JPS60222815A - Variable optical filter - Google Patents

Variable optical filter

Info

Publication number
JPS60222815A
JPS60222815A JP59078589A JP7858984A JPS60222815A JP S60222815 A JPS60222815 A JP S60222815A JP 59078589 A JP59078589 A JP 59078589A JP 7858984 A JP7858984 A JP 7858984A JP S60222815 A JPS60222815 A JP S60222815A
Authority
JP
Japan
Prior art keywords
corner reflector
light
diffracted light
fluxes
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59078589A
Other languages
Japanese (ja)
Inventor
Norio Nishi
功雄 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59078589A priority Critical patent/JPS60222815A/en
Publication of JPS60222815A publication Critical patent/JPS60222815A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Filters (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To make variable central path wavelength and pass wavelength band width by having movable shielding plates which shield part of the reflecting surface of a movable/stationary corner reflector moving within the main plane of an angle dispersing element. CONSTITUTION:Incident light from an incident fiber 6 is conerted to parallel luminous fluxes by a distributed index collimating lens 7 and said fluxes are made incident on a diffraction graing 9 set at a prescribed angle by a glass block 8. The fluxes are converged to the inside of the reflecting surface of the corner reflector 10 through the lens 7 and are then made into the divergent light advancing backward. Said light passes through the lens 7, by which the light is again converted to the parallel luminous fluxes. The paralllel luminous are again conducted to the grating 9, by which the fluxes are diffracted again and pass through the lens 7 so as to converge at the end face of an exit fiber 16. The 1st and 2nd shielding plates 11, 12 are moved using levers 14, 15 for moving the shielding plates interlocked to said plates. The position of a slit 13 is thereby changed and the central pass wavelength and pass wavelength band width are made variable.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は中心通過波長および通過波長帯域幅が可変な光
フィルタに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an optical filter whose center passage wavelength and passage wavelength bandwidth are variable.

〔発明の背景〕[Background of the invention]

波長多重光通信システムにおいて、受信光の中から所望
の信号を取出して測定する場合には、中心通過波長およ
び通過波長帯域幅が可変な光フィルタが必要である。従
来、中心通過波長を可変とする光フィルタには回折格子
を用いた分光器が利用されているが、入出力ファイバパ
ラメータが一致している場合には下記に示すような広い
通過波長帯域を得ることが困難である。第1図は回折格
子形可変光フィルタの例を示したものである。第1図に
おいて、入力ファイバ1から入射した光はレンズ2で平
行光束となり回折格子3で回折光となったのち再びレン
ズ2を通過して出力ファイバ5に集束する。この際、駆
動部4により上記回折格子3を回転すれば、出力ファイ
バ5に集束する光の波長が変化し可変光フィルタとなる
。しかし出力ファイバ5に等しい光学パラメータを有す
る入力ファイバ1の端面が上記出力ファイバ5の端面上
に写像されるのは、特定の単一波長だけであって、広い
通過波長帯域幅を得ることは不可能であり、また通過波
長帯域幅を可変にすることは不可能であった。
In a wavelength division multiplexing optical communication system, in order to extract and measure a desired signal from received light, an optical filter whose center passage wavelength and passage wavelength bandwidth are variable is required. Conventionally, spectrometers using diffraction gratings have been used for optical filters with variable center passing wavelengths, but if the input and output fiber parameters match, a wide passing wavelength band as shown below can be obtained. It is difficult to do so. FIG. 1 shows an example of a diffraction grating type variable optical filter. In FIG. 1, light incident from an input fiber 1 becomes a parallel beam at a lens 2, becomes a diffracted beam at a diffraction grating 3, passes through the lens 2 again, and is focused onto an output fiber 5. At this time, when the diffraction grating 3 is rotated by the drive unit 4, the wavelength of the light focused on the output fiber 5 changes, forming a variable optical filter. However, the end face of the input fiber 1 having the same optical parameters as the output fiber 5 is mapped onto the end face of the output fiber 5 only at a specific single wavelength, and it is impossible to obtain a wide passing wavelength bandwidth. However, it was impossible to make the passing wavelength bandwidth variable.

〔発明の目的〕[Purpose of the invention]

本発明は中心通過波長および通過波長帯域幅を可変とす
ることができる可変光フィルタを得ることを可能とする
The present invention makes it possible to obtain a variable optical filter in which the center passing wavelength and the passing wavelength bandwidth can be made variable.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明による可変光フィルタ
は、入射ファイバからの入射光を角度分散素子に導いて
回折光とし、該回折光を入射ファイバの端面近くに設置
した出射ファイバ端面に集束させる可変光フィルタにお
いて、上記回折光の結像位置近傍に、所望の通過波長帯
域にわたる入射ファイバの実像より大きな反射面を有し
て入射してくる回折光を逆平行に戻すコーナ反射器を配
置して、上記回折光を再び角度分散素子に導き、得られ
る再回折光を上記出射ファイバ端面に集束させ、角度分
散素子の主面内で移動する可動コーナ反射器または固定
したコーナ反射器の反射面の一部を遮蔽する可動遮蔽板
を有することにより、中心通過波長および通過波長帯域
幅を可変にしたものである。
In order to achieve the above object, the variable optical filter according to the present invention guides incident light from an input fiber to an angular dispersion element to form diffracted light, and focuses the diffracted light onto an output fiber end face installed near the end face of the input fiber. In the variable optical filter, a corner reflector having a reflection surface larger than the real image of the input fiber over a desired pass wavelength band and returning the incident diffracted light to antiparallel is arranged near the imaging position of the diffracted light. Then, the diffracted light is guided to the angle dispersion element again, and the obtained re-diffracted light is focused on the end face of the output fiber, and the reflecting surface of a movable corner reflector or a fixed corner reflector moves within the main plane of the angle dispersion element. By having a movable shielding plate that shields a part of the wavelength, the center passing wavelength and the passing wavelength bandwidth can be made variable.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第2図は本発明による可変光フィルタの一実施例を示す
斜視図、第3図は上記実施例の動作原理を示す図、第4
図は上記実施例で得られた可変光フィルタの特性を示す
図である。第2図に示す実施例において、入射ファイバ
6から入射した入射光線は分布屈折率コリメートレンズ
7によって平行光束に変換され、ガラスブロック8によ
り所定の角度に設定された回折格子9に入射する。回折
格子9で回折光に変換された光は分布屈折率コリメート
レンズ7を通すコーナ反射器10の反射面内に収束され
たのち、逆行する発散光となって分布屈折率コリメート
レンズ7を通過し平行光束に変えられ再び回折格子9に
導かれる。回折格子9で再度回折された上記平行光束は
分布屈折率コリメートレンズ7を通り出射ファイバ16
の端面に収束する。ここで第1遮蔽板11および第2遮
蔽板12を。
FIG. 2 is a perspective view showing an embodiment of the tunable optical filter according to the present invention, FIG. 3 is a diagram showing the operating principle of the above embodiment, and FIG.
The figure is a diagram showing the characteristics of the variable optical filter obtained in the above example. In the embodiment shown in FIG. 2, an incident light beam entering from an input fiber 6 is converted into a parallel beam by a distributed index collimating lens 7, and is incident on a diffraction grating 9 set at a predetermined angle by a glass block 8. The light converted into diffracted light by the diffraction grating 9 is converged within the reflection surface of the corner reflector 10 that passes through the distributed index collimating lens 7, and then becomes a retrograde diverging light that passes through the distributed index collimating lens 7. The light is converted into a parallel beam and guided to the diffraction grating 9 again. The parallel light beam diffracted again by the diffraction grating 9 passes through the distributed refractive index collimating lens 7 to the output fiber 16.
converges on the end face of Here, the first shielding plate 11 and the second shielding plate 12.

それらの遮蔽板にそれぞれ設けられた遮蔽板移動レバー
14およびI5を用いて移動し、スリット13の位置を
変えることにより中心通過波長および通過波長帯領域幅
を可変にすることができる。
By moving the shielding plates using shielding plate moving levers 14 and I5 provided on the shielding plates, respectively, and changing the position of the slit 13, the center passing wavelength and the width of the passing wavelength band region can be made variable.

第3図は上記第2図における分布屈折率コリメートレン
ズの入出射ファイバ側端面における入出射ファイバとコ
ーナ反射器および遮蔽板の相対位置を示したものである
。第3図において、17はコーナ反射器10の入射側反
射面、18はコーナ反−射器10の出射側反射面であり
、19および20は波長λ1の回折光が入射側反射面1
7および出射側反射面18で反射される領域、21およ
び22は波長λ2の回折光が入射側反射面17および出
射側反射面18で反射される領域を示している。入射フ
ァイバ6の端面から発した光束は回折格子9によって回
折され、λ1〜λ2の波長範囲でコーナ反射器IOの入
射側反射面17の19から21にわたる領域の近傍に収
束し反射される。波長範囲Δλ=λ2−λ□は次式で近
似的に与えられる。
FIG. 3 shows the relative positions of the input/output fiber, the corner reflector, and the shielding plate on the input/output fiber side end face of the distributed index collimating lens in FIG. 2 above. In FIG. 3, reference numeral 17 is a reflection surface on the incident side of the corner reflector 10, 18 is a reflection surface on the output side of the corner reflector 10, and 19 and 20 are the reflection surfaces on the input side of the corner reflector 10.
7 and the area reflected by the output side reflective surface 18, and 21 and 22 indicate areas where the diffracted light of wavelength λ2 is reflected by the input side reflective surface 17 and the output side reflective surface 18. The light beam emitted from the end face of the input fiber 6 is diffracted by the diffraction grating 9, and is converged and reflected in the vicinity of the region 19 to 21 of the incident side reflective surface 17 of the corner reflector IO in the wavelength range of λ1 to λ2. The wavelength range Δλ=λ2−λ□ is approximately given by the following equation.

ここでSは第1遮蔽板11と第2遮蔽板12に挟まれた
スリット13の幅、Dは入射ファイバ6のコア径、fは
分布屈折率コリメートレンズの焦点距離、(dθ/dλ
)は回折格子の角分散度である。コーナ反射器10の代
わりに同一場所に同一辺長Sを有する平面反射鏡を設け
れば波長範囲λ1〜λ2の回折光は逆行し、回折格子9
で再度回折して入射ファイバ6のコア端面に結像するこ
とは明らかである。コーナ反射器10を用いた本実施例
では入射側反射面17に入射した光束は19から21の
領域に反射されて出射側反射面18に導かれ、20から
22の領域で反射されて回折格子9に導かれる。すなわ
ち回折光がコーナ反射器10を経由して逆行する間に、
像の位置が分布屈折率コリメートレンズ7の光軸と垂直
な方向に距離Tだけ移動する。移動量Tはコーナ反射器
10に入射する回折光の位置で決まる。
Here, S is the width of the slit 13 sandwiched between the first shielding plate 11 and the second shielding plate 12, D is the core diameter of the input fiber 6, f is the focal length of the distributed index collimating lens, (dθ/dλ
) is the angular dispersion of the diffraction grating. If a plane reflecting mirror with the same side length S is provided in the same place instead of the corner reflector 10, the diffracted light in the wavelength range λ1 to λ2 will go backwards, and the diffraction grating 9
It is clear that the light is diffracted again at the point where the light is diffracted again and an image is formed on the core end face of the input fiber 6. In this embodiment using the corner reflector 10, the light beam incident on the incident-side reflective surface 17 is reflected by the areas 19 to 21, guided to the output-side reflective surface 18, reflected by the areas 20 to 22, and then reflected by the diffraction grating. Guided by 9. That is, while the diffracted light travels backwards via the corner reflector 10,
The position of the image moves by a distance T in a direction perpendicular to the optical axis of the distributed index collimating lens 7. The amount of movement T is determined by the position of the diffracted light incident on the corner reflector 10.

出射側反射面18から逆行した光束は回折格子9で再回
折され、入射ファイバ6のコア端面から距離Tだけ移動
した所定の位置に設けた出射ファイバ16のコア端面に
結像する。したがって所望の全波長帯域にわたる入射フ
ァイバ6のコア端面の実像より大きな反射面を有するコ
ーナ反射器10の反射面の一部を遮蔽する第1遮蔽板1
1および第2遮蔽板12の位置を、両者に挟まれたスリ
ット幅Sを変えずに移動すれば、(1)式の通過波長帯
域幅Δλを変えずに中心通過波長を可変とすることがで
きる。またスリット13の中心位置を変えずにスリン1
〜幅Sを変えるように遮蔽板11.12を移動すれば、
通過波長帯域幅だけを変えることが可能である。
The light flux that has gone backward from the output-side reflective surface 18 is re-diffracted by the diffraction grating 9 and forms an image on the core end surface of the output fiber 16 provided at a predetermined position moved by a distance T from the core end surface of the input fiber 6. Therefore, the first shielding plate 1 shields a part of the reflective surface of the corner reflector 10, which has a reflective surface larger than the real image of the core end face of the input fiber 6 over the entire desired wavelength band.
If the positions of the first and second shielding plates 12 are moved without changing the slit width S sandwiched between them, the center passing wavelength can be made variable without changing the passing wavelength bandwidth Δλ in equation (1). can. In addition, the slit 1 can be removed without changing the center position of the slit 13.
~If the shielding plates 11 and 12 are moved to change the width S,
It is possible to change only the passing wavelength bandwidth.

第2図の実施例ではコーナ反射器10を固定して遮蔽板
11および12を可動としたが、所定の大きさのコーナ
反射器をほぼ回折格子のローランド円に沿って移動すれ
ば、通過帯域幅は一定で、中心通過波長を可変とするこ
とができるのは自明である。
In the embodiment shown in FIG. 2, the corner reflector 10 is fixed and the shielding plates 11 and 12 are movable, but if the corner reflector of a predetermined size is moved approximately along the Rowland circle of the diffraction grating, the pass band can be adjusted. It is obvious that the width can be constant and the center passing wavelength can be made variable.

またコーナ反射器10と遮蔽板11.12をともに可動
とすれば、第2図の実施例と同等の効果を生じることも
自明である。第4図は上記実施例で得られた可変光フィ
ルタの特性を示し、曲線aおよびbは入力ファイバ6の
コア径りが50t1m、分布屈折率コリメートレンズ7
の焦点距離fが4.2mn、回折格子9の角分散度d 
O/dλが0.26(//l11)−’で、スリット幅
Sが160庫および260IMの場合の実験値である。
It is also obvious that if both the corner reflector 10 and the shielding plates 11, 12 are movable, the same effect as the embodiment shown in FIG. 2 can be produced. FIG. 4 shows the characteristics of the variable optical filter obtained in the above example, and curves a and b indicate that the input fiber 6 has a core diameter of 50t1m and the distributed refractive index collimating lens 7
The focal length f is 4.2 mn, and the angular dispersion d of the diffraction grating 9 is
These are experimental values when O/dλ is 0.26 (//l11)-' and the slit width S is 160 and 260 IM.

〔発明の効果〕〔Effect of the invention〕

実施例のように本発明の可変光フィルタは、入射ファイ
バからの入射光を角度分散素子に導いて回折光とし、該
回折光を入射ファイバの端面近くに設置した出射ファイ
バ端面に集束させる可変光フィルタにおいて、上記回折
光の結像位置近傍に、所望の通過波長帯域にわたる入射
ファイバの実像より大きな反射面を有して入射してくる
回折光を逆平行に戻すコーナ反射器を配置して、上記回
折光を再び角度分散素子に導き、得られる再回折光を上
記出射ファイバ端面に集束させ、角度分散素子の主面内
で移動する可動コーナ反射器または固定したコーナ反射
器の反射面の一部を遮蔽する可動遮蔽板を有するから、
上記可動遮蔽板を移動することによって、中心通過波長
および通過波長帯域幅のいずれか一方、あるいはそれら
両方を可変とする光フィルタを得ることができる。
As shown in the embodiments, the tunable optical filter of the present invention guides incident light from an input fiber to an angular dispersion element to become diffracted light, and focuses the diffracted light on the end face of an output fiber installed near the end face of the input fiber. In the filter, a corner reflector is disposed near the imaging position of the diffracted light, and has a reflecting surface larger than the real image of the input fiber over a desired pass wavelength band, and returns the incident diffracted light to antiparallel; The diffracted light is guided to the angle dispersion element again, and the obtained re-diffracted light is focused on the end face of the output fiber, and one of the reflecting surfaces of a movable corner reflector or a fixed corner reflector moves within the principal plane of the angle dispersion element. Since it has a movable shielding plate that shields the
By moving the movable shielding plate, it is possible to obtain an optical filter in which one or both of the center passing wavelength and the passing wavelength bandwidth can be made variable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回折格子形可変光フィルタの構成図、第
2図は本発明による可変光フィルタの一実施例を示す斜
視図、第3図は上記実施例の動作原理を示す図、第4図
は上記実施例で得られた可変光フィルタの特性図である
。 6・・・入射ファイバ 9・・・角度分散素子(回折格子) 10・・・コーナ反射器 11.12・・可動遮蔽板 16・・出射ファイバ 特許出願人 日本電信電話公社 代理人弁理士 中 村 純之助 1−1図 1′F2図
FIG. 1 is a block diagram of a conventional diffraction grating type tunable optical filter, FIG. 2 is a perspective view showing an embodiment of the tunable optical filter according to the present invention, and FIG. 3 is a diagram showing the operating principle of the above embodiment. FIG. 4 is a characteristic diagram of the variable optical filter obtained in the above example. 6... Input fiber 9... Angular dispersion element (diffraction grating) 10... Corner reflector 11.12... Movable shielding plate 16... Output fiber Patent applicant Nakamura, patent attorney representing Nippon Telegraph and Telephone Public Corporation Junnosuke 1-1 Figure 1'F2

Claims (1)

【特許請求の範囲】[Claims] 入射ファイバからの入射光を角度分散素子に導いて回折
光とし、該回折光を入射ファイバの端面近くに設置した
出射ファイバ端面に集束させる可変光フィルタにおいて
、上記回折光の結像位置近傍に、所望の通過波長帯域に
わたる入射ファイバの実像より大きな反射面を有して入
射してくる回折光を逆平行に戻すコーナ反射器を配置し
て、上記回折光を再び角度分散素子に導き、得られる再
゛回折光を上記出射ファイバ端面に集束させ、角度分散
素子の主面内で移動する可動コーナ反射器または固定し
たコーナ反射器の反射面の一部を遮蔽する、可動遮蔽板
を有することを特徴とする可変光フィルタ。
In a variable optical filter that guides incident light from an input fiber to an angular dispersion element to form diffracted light and focuses the diffracted light on an output fiber end face installed near the end face of the input fiber, near the imaging position of the diffracted light, A corner reflector having a reflection surface larger than the real image of the input fiber over the desired passing wavelength band and returning the incident diffracted light to antiparallel is arranged, and the diffracted light is guided to the angle dispersion element again. The invention further includes a movable shielding plate that focuses the re-diffracted light onto the end face of the output fiber and shields a movable corner reflector that moves within the principal plane of the angular dispersion element or a part of the reflective surface of the fixed corner reflector. Features a variable optical filter.
JP59078589A 1984-04-20 1984-04-20 Variable optical filter Pending JPS60222815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59078589A JPS60222815A (en) 1984-04-20 1984-04-20 Variable optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59078589A JPS60222815A (en) 1984-04-20 1984-04-20 Variable optical filter

Publications (1)

Publication Number Publication Date
JPS60222815A true JPS60222815A (en) 1985-11-07

Family

ID=13666095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59078589A Pending JPS60222815A (en) 1984-04-20 1984-04-20 Variable optical filter

Country Status (1)

Country Link
JP (1) JPS60222815A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311606A (en) * 1992-02-14 1994-05-10 Matsushita Electric Industrial Co., Ltd. Optical filter and optical amplifier employing said optical filters
US5812304A (en) * 1995-08-29 1998-09-22 Fujitsu Limited Faraday rotator which generates a uniform magnetic field in a magnetic optical element
US5844710A (en) * 1996-09-18 1998-12-01 Fujitsu Limited Faraday rotator and optical device employing the same
US5867300A (en) * 1996-03-01 1999-02-02 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5889609A (en) * 1992-07-31 1999-03-30 Fujitsu Limited Optical attenuator
US6018411A (en) * 1996-11-29 2000-01-25 Fujitsu Limited Optical device utilizing magneto-optical effect
US6441955B1 (en) 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
US6496300B2 (en) 1998-02-27 2002-12-17 Fujitsu Limited Optical amplifier

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311606A (en) * 1992-02-14 1994-05-10 Matsushita Electric Industrial Co., Ltd. Optical filter and optical amplifier employing said optical filters
US6018412A (en) * 1992-07-31 2000-01-25 Fujitsu Limited Optical attenuator
US6275323B1 (en) 1992-07-31 2001-08-14 Fujitsu Limited Optical attenuator
US5889609A (en) * 1992-07-31 1999-03-30 Fujitsu Limited Optical attenuator
US5812304A (en) * 1995-08-29 1998-09-22 Fujitsu Limited Faraday rotator which generates a uniform magnetic field in a magnetic optical element
US5867300A (en) * 1996-03-01 1999-02-02 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5973821A (en) * 1996-03-01 1999-10-26 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of light signal
US6333806B1 (en) 1996-03-01 2001-12-25 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a Faraday element to rotate the polarization of a light signal
US6570699B2 (en) 1996-03-01 2003-05-27 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a Faraday element to rotate the polarization of a light signal
US6717713B2 (en) 1996-03-01 2004-04-06 Fujitsu Limited Variable optical attenuator which applies a magnetic field to a faraday element to rotate the polarization of a light signal
US5844710A (en) * 1996-09-18 1998-12-01 Fujitsu Limited Faraday rotator and optical device employing the same
US6018411A (en) * 1996-11-29 2000-01-25 Fujitsu Limited Optical device utilizing magneto-optical effect
US6441955B1 (en) 1998-02-27 2002-08-27 Fujitsu Limited Light wavelength-multiplexing systems
US6496300B2 (en) 1998-02-27 2002-12-17 Fujitsu Limited Optical amplifier

Similar Documents

Publication Publication Date Title
US6301048B1 (en) Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
US6304382B1 (en) Virtually imaged phased array (VIPA) having a varying reflectivity surface to improve beam profile
JP2680524B2 (en) Optical filter including a Fabry-Perot interferometer tunable by rotation
US6296361B1 (en) Optical apparatus which uses a virtually imaged phased array to produced chromatic dispersion
US8811823B2 (en) Dynamic optical devices
US7193778B2 (en) Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US7158304B2 (en) Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
JPS60119507A (en) Optical filter
JPS60222815A (en) Variable optical filter
US6956700B1 (en) Wavelength dispersion compensating apparatus
JP3994737B2 (en) Optical device
US6169630B1 (en) Virtually imaged phased array (VIPA) having lenses arranged to provide a wide beam width
US6714705B1 (en) Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array and a rotating grating
JPS6231323B2 (en)
JPS60111220A (en) Light signal processor
US20030002784A1 (en) Optical bandpass filter for wavelength division multiplexing
JPS60256119A (en) Spectral imaging device
JPH0451804B2 (en)
JP2003504678A (en) Rectangular response-type optical filter that partitions the limited spectral spacing
JPS62201406A (en) Optical wavelength multiplexer/demultiplexer