JPS62201399A - Solidifying processing method of phosphate waste liquor - Google Patents

Solidifying processing method of phosphate waste liquor

Info

Publication number
JPS62201399A
JPS62201399A JP4371686A JP4371686A JPS62201399A JP S62201399 A JPS62201399 A JP S62201399A JP 4371686 A JP4371686 A JP 4371686A JP 4371686 A JP4371686 A JP 4371686A JP S62201399 A JPS62201399 A JP S62201399A
Authority
JP
Japan
Prior art keywords
phosphate
tank
waste
inorganic
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4371686A
Other languages
Japanese (ja)
Other versions
JPH0810278B2 (en
Inventor
務 馬場
龍男 泉田
耕一 千野
根本 恒夫
河村 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61043716A priority Critical patent/JPH0810278B2/en
Publication of JPS62201399A publication Critical patent/JPS62201399A/en
Publication of JPH0810278B2 publication Critical patent/JPH0810278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Removal Of Specific Substances (AREA)
  • Fertilizers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔埋業上の利用分野〕 本発明にリン酸塩廃液を無機固化材で固化処理する方法
に係p、?tlえば原子力施設から出る放射性のリン酸
水素ナトリウム廃液を無機固化材を用いて固化するのに
好適な方法に関する。
[Detailed Description of the Invention] [Field of industrial application] The present invention relates to a method for solidifying phosphate waste liquid with an inorganic solidifying agent. Specifically, the present invention relates to a method suitable for solidifying radioactive sodium hydrogen phosphate waste liquid discharged from nuclear facilities using an inorganic solidifying material.

〔従来の技術〕[Conventional technology]

リン酸水素ナトリウム廃液は、室温における溶解度の高
いリン酸二水素−ナトリウムの形でタンク内に貯蔵され
、これを固化処理するとさKはビチューメ/で固化され
ているのが従来の実情である。
Conventionally, sodium hydrogen phosphate waste liquid is stored in a tank in the form of sodium dihydrogen phosphate, which has high solubility at room temperature, and when this is solidified, it is solidified with bitumen.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしビチューメン固化による固化体は、陸地処分を考
えた場合、耐火性および耐荷重性に問題がめる。従って
、ビチューメン同化でなくてセメントやセメントと水ガ
ラスの混合物の如き無機固化材で固化処理することが望
ましいが、リン酸二水素−ナトリウムは無機固化材では
全く固化せず、固化体を作ることはでさな〃為った。
However, when solidified bitumen is considered for land disposal, there are problems with fire resistance and load carrying capacity. Therefore, it is preferable to solidify with an inorganic solidifying agent such as cement or a mixture of cement and water glass rather than bitumen assimilation, but sodium dihydrogen phosphate does not solidify at all with an inorganic solidifying agent and cannot form a solidified body. I made a mistake.

本発明の目的は、リン酸水素ナトリウム廃液、その他の
リン酸塩廃液を無機同化材で固化することにりる。
The object of the present invention is to solidify sodium hydrogen phosphate waste liquid and other phosphate waste liquids with an inorganic assimilation agent.

〔間頃点を解決するための手段〕[Means to solve the problem]

上記目的1ま、リン酸塩廃液のpHを6以上に調整した
上で無機同化材tl−添加することにより達成される。
The above objective 1 is achieved by adjusting the pH of the phosphate waste solution to 6 or more and then adding the inorganic assimilation material tl-.

〔作用〕[Effect]

リン酸二水素−ナトリウム廃液はpH4を呈し、このま
まの状態では、前述したように、無機同化材では全く固
化しない。これは、セメントあるいはセメント+ガラス
はアルカリ条件下で余々に固化するが、酸性条件下では
ゲル化が急激に進行するためでりる。そこで、上記廃液
にアルカリ溶液たとえば水酸化ナトリウム溶液を加えて
pHを増加させると、下記の反応によりリン酸二水素−
ナトリウム(Na)l、 PO,)はp)16以上で大
部分が、またpH8〜8,8で全部が、リン酸−水素二
ナトリウム(Na、 HPO4)に変る。
The sodium dihydrogen phosphate waste liquid exhibits a pH of 4, and in this state, as mentioned above, it will not solidify at all with the inorganic assimilation material. This is because cement or cement + glass solidifies excessively under alkaline conditions, but gelation rapidly progresses under acidic conditions. Therefore, when an alkaline solution, such as a sodium hydroxide solution, is added to the above waste liquid to increase the pH, the following reaction occurs:
Most of the sodium (Na)l, PO,) is converted to disodium phosphate-hydrogen (Na, HPO4) at pH 8 to 8.8 at p) 16 or higher.

Nap、 PO,+ NaOH4Na、 HPO4+ 
H,0このリン収−水素二ナトリウムは無機同化材を添
加することにより固化体にすることができる。この場合
、無機同化材の添加を30℃以上で行うとリン酸−水素
二ナトリウムは1水塩又は7水塩の状態で固化反応が進
行し、後に常温となったとさ12水塩に変ることによシ
無機固化系内の遊離水を取シ込み、固化体強度が特に増
大する効果かめる。他のリン酸塩廃液の場合も上記と同
様でりる。
Nap, PO, + NaOH4Na, HPO4+
H,0 This phosphorus yield-hydrogen disodium can be made into a solid by adding an inorganic assimilating agent. In this case, if the inorganic assimilation agent is added at 30°C or higher, the solidification reaction of disodium phosphate-hydrogen will proceed in the monohydrate or heptahydrate state, and later, when the temperature returns to room temperature, it will change to the dodecahydrate. The free water in the inorganic solidification system is absorbed and the strength of the solidified product is particularly increased. The same procedure as above applies to other phosphate waste liquids.

〔実施例〕〔Example〕

廃液たるリン酸二水素−ナトリウム水溶液を反応槽に入
れ、これに水酸化ナトリウム水溶液を加え、反応槽内の
液のpHをpf(メータでモニタする。
A waste solution of dihydrogen phosphate-sodium aqueous solution is put into a reaction tank, an aqueous sodium hydroxide solution is added thereto, and the pH of the liquid in the reaction tank is monitored with a pf (meter).

第3図はこの過程を示したものでめる。リン酸二水素−
ナトリウム水溶液のphは4であるか、水酸化ナトリウ
ムを加えていくと順次反応し、リン酸−水素二ナトリウ
ムに変わる。水酸化ナトリウム水溶at−IJン酸二水
素−ナトリウムに吋して0.6〜0.7モル当着刀口え
たとさ中性となる。100チリン酸−水素二ナトリウム
に変った水溶液のp)i vi8〜8.8を示す。
Figure 3 shows this process. dihydrogen phosphate
The pH of the sodium aqueous solution is 4, or as sodium hydroxide is added, it reacts sequentially and turns into disodium phosphate-hydrogen. When 0.6 to 0.7 mol of sodium hydroxide is added to aqueous sodium hydroxide solution, it becomes neutral. 100 p) i vi8 to 8.8 of an aqueous solution converted to disodium typhosphate-hydrogen is shown.

なお、出発廃液がリン酸二水素−ナトリウムとリン酸−
水酸化ナトリウムとの混合液の場合を想定して、これら
両者を色々なモル比に混合してその水溶液のpHを測っ
たものの結果を第4図に示す。
Note that the starting waste liquid is sodium dihydrogen phosphate and phosphoric acid.
Assuming the case of a mixed solution with sodium hydroxide, the pH of the aqueous solution was measured by mixing these two in various molar ratios, and the results are shown in FIG.

第3図と第4図が良く一致していることから、出発廃液
が上記二種類のリン酸水素ナトリウム塩の混合物でめる
場合でも、pHe測定することにより組成比のおおよそ
の値をつかむことが可能であることがわかる。よってp
Hでモニタすることは妥当でめる。
Since Figures 3 and 4 agree well, even if the starting waste liquid is a mixture of the above two types of sodium hydrogen phosphate, it is possible to obtain an approximate value of the composition ratio by measuring pH. It turns out that it is possible. Therefore p
It is reasonable to monitor with H.

無機同化材を用いて強い固化体を作るにはpi(6,5
以上のアルカリ側で良いが、最も健全な同化体を作製す
る為にrj、全てリン酸−水素二ナトリウムに変ってい
た方が良い。即ちpHが8〜8.8になっている方がよ
い。列えばpHが仮に7を示した場合には、0.2当量
の水酸化ナトリウムを添7111してpi−1=8〜8
.8にするのが良い。
To make a strong solidified body using inorganic assimilates, pi (6,5
The above alkaline side is fine, but in order to create the healthiest assimilate, it is better to change all rj to phosphate-hydrogen disodium. That is, it is better that the pH is 8 to 8.8. For example, if the pH is 7, add 0.2 equivalents of sodium hydroxide to make pi-1 = 8 to 8.
.. It is better to set it to 8.

このようにpHをA@したリン1投水素ナトリウム発液
を一縮または乾燥粉体化し、これにセメントまたはセメ
ントと水ガラスとの混合物寺の無欧固化材を添加して固
化処理を行う。この固化処理の温度について以1;に述
べる。
The solution of sodium hydroxide and phosphorus, which has a pH of A@, is condensed or dried into a powder, and cement or a solidifying agent made of a mixture of cement and water glass is added thereto for solidification. The temperature of this solidification treatment will be described below in 1.

第5図にリン酸二水素−ナトリウムとリン酸−水素二す
) IJウムの溶解度曲線を示す。両者とも温度上昇と
ともに溶解度が増し結晶水を失って行く。今50℃以上
で無機同化材を添加する場合を例にとると、反応槽では
下記の反応が起っており、NaOH Nap、 PO,−H,ONa、 HPO4* H,0
無機固化材添加時にはリンは一水素二す) IJウムは
1水塩でm磯固化材に固定されることになる。
Figure 5 shows the solubility curves of sodium dihydrogen phosphate and sodium phosphate. In both cases, as the temperature rises, the solubility increases and water of crystallization is lost. Taking the case where an inorganic assimilate is added at 50°C or above as an example, the following reaction is occurring in the reaction tank: NaOH Nap, PO, -H, ONa, HPO4* H,0
When an inorganic solidifying agent is added, phosphorus is monohydrogen, dihydric, and IJium is fixed to the rock solidifying material using monohydrate.

一方、無機固化体は内部の遊離水が少ないほど強固なも
のになることがわかっているが、無桟固化材添加時の作
業性刀為ら水の混合を少くすることに限界がめる。しか
し上記Na、f(PO4・H!Oで固まった廃棄物は固
化し室温に下がるにつれて、N a、 )I PO4・
H20−+N a、 t−i P 04 ・7 H20
−)N a、 )iP 04 ・12H,0 と結晶水を取り込んで行くものと考えられ、このことが
固化体健全性を高度に保つことに効果的となる。
On the other hand, it is known that the less free water inside an inorganic solidified material, the stronger it becomes, but there is a limit to reducing the amount of water mixed in due to workability when adding a barless solidifying material. However, as the waste solidified with Na,f(PO4・H!O) solidifies and cools to room temperature, Na, )IPO4・
H20-+N a, t-i P 04 ・7 H20
-) Na, ) iP 04 .12H,0 and crystal water are considered to be taken in, and this is effective in maintaining the integrity of the solidified body at a high level.

これに対して、νりえば始めから室温で無機固化材添加
を行なうと、廃棄物自体が12水堪とじてまず水をとり
込むために同化材添加時に多量の水を要し、これが固化
後の固化体強度に悪形外を及ぼすば力・りではなく、粂
件によってVよ固化でさないという結果になる。
On the other hand, if the inorganic solidifying agent is added at room temperature from the beginning, the waste itself can hold up to 12 liters of water, so a large amount of water is required when adding the assimilating agent to first take in the water, and this increases after solidifying. It is not the force/resistance that affects the strength of the solidified material, but the result is that V is not solidified due to the condition.

廃棄物水溶液のpHおよび無欣固化材添カD温複の固化
体に及はす影響を調査し、試験した結果をそれぞれ第6
図および第7図に示す。pH5以上、無機固化付添加温
度30℃以上で光分同化体が得られる。放射性廃棄物と
して陸地処分を対象にした場合は、pi−16,5以上
、混線時温度35°以上で充分以上にすると沸騰して水
がなくなるので、1o。
We investigated the pH of the waste aqueous solution and the effects of the additive-free solidifying agent on the solidified material, and the results of the tests were reported in the 6th section.
7 and 7. A light assimilator can be obtained at a pH of 5 or higher and an inorganic solidification addition temperature of 30°C or higher. If radioactive waste is to be disposed of on land, it should be 1o because it will boil and run out of water if it is heated to more than enough pi-16.5 and the temperature during crosstalk is 35° or more.

℃未満に抑え、また、放射性廃液の場合は放射性核種が
飛ぶのを防ぐために80℃以下に抑えることが望ましい
In the case of radioactive waste liquid, it is desirable to keep the temperature below 80°C to prevent the radionuclides from flying away.

以上、放射性廃液でりるリン酸二水素−す) IJウム
水溶液を処理対象とした場合の本発明の二実画例を具体
的に祝明する。
In the above, two practical examples of the present invention will be specifically described in the case where an aqueous solution of dihydrogen phosphate (IJ) as a radioactive waste liquid is treated.

実施例1 蔵タンク1よりバルブ3を介して反応槽6に導入される
。反応槽6μ動力磯4で回転する攪拌用回転羽根7がつ
いており、槽全体qよヒータ8で温度コントロールがで
さるようになっている。また反応の進行具合いrユpl
(メータ5でモニターでざる。
Example 1 Water is introduced into the reaction tank 6 from the storage tank 1 via the valve 3. The reaction tank is equipped with a rotating blade 7 for stirring which is rotated by a 6μ power rock 4, and the temperature of the entire tank q can be controlled by a heater 8. Also, the progress of the reaction
(Meter 5 is a monitor.

廃リン酸二水素−ナトリウム水溶gを導入した後、水酸
化ナトリウム水溶液をタンク2よりバルブ3を介して反
応槽VC導入する。所定時間反応槽内で横押し、pH5
以上にするとリン酸二水素−ナトリウムは大部分リン酸
−水素二ナトリウムに変わる。
After introducing the waste dihydrogen phosphate-sodium aqueous solution g, an aqueous sodium hydroxide solution is introduced from the tank 2 through the valve 3 into the reaction tank VC. Push horizontally in the reaction tank for a specified time, pH 5
In this case, most of the sodium dihydrogen phosphate is converted to disodium hydrogen phosphate.

続いてこの溶液を反応槽6よシバルプ3を介して濃縮乾
燥機9に導入する。ここで濃縮めるいは粉体化する。続
いて下部のバルブ3を介して、廃棄物固化容器14に導
入する。一方、固化材の系を説明すると、無機固化材(
セメント又はセメントと水ガラスとの混合物)をタンク
1oよりバルブ3を介して混練槽12に導入すると共に
、水をタンク11よりバルブ3を介して同様に混練槽1
2に入れ、混練槽12の動力機4によって回転する回転
羽根7で均一に混練する。続いてこの無機固化材と水と
の混線物をバルブ3を介して廃棄物固化容器14に4人
する。タンク13よりリン酸塩よりなる硬化剤13がバ
ルブ3を介して廃棄物固化容器14に導入される。硬化
剤13は混練槽12に導入して予め無機固化材と混線す
る方法をとってもよい。廃棄物固化容器14には動力機
4により回転する回転羽根7が導入されており、これで
廃棄物と固化材及び硬化剤が均一に混合される。
Subsequently, this solution is introduced into the concentration dryer 9 via the reaction tank 6 and the pump 3. Here, the concentrated melage is turned into powder. Subsequently, it is introduced into the waste solidification container 14 via the lower valve 3. On the other hand, to explain the solidification material system, inorganic solidification material (
Cement or a mixture of cement and water glass) is introduced into the kneading tank 12 from the tank 1o through the valve 3, and water is introduced into the kneading tank 1 from the tank 11 through the valve 3 in the same way.
2 and uniformly kneaded by the rotary blades 7 rotated by the power machine 4 in the kneading tank 12. Subsequently, this mixture of inorganic solidification material and water is poured into the waste solidification container 14 through the valve 3. A hardening agent 13 made of phosphate is introduced from the tank 13 through the valve 3 into the waste solidification container 14 . The curing agent 13 may be introduced into the kneading tank 12 and mixed with the inorganic solidifying material in advance. A rotary blade 7 rotated by a motor 4 is introduced into the waste solidification container 14, and the waste, solidification material, and hardening agent are mixed uniformly with this.

また廃棄物固化容器14の周囲にヒータ8が設けられ、
これにより30℃以上80℃以上で混練する。めるいは
混線時の際廃棄物固化容器14内にヒータを導入しても
よい。廃棄物固化容器14内で混練した後膣容器14か
ら回転羽根7を取除き、内容物をそのまま固化させる。
Further, a heater 8 is provided around the waste solidification container 14,
Thereby, the mixture is kneaded at a temperature of 30°C or higher and 80°C or higher. Alternatively, a heater may be introduced into the waste solidification container 14 in case of crosstalk. After kneading in the waste solidification container 14, the rotating blade 7 is removed from the vaginal container 14, and the contents are solidified as they are.

尚、均質に混練するのを廃棄物固化容器14内で行なわ
ずに、別途予め廃棄物固化容器14外で行なってもよく
、この場合は混練槽とバルブを1組追加すればよい。
Note that homogeneous kneading may not be performed inside the waste solidification container 14, but may be separately performed outside the waste solidification container 14, and in this case, one set of a kneading tank and a valve may be added.

1!施例2 第2図に示すように、廃リン酸二水素−す) IJウム
水m液は貯蔵タンク15よりバルブ18ft介して反応
槽19に導入される。反応槽19は動力機17で回転す
る攪拌用回転羽根2oがついており、槽全体はヒータ2
1で温度コントロールでさるようになっている。また反
応の進行具合いはpHメータでモニターする。反応槽1
9に廃リン酸二水素−す) IJウム水溶液を導入した
後、水波化ナトリウム水溶液をタンク16よりバルブ1
8を介して導入し攪拌して反応を促進させるう所定時間
反応槽内で攪拌し、p)16以上にするとリン酸二水素
−ナトリウムは大部分リン酸−水素二ナトリウムに変わ
る。続いてこの溶液を反応槽19よりバルブ18を介し
て濃縮乾燥機22へ導入し、乾燥粉末化した後、バルブ
18を介して造粒機27へ導入しベレット化する。ペレ
ット29になった廃棄物は廃棄物固化容器28へ導入さ
れる。−万、同化材系について云うと、無機固化材はタ
ンク23よりパルプts’l介して混練[25へ導入き
れ、ここで水夕/り24よりバルブ18を介して0口え
られた水と、動力機17によって回転する回転羽根20
によって均一に混練される。続いて無機固化材と水との
混練物をパルプ18を介して廃棄物ペレット29の入っ
ている廃棄物同化容器28に導入し、硬化剤もタンク2
6よシバルブ18を介して導入し、固化させる。固化に
際して廃棄物固化容器28の回りのヒータ21によシ温
度30tll:以上80℃以ドにコントロールする。な
お、硬化剤26μバルブ28を介して混練槽25へ導入
し、無機固化材とめらかじめ混練した後、ペレット29
の充填している廃棄物タンクa28へ導入してもよい。
1! Example 2 As shown in FIG. 2, a waste dihydrogen phosphate solution was introduced into a reaction tank 19 from a storage tank 15 through an 18ft valve. The reaction tank 19 is equipped with a stirring rotary blade 2o that is rotated by a motor 17, and the entire tank is equipped with a heater 2.
1 allows you to control the temperature. Further, the progress of the reaction is monitored with a pH meter. Reaction tank 1
After introducing the waste dihydrogen phosphate solution into the tank 16, the sodium hydroxide solution was introduced into the valve 1 from the tank 16.
When the reaction temperature is increased to 16 or more, most of the sodium dihydrogen phosphate is converted to disodium phosphate. Subsequently, this solution is introduced from the reaction tank 19 through the valve 18 into the concentration dryer 22, where it is dried and powdered, and then introduced through the valve 18 into the granulator 27 to be pelletized. The waste material that has become pellets 29 is introduced into a waste solidification container 28 . - Regarding the assimilating material system, the inorganic solidifying material is introduced from the tank 23 through the pulp ts'l into the kneading system [25], where it is mixed with water drawn from the water tank 24 through the valve 18. , a rotating blade 20 rotated by a power machine 17
The mixture is evenly kneaded. Subsequently, a mixture of the inorganic solidifying agent and water is introduced into the waste assimilation container 28 containing the waste pellets 29 via the pulp 18, and the hardening agent is also introduced into the tank 2.
6 through the valve 18 and solidify. During solidification, the temperature is controlled by the heater 21 around the waste solidification container 28 to a temperature of 30 tll or more and 80° C. or less. The curing agent 26μ is introduced into the kneading tank 25 through the valve 28, and after being smoothly kneaded with the inorganic solidifying agent, the pellets 29
It may be introduced into the waste tank a28 which is filled with.

実施例1および2の方法で作成した無機固化材は、無憬
固化材添加時の温度を30℃以上50℃未満としfcと
@ 100h/d、50℃以上80℃以上としたとぎ約
250匂/dの強匣を示し、廃棄物タンクも良好でめっ
た。
The inorganic solidifying materials prepared by the methods of Examples 1 and 2 had an odor of about 250 when the temperature at the time of addition of the solidifying material was 30°C or higher and lower than 50°C, fc @ 100 h/d, and 50°C or higher and 80°C or higher. /d strength, and the waste tank was also in good condition.

なお、用いる無機固化材はセメントるるいはセメント士
水ガラスとしたが、その他の水硬性無機固化材を用いて
も同化体を作ることができる。
Although the inorganic solidifying material used was cement lubrication or cement water glass, the assimilate can also be made using other hydraulic inorganic solidifying materials.

なお、以上の実施例では、リン酸二水素−ナトリウム廃
液を処理対象としたが、他のリン酸塩廃液が処理対象で
りる場合にも、上記と同じpH−列整値への調整、同じ
無機同化材の添加および同じ添加温度によって、これを
無機固化材固化することかでざる。例えば他のリン酸塩
廃液、具体的にはリン酸カリウム、す/耐水累カリウム
、リン酸カルシウム、リン酸水素カルシウム、リンff
i コバルト、リン酸鉄、リン酸ニッケル、す71浚ク
ロム、リン酸マンガンも本発明によればセメントあるい
はセメントと水力ラスの混合物でめる無機固化材を用い
て固化することができる。pH調整には水酸化ナトリウ
ム、水酸化カリウム、水酸化カルシウム等の適当なアル
カリ溶液を用いればよい。
In the above examples, sodium dihydrogen phosphate waste liquid was treated, but even when other phosphate waste liquids are treated, the same adjustment to the pH value as described above, This can be solidified by an inorganic solidifying agent by adding the same inorganic assimilating agent and at the same addition temperature. For example, other phosphate waste liquids, specifically potassium phosphate, water-resistant potassium phosphate, calcium phosphate, calcium hydrogen phosphate, phosphorus ff
i Cobalt, iron phosphate, nickel phosphate, chromium phosphate and manganese phosphate can also be solidified according to the invention using inorganic solidifying agents in cement or a mixture of cement and hydraulic lath. For pH adjustment, a suitable alkaline solution such as sodium hydroxide, potassium hydroxide, calcium hydroxide, etc. may be used.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来無機材質固化材による同化が全く
不可能でりったリン酸二水素−ナトリウム廃液その他の
リン酸塩廃液を無機固化材で固化でさるので、廃液貯蔵
スペースを省さ減容貯蔵でさると共に1従米のビチュー
メン同化体の如@耐火性や耐荷重性の間魂寺を回避する
ことができる。
According to the present invention, sodium dihydrogen phosphate waste liquid and other phosphate waste liquids, which were previously impossible to assimilate using an inorganic solidifying agent, can be solidified using an inorganic solidifying agent, so waste liquid storage space can be saved. In addition to reducing the volume of storage, it is possible to avoid the fire resistance and load-bearing properties of the assimilated bitumen.

【図面の簡単な説明】[Brief explanation of drawings]

゛第1図は均質固化する場合の本発明の実t4例を示す
図、第2図はペレット固化する場合の本発明の実施例を
示す図、第3図及び第4図は廃液pH調整の基礎実験の
結果を示す図、第5図はリン酸水素ナトリウム堪の溶解
度開−を示す図、第6図は廃液p)Lと固化体強度の関
係を示す図、第7図は固化材添加温度と固化体強匠の関
係を示す図でりる0 1・・・廃棄物タンク 2・・・水酸化ナトリウムタ/
り3・・・バルブ     4・・・動力機5・・・p
Hメータ    6・・・反応槽7・・・回転羽根  
  8・・・ヒータ9・・・礎縮乾燥機   10・・
・固化材タンク11・・・水タンク   12・・・混
練槽13・・・硬化剤タンク 14・・・廃棄物固化容
器15・・・廃棄物タンク  16・・・水酸化ナトリ
ウムタンク17・・・動力機    18・・・バ、ル
ブ19・・・反応槽    20・・・回転羽根21・
・・ヒータ    22・・・濃縮乾燥機23・・・固
化材タンク  24・・・水タンク25・・・混練槽 
    26・・・硬化剤タンク27・・・造粒機  
   28・・・廃棄物固化容器29・・・ペレット。 1゛〜−τ
゛Figure 1 is a diagram showing 4 practical examples of the present invention in the case of homogeneous solidification, Figure 2 is a diagram showing an example of the present invention in the case of pellet solidification, and Figures 3 and 4 are diagrams showing examples of the present invention in the case of homogeneous solidification. Figure 5 shows the solubility of sodium hydrogen phosphate, Figure 6 shows the relationship between waste liquid p)L and solidified solid strength, Figure 7 shows the relationship between solidified material strength and solidified material addition. Diagram showing the relationship between temperature and solidification strength 0 1...Waste tank 2...Sodium hydroxide tank/
3...Valve 4...Power machine 5...p
H meter 6...Reaction tank 7...Rotating vane
8... Heater 9... Foundation shrink dryer 10...
- Solidifying agent tank 11...Water tank 12...Kneading tank 13...Curing agent tank 14...Waste solidifying container 15...Waste tank 16...Sodium hydroxide tank 17... Power machine 18...B, Lube 19...Reaction tank 20...Rotating vane 21.
... Heater 22 ... Concentration dryer 23 ... Solidification agent tank 24 ... Water tank 25 ... Kneading tank
26...Curing agent tank 27...Pelletizer
28...Waste solidification container 29...Pellets. 1゛~-τ

Claims (1)

【特許請求の範囲】 1、リン酸塩廃液のpHを6以上に調整した上で無機固
化材を添加して固化させることを特徴とするリン酸廃液
の固化処理方法。 2、リン酸塩廃液がリン酸二水素−ナトリウムを主成分
とする水溶液である特許請求の範囲第1項記載のリン酸
塩廃液の固化処理方法。 3、無機固化材の添加温度を30℃以上100℃未満と
する特許請求の範囲第1項又は第2項記載のリン酸塩廃
液の固化処理方法。 4、pHを6以上に調整したリン酸廃液を濃縮または乾
燥粉体化した後に無機固化材を添加する特許請求の範囲
第1項、第2項又は第3項記載のリン酸廃液の固化処理
方法。
[Scope of Claims] 1. A method for solidifying a phosphoric acid waste solution, which comprises adjusting the pH of the phosphate waste solution to 6 or higher and then adding an inorganic solidifying agent to solidify the phosphate waste solution. 2. The method for solidifying phosphate waste liquid according to claim 1, wherein the phosphate waste liquid is an aqueous solution containing sodium dihydrogen phosphate as a main component. 3. The method for solidifying phosphate waste liquid according to claim 1 or 2, wherein the temperature at which the inorganic solidifying agent is added is 30°C or more and less than 100°C. 4. Solidification treatment of phosphoric acid waste liquid according to claim 1, 2, or 3, in which an inorganic solidifying agent is added after concentrating or drying the phosphoric acid waste liquid whose pH has been adjusted to 6 or more or drying it into powder. Method.
JP61043716A 1986-02-28 1986-02-28 Method for solidifying phosphate waste liquid Expired - Fee Related JPH0810278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61043716A JPH0810278B2 (en) 1986-02-28 1986-02-28 Method for solidifying phosphate waste liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61043716A JPH0810278B2 (en) 1986-02-28 1986-02-28 Method for solidifying phosphate waste liquid

Publications (2)

Publication Number Publication Date
JPS62201399A true JPS62201399A (en) 1987-09-05
JPH0810278B2 JPH0810278B2 (en) 1996-01-31

Family

ID=12671526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61043716A Expired - Fee Related JPH0810278B2 (en) 1986-02-28 1986-02-28 Method for solidifying phosphate waste liquid

Country Status (1)

Country Link
JP (1) JPH0810278B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201197A (en) * 1988-02-05 1989-08-14 Hitachi Ltd Treatment of radioactive waste
JP2010223662A (en) * 2009-03-23 2010-10-07 Japan Atomic Energy Agency Method for solidification treatment of radioactive waste liquid containing sodium dihydrogenphosphate
JP2010223663A (en) * 2009-03-23 2010-10-07 Japan Atomic Energy Agency Method for solidification treatment of radioactive waste
JP5663799B1 (en) * 2013-11-22 2015-02-04 加藤 行平 Waste water treatment equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337179A (en) * 1976-03-26 1978-04-06 Oesterr Studien Atomenergie Method of condensing and drying fluid hydrated medium
JPS5975197A (en) * 1982-10-21 1984-04-27 ヌケム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of volume-decreasing and solidifying water soluble radioactive waste having nitrate
JPS62130395A (en) * 1985-12-03 1987-06-12 日本碍子株式会社 Method of pulverizing and processing radioactive waste liquor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5337179A (en) * 1976-03-26 1978-04-06 Oesterr Studien Atomenergie Method of condensing and drying fluid hydrated medium
JPS5975197A (en) * 1982-10-21 1984-04-27 ヌケム・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Method of volume-decreasing and solidifying water soluble radioactive waste having nitrate
JPS62130395A (en) * 1985-12-03 1987-06-12 日本碍子株式会社 Method of pulverizing and processing radioactive waste liquor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201197A (en) * 1988-02-05 1989-08-14 Hitachi Ltd Treatment of radioactive waste
JP2010223662A (en) * 2009-03-23 2010-10-07 Japan Atomic Energy Agency Method for solidification treatment of radioactive waste liquid containing sodium dihydrogenphosphate
JP2010223663A (en) * 2009-03-23 2010-10-07 Japan Atomic Energy Agency Method for solidification treatment of radioactive waste
JP5663799B1 (en) * 2013-11-22 2015-02-04 加藤 行平 Waste water treatment equipment
JP2015120145A (en) * 2013-11-22 2015-07-02 加藤 行平 Waste water treatment device
JP2015120139A (en) * 2013-11-22 2015-07-02 加藤 行平 Waste water treatment device

Also Published As

Publication number Publication date
JPH0810278B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
US4379081A (en) Method of encapsulating waste radioactive material
JPH0631850B2 (en) How to dispose of radioactive liquid waste
US4581162A (en) Process for solidifying radioactive waste
US4659511A (en) Method for solidifying radioactive waste
JPS60166898A (en) Method and device for solidifying and treating radioactive waste
JPH0646236B2 (en) How to dispose of radioactive waste
JPS62201399A (en) Solidifying processing method of phosphate waste liquor
US4533395A (en) Method of making a leach resistant fixation product of harmful water-containing waste and cement
JP2010151487A (en) Method for solidifying waste liquid of boric acid
JP3107758B2 (en) Method and apparatus for solidifying radioactive waste
JPH0345543A (en) Inorganic soldifying material and solidification of radioactive waste disposal using same material
JP2001097757A (en) Cement hardener for boric acid, method for hardening cement for boric acid and cement hardened product
JPS59220691A (en) Method of solidifying radioactive waste
JPS6186692A (en) Method of solidifying spent radioactive ion exchange resin
JPS6056299A (en) Method of solidifying granular radioactive waste
JPS62126400A (en) Method of solidifying radioactive waste
JPH0668555B2 (en) Radioactive waste solidification method
JPS61250598A (en) Method of processing radioactive waste
JPH0230751B2 (en)
JPS6142840B2 (en)
JPS58196498A (en) Solidification of radioactive waste
CN110232981A (en) The cement solidification processing method of radioactive waste
CN110491537A (en) A kind of cement solidification processing method of radioactive waste
JPH066486B2 (en) Method for producing water-glass solidified body
JPH02162298A (en) Solidification of waste

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees