method in which separate information is loaded on each light of a different wavelength (each wavelength channel), the information is combined into one optical path, and the information is transmitted through an optical fiber.

従って、受信側では合成された光を各波長チャネル毎に
分解し、それぞれの光に重畳されている情報を取り出す
必要がある。
Therefore, on the receiving side, it is necessary to decompose the combined light into each wavelength channel and extract the information superimposed on each light.

このようなシステムにおいては、複数の波長の光を合成
したり、あるいは合成された光を波長別に分解するため
に光波長合分波器が用いられている。
In such a system, an optical wavelength multiplexer/demultiplexer is used to combine light of a plurality of wavelengths or to separate the combined light into wavelengths.

以上のような波長多重光通信システムの構成においては
、光波長合分波器内の回折格子の波長分散に起因する狭
帯域化の問題を解決して、各波長チャネル内の透過帯域
幅を広くすることが重要である。
In the configuration of the wavelength division multiplexing optical communication system as described above, the problem of band narrowing caused by the wavelength dispersion of the diffraction grating in the optical wavelength multiplexer/demultiplexer is solved, and the transmission bandwidth within each wavelength channel is widened. It is important to.

〔従来の技術〕[Conventional technology]

第2図は従来例の回折格子を用いた光波長合分波器の側
断面図である。
FIG. 2 is a side sectional view of a conventional optical wavelength multiplexer/demultiplexer using a diffraction grating.

ここでは、説明の便宜上入出力関係は分波の場合につい
て説明する。
Here, for convenience of explanation, the case where the input/output relationship is splitting will be described.

図において、入力用光ファイバ21より入力された光は
、レンズ24で平行光になり回折格子22で反射される
In the figure, light inputted from an input optical fiber 21 is turned into parallel light by a lens 24 and reflected by a diffraction grating 22.

回折格子22によって波長分散された光は、レンズ24
を透過することにより、それぞれの波長毎に設けられた
出力用光フアイバアレイ23の各光ファイバの上に集光
し、ここより出力される。
The light wavelength-dispersed by the diffraction grating 22 is transmitted to the lens 24
By transmitting the light, the light is focused onto each optical fiber of the output optical fiber array 23 provided for each wavelength, and is output from there.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

それぞれの波長毎に設けられた出力用光ファイバが開口
している範囲は、出力用光フアイバアレイの各光ファイ
バの間隔に対して比較的狭く、出力用光ファイバに入る
光は、同一波長帯域にある光のごく狭い波長帯域の光に
なるという欠点がある。
The opening range of the output optical fibers provided for each wavelength is relatively narrow compared to the spacing between the optical fibers of the output optical fiber array, and the light entering the output optical fibers is in the same wavelength band. The disadvantage is that it produces light in a very narrow wavelength band.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明による回折格子と分散分割プリズムを用
いた光波長合分波器の側断面図である。
FIG. 1 is a side sectional view of an optical wavelength multiplexer/demultiplexer using a diffraction grating and a dispersion splitting prism according to the present invention.

図において、1は入出力ファイバ、2は回折格子、3は
分散分割プリズム、3Gは分散分割格子、4はレンズで
ある。
In the figure, 1 is an input/output fiber, 2 is a diffraction grating, 3 is a dispersion splitting prism, 3G is a dispersion splitting grating, and 4 is a lens.

上記問題点の解決は、入力光ファイバから出力光ファイ
バに至る光路上に、4面体よりなり、かつその1面に階
段状に形成された格子を有する分散分割プリズム3が設
置されている本発明による光波長合分波器によって達成
される。
The above-mentioned problem can be solved by the present invention, in which a dispersion splitting prism 3 is installed on the optical path from the input optical fiber to the output optical fiber, and the dispersion splitting prism 3 is made of a tetrahedron and has a grating formed in a stepwise manner on one surface of the tetrahedron. This is achieved by an optical wavelength multiplexer/demultiplexer.

〔作用〕[Effect]

以下本発明においても従来例と同様に、説明の便宜上入
出力関係は分波の場合について説明することにする。
In the following, in the present invention, as in the conventional example, for convenience of explanation, the input/output relationship will be explained in the case of demultiplexing.

第3図は本発明の分散分割プリズムを説明する斜視図で
ある。
FIG. 3 is a perspective view illustrating the dispersive splitting prism of the present invention.

図において、4面体ABCDはつぎのように形成する。In the figure, the tetrahedron ABCD is formed as follows.

いま、直角座標xyzを考え、Aを原点にし、ABをX
軸、ACをy軸、紙面に垂直に上向き方向を2軸とする
と、各面の方位は、 ABCs   z面、 ABD :  (0、2−””、  2−” )。
Now, consider rectangular coordinates xyz, with A as the origin and AB as X.
If the axis, AC is the y axis, and the upward direction perpendicular to the plane of the paper is the two axes, then the orientation of each plane is ABCs z plane, ABD: (0, 2-"", 2-").

ACD :  (2−””、  0   、 2−””
 )。
ACD: (2-””, 0, 2-””
).

BCD :  (2−””、  2−”、  0   
)。
BCD: (2-””, 2-”, 0
).

になるように形成する。Form it so that it becomes.

このようなプリズムのABC面に入出射する光の方位は
、 入射光: −2方向 出射光: 2方向 で、入射光はACD面で反射し、BCD面で反射し、A
BD面で反射し、出射する。
The directions of light entering and exiting from the ABC surface of such a prism are as follows: Incident light: -2 directions Output light: 2 directions; the incident light is reflected on the ACD surface, reflected on the BCD surface, and
It is reflected by the BD surface and emitted.

ここで、BCD面には分散分割格子を設ける。Here, a dispersion dividing grating is provided on the BCD plane.

例えば、頂角60°の階段状に形成された分散分割格子
の溝をCDに平行になるように設ければ、この格子への
入出射位置の方向は、 入射: −x方向 のとき、 出射ニー×方向X分割数 となる。
For example, if grooves of a dispersion dividing grating formed in a stepped shape with an apex angle of 60° are provided parallel to the CD, the directions of the input and output positions of the grating will be as follows: Incidence: When in the -x direction, Output Knee x direction x number of divisions.

このような条件の下に、分散分割プリズムの作用を要約
するとつぎのようになる。
Under these conditions, the action of the dispersion splitting prism can be summarized as follows.

プリズムへの入射光はACD面における最初の全反射で
進行方向を変え、BCD面に形成された分散分割格子3
Gに入射する。ここからの反射光は再びABD面におけ
る全反射により向きを変え、プリズムへの入射光とは反
対向きの出射光となる。
The incident light on the prism changes its traveling direction by the first total reflection on the ACD surface, and then passes through the dispersion dividing grating 3 formed on the BCD surface.
incident on G. The reflected light from here changes direction again due to total reflection on the ABD surface, and becomes output light in the opposite direction to the incident light on the prism.

このとき、図中に示された方向の入射位置の連続的変化
は、分割された出射位置に変換される。
At this time, the continuous change in the incident position in the direction shown in the figure is converted into divided output positions.

なお、プリズム内ではS偏光、P偏光各2回ずつ、計4
回の全反射が行われるため、偏光による反射の位相差は
相殺されて入出射時の偏光状態は保存される。
In addition, inside the prism, S-polarized light and P-polarized light are transmitted twice each, for a total of 4 times.
Since total reflection is performed twice, the phase difference between reflections due to polarization is canceled out, and the polarization state at the time of input and output is preserved.

つぎに参考のために、本発明のプリズムに−例として形
成した、頂角 60″′の階段状に形成された分散分割
格子について説明する。
Next, for reference, a dispersion dividing grating formed in a stepped shape with an apex angle of 60'', which is formed as an example in the prism of the present invention, will be described.

第4図は頂角60°の階段状に形成された分散分割格子
の形状と機能を説明する斜視図である。
FIG. 4 is a perspective view illustrating the shape and function of a dispersion dividing grid formed in a step-like manner with an apex angle of 60°.

図において、分散分割格子は直交座標xyzのy面に刻
まれた頂角60°の階段状に形成された格子で、溝の斜
面Bに平行に、溝の斜面Aに入射した光は、2度反射し
て、溝の斜面Bより溝の斜面Aに平行に出射することが
できる。
In the figure, the dispersion dividing grating is a step-shaped grating with an apex angle of 60° carved on the y plane of orthogonal coordinates xyz, and the light incident on the slope A of the groove parallel to the slope B of the groove is 2 The light can be reflected and emitted parallel to the slope A of the groove from the slope B of the groove.

なお、y′、y′の方位は、 y′の方位  (2−””、  2−””、 0 )。Note that the directions of y' and y' are Direction of y′ (2-””, 2-””, 0).

y′の方位  (−2−1/l、  2−1/!、 0
 )。
Direction of y' (-2-1/l, 2-1/!, 0
).

と決める。I decide.

いま、入射光をKI、反射間の中間光をKM、出射光を
K。とじ、X軸と溝の方向がX軸となす角をθとすると
、分散分割格子はつぎの限定条件を充たす必要がある。
Now, the incident light is KI, the intermediate light between reflections is KM, and the output light is K. When the angle between the direction of the X-axis and the groove is θ, the dispersion dividing grating must satisfy the following limiting conditions.

(1)  格子を形成する面はy軸。(1) The plane forming the lattice is the y-axis.

(2)頂角が60°の多数の溝を有する。(2) It has many grooves with an apex angle of 60°.

(3)  θ= Tan−’(2−””) #35.3
 ’ 。
(3) θ= Tan-'(2-"") #35.3
'.

(4)入射光に、の方位 (2伺/l、 −2−+/Z
、 g )。
(4) For the incident light, the azimuth (2K/l, -2-+/Z
, g).

(51中間光に6の方位 (Q   、0  .1)。(51 intermediate light and 6 directions (Q, 0.1).

(6)  出射光に0の方位 (2−1/l、  2−
1/2. O)。
(6) Zero direction for the emitted light (2-1/l, 2-
1/2. O).

上記の条件(2)、(3)と等価な表現をすると、つぎ
のようになる。
The expression equivalent to the above conditions (2) and (3) is as follows.

(21’ 、(31’  溝の斜面A、 Bはそれぞれ
つぎの方位をもつ、すなわち、 斜面Aの方位 (−2偵+2−Z 2−1/2 )。
(21', (31') Slopes A and B of the groove each have the following orientations, namely, the orientation of slope A (-2+2-Z 2-1/2).

斜面Bの方位 (2−’、2−’、−2−”” )。Direction of slope B (2-', 2-', -2-'''').

となる。becomes.

ここで、各部の方位をまとめるとつぎのようになる7゜ Kl  :  (2−”t  −2−””+  0  
)+KN:(Q    、0   .1)。
Here, if we summarize the directions of each part, we get the following 7°Kl: (2-"t-2-""+0
)+KN: (Q, 0.1).

K(1:  (2−””、  2−”、  0  )。K (1: (2-””, 2-”, 0).

A   :  (−2−’  、  2−’  、  
2−””)。
A: (-2-', 2-',
2-””).

B   :  (2−’  、  2−’  、−2−
””)。
B: (2-', 2-', -2-
””).

以上の(1)〜(6)の限定条件を充たし、さらにつぎ
の条件を通用する。
The above limiting conditions (1) to (6) are satisfied, and the following conditions also apply.

(7)  入射側回折格子の分散方向を2方向とする。(7) The dispersion directions of the incident side diffraction grating are two directions.

(8)分散分割格子上に集光する。(8) Focus the light onto the dispersive splitting grating.

このような条件の下に、分散分割格子の作用を要約する
とつぎのようになる。
Under these conditions, the action of the dispersion splitting grid can be summarized as follows.

(1)出射側の分散方向は2方向に垂直となる。(1) The dispersion direction on the output side is perpendicular to the two directions.

すなわち、y′方向である。That is, in the y' direction.

(2)分散分割格子における2度の反射とも入射角は4
5°となる。
(2) The angle of incidence is 4 for both reflections on the dispersion splitting grating.
It becomes 5°.

(3)入射時の2方向偏光は、A面でP偏光、B面でS
偏光となるために、出射時にはy′方向偏光となる。
(3) Two-way polarization at the time of incidence is P polarization on the A plane and S polarization on the B plane.
Since the light is polarized, it becomes polarized in the y' direction when it is emitted.

(4)同様に、入射時のX′方向偏光は、出射時に2方
向偏光になる。
(4) Similarly, the X'-direction polarized light upon incidence becomes bidirectionally polarized light upon exit.

(5)  この分散分割格子への入射位置が図示のよう
に一2方向へ移動した場合、同一の溝に入射する範囲に
おいては出射位置がy′の方向へ移動する。
(5) When the input position to this dispersion dividing grating moves in one of two directions as shown, the output position moves in the y' direction within the range where the light enters the same groove.

入射位置がさらに一2方向へ移動し、つぎの溝の領域に
入ると出射位置は不連続的に変化し、以下同様にして周
期的な動きを示す。
When the incident position further moves in one or two directions and enters the next groove area, the output position changes discontinuously, and thereafter shows periodic movement in the same manner.

(6)なお、この分散分割格子は溝の深さ程度の誤差範
囲内でレンズの焦点面に置くことが可能である。
(6) Note that this dispersion dividing grating can be placed on the focal plane of the lens within an error range of about the depth of the groove.

第5図(11〜体)は本発明による光波長合分波器内の
各部における光の位置を示す図である。
FIG. 5 (11-B) is a diagram showing the position of light in each part within the optical wavelength multiplexer/demultiplexer according to the present invention.

2度透過する回折格子を同一チャネル内において波長分
散を打ち消すように構成すれば、光ファイバよりの入射
時の1点が(第5図(1))、最初に通過する回折格子
で1方向に拡がり(第5図(2))、分散分割路プリズ
ムで波長チャネル毎に第5図(2)と異なる方向に分割
され、各チャネル内では第5図(2)と同じ方向に拡が
り(第5図(3))、つぎに第2回目に通過する回折格
子で波長チャネル毎に1点となって出力される(第5図
(4))。
If a diffraction grating that passes twice is configured to cancel wavelength dispersion within the same channel, one point at the time of incidence from the optical fiber (Fig. 5 (1)) will be oriented in one direction by the diffraction grating that passes through it first. Spreading (Fig. 5 (2)), each wavelength channel is divided into a different direction as shown in Fig. 5 (2) by a dispersion splitting path prism, and within each channel, it is spread in the same direction as Fig. 5 (2). (3)), and then the diffraction grating that passes through it for the second time outputs one point for each wavelength channel ((4) in Figure 5).

このようにして波長チャネル内の波長依存性をなくすこ
とができる。
In this way, wavelength dependence within the wavelength channel can be eliminated.

〔実施例〕〔Example〕

本発明の実施例を第1図に従って説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図は本発明による回折格子と分散分割プリズムを用
いた光波長合分波器の側断面図である。
FIG. 1 is a side sectional view of an optical wavelength multiplexer/demultiplexer using a diffraction grating and a dispersion splitting prism according to the present invention.

図において、1は入出力ファイバ、2は回折格子、3は
分散分割プリズム、3Gは分散分割格子、4はレンズで
ある。
In the figure, 1 is an input/output fiber, 2 is a diffraction grating, 3 is a dispersion splitting prism, 3G is a dispersion splitting grating, and 4 is a lens.

レンズ4の一方の焦点面に入出力ファイバ1と分散分割
プリズム3が、他方の焦点面付近に回折格子2が配置さ
れる。
The input/output fiber 1 and the dispersion splitting prism 3 are arranged at one focal plane of the lens 4, and the diffraction grating 2 is arranged near the other focal plane.

入力ファイバから入力した光は回折格子2で波長分散を
受け、分散分割プリズム3Gで波長チャネル毎に分割さ
られる。その光は再度回折格子2を通るが、このとき、
同一のチャネル内では分散が打ち消され、同一の出力フ
ァイバに結合する。
Light input from the input fiber undergoes wavelength dispersion at the diffraction grating 2, and is split into wavelength channels by the dispersion splitting prism 3G. The light passes through the diffraction grating 2 again, but this time,
Dispersion is canceled within the same channel and coupled to the same output fiber.

また、異なる波長チャネルの光は他の位置の出力ファイ
バに結合する。
Also, light of different wavelength channels is coupled to output fibers at other locations.

こ、のようにして透過帯域幅の拡大が行われる。The transmission bandwidth is expanded in this manner.

本発明は回折格子、レンズが各1つだけあればよく、分
散分割プ1)ズムの代わりに分散分割格子を用いた回折
格子型光波長合分波器が各2つずつ必要であるのに比べ
て、光学系が簡易化され、系の調節が極めて容易となる
The present invention requires only one diffraction grating and one lens, and 1) requires two each of diffraction grating type optical wavelength multiplexers/demultiplexers using dispersion splitting gratings instead of dispersion splitting prisms. In comparison, the optical system is simplified and adjustment of the system is extremely easy.

第6図(1)、(2)はそれぞれ従来例と本発明による
光波長合分波器の損失と波長の関係を示゛す透過特性図
である。
FIGS. 6(1) and 6(2) are transmission characteristic diagrams showing the relationship between loss and wavelength of the optical wavelength multiplexer/demultiplexer according to the conventional example and the present invention, respectively.

図において、V、U型の各曲線は各チャネルを示し、本
発明による第3図(2)は各チャネル毎の波長依存はU
型になり、透過帯域幅が広くなっていることが示されて
いる。
In the figure, each V-shaped and U-shaped curve represents each channel, and FIG. 3 (2) according to the present invention shows that the wavelength dependence of each channel is U.
It has been shown that the transmission bandwidth has become wider.

以上の実施例においては、回折格子に反射型を用いたが
、これの代わりに透過型を用いても同様の効果が得られ
る。
In the above embodiments, a reflection type diffraction grating is used, but the same effect can be obtained by using a transmission type instead.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、波長チャネ
ル内の透過帯域幅の広い光波長合分波器が得られる。
As described above in detail, according to the present invention, an optical wavelength multiplexer/demultiplexer with a wide transmission band width within a wavelength channel can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による回折格子と分散分割プリズムを用
いた光波長合分波器の側断面図、第2図は従来例の回折
格子を用いた光波長合分波器の側断面図、 第3図は本発明の分散分割プリズムを説明する斜視図、 第4図は頂角60°の階段状に形成された分散分割格子
の形状と機能を説明する斜視図、第5図(1)〜(4)
は本発明による光波長合分波器内の各部における光の位
置を示す図、 第6図(1)、(2)はそれぞれ従来例と本発明による
光波長合分波器の損失と波長の関係を示す透過特性図で
ある。 図において、 1は入出力ファイバ、 2は回折格子、 3は分散分割プリズム、 3Gは分散分割格子、 4はレンズ 末名杉しPイuIぴIT 白口q 殖 1図 づし1ミプtヨイシA(σ)Au″[l≦r1−e−]
r逼)第2 回 X’、(−−0ン /j、J”lj。 1・(−π、汀O) 亮+旧 (1)      ・ で ナニ ・ 窃 +発eHのを全1痛°リシ光偽布置 矧ダ1〕 5L長     ヅ皮長 (り右εAミ ffl           (z)米
45 B月J1ρL4ヂ1子王、 図 第6図
FIG. 1 is a side sectional view of an optical wavelength multiplexer/demultiplexer using a diffraction grating and a dispersion splitting prism according to the present invention, and FIG. 2 is a side sectional view of an optical wavelength multiplexer/demultiplexer using a conventional diffraction grating. Fig. 3 is a perspective view illustrating the dispersion splitting prism of the present invention, Fig. 4 is a perspective view illustrating the shape and function of a dispersion splitting grating formed in a step shape with an apex angle of 60°, and Fig. 5 (1). ~(4)
6 is a diagram showing the position of light in each part in the optical wavelength multiplexer/demultiplexer according to the present invention, and FIGS. FIG. 3 is a transmission characteristic diagram showing the relationship. In the figure, 1 is an input/output fiber, 2 is a diffraction grating, 3 is a dispersion splitting prism, 3G is a dispersion splitting grating, 4 is a lens. A(σ)Au″[l≦r1−e−]
r〼) 2nd time Rishi light false placement 1] 5L length zu skin length (riright εAmi ffl (z) rice 45 B month J1ρL4ji1 child king, Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)入力光ファイバから出力光ファイバに至る光路上
に、 4面体よりなり、かつその1面に階段状に形成された格
子を有する分散分割プリズムが設置されている ことを特徴とする光波長合分波器。
(1) An optical wavelength characterized in that a dispersion splitting prism consisting of a tetrahedron and having a grating formed in a stepped manner on one surface is installed on the optical path from the input optical fiber to the output optical fiber. Multiplexer/demultiplexer.
(2)該分散分割プリズムへの入出射光が反平行になっ
ていることを特徴とする特許請求の範囲第1項記載の光
波長合分波器。
(2) The optical wavelength multiplexer/demultiplexer according to claim 1, wherein the light entering and exiting the dispersion splitting prism is antiparallel.
JP1862786A 1986-01-30 1986-01-30 Optical wavelength multiplexer/demultiplexer Granted JPS62201406A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1862786A JPS62201406A (en) 1986-01-30 1986-01-30 Optical wavelength multiplexer/demultiplexer
CA000528106A CA1280921C (en) 1986-01-30 1987-01-26 Optical wavelength compounding/dividing device
EP87101177A EP0231874B1 (en) 1986-01-30 1987-01-28 Optical wavelength compounding/dividing device
DE8787101177T DE3773687D1 (en) 1986-01-30 1987-01-28 OPTICAL WAVELENGTH MULTIPLEXER / -DEMULTIPLEXER.
US07/008,346 US4747655A (en) 1986-01-30 1987-01-29 Optical wavelength compounding/dividing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1862786A JPS62201406A (en) 1986-01-30 1986-01-30 Optical wavelength multiplexer/demultiplexer

Publications (2)

Publication Number Publication Date
JPS62201406A true JPS62201406A (en) 1987-09-05
JPH0561607B2 JPH0561607B2 (en) 1993-09-06

Family

ID=11976853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1862786A Granted JPS62201406A (en) 1986-01-30 1986-01-30 Optical wavelength multiplexer/demultiplexer

Country Status (1)

Country Link
JP (1) JPS62201406A (en)

Also Published As

Publication number Publication date
JPH0561607B2 (en) 1993-09-06

Similar Documents

Publication Publication Date Title
EP1076934B1 (en) Optical fiber even and odd channel separator with nonlinear interferometers
US6304382B1 (en) Virtually imaged phased array (VIPA) having a varying reflectivity surface to improve beam profile
US6421478B1 (en) Tapered MMI coupler
RU2189062C2 (en) Bi-directional optical multiplexer and demultiplexer
US6751415B1 (en) Reduction of polarization-dependent loss from grating used in double-pass configuration
US6587615B1 (en) Wavelength multiplexer-demultiplexer having a wide flat response within the spectral passband
US7068885B2 (en) Double diffraction grating planar lightwave circuit
JP2003114402A (en) Optical multiplexer/demultiplexer and its adjusting method
US20050249458A1 (en) Wavelength selection device
US6606197B2 (en) Dual grating filtering system
US20130258470A1 (en) Reduction of polarization-dependent loss in double-pass grating configurations
JPS589119A (en) Wavelength split multiple circuit
US6169630B1 (en) Virtually imaged phased array (VIPA) having lenses arranged to provide a wide beam width
US6160933A (en) Optical fiber wavelength multiplexer-demultiplexer
JPH11223745A (en) Device equipped with virtual image phase array combined with wavelength demultiplexer for demultiplexing wavelength multiplexed light
JPS62201406A (en) Optical wavelength multiplexer/demultiplexer
JPS60222815A (en) Variable optical filter
JPS62123411A (en) Grating optical coupler
JPS61223711A (en) Demultiplexer for optical communication
JP4407382B2 (en) Optical filter device
US20030090763A1 (en) Echelle grating interleaver
US20020085801A1 (en) Wavelength division multiplexing and de-multiplexing element and wavelength router
JP2004240215A (en) Optical communication device and optical communication system
US20030091276A1 (en) Grating-based MUX/DMUX with expanded waveguides
JPS62201407A (en) Optical wavelength multiplexer/demultiplexer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees