JPH0345543A - Inorganic soldifying material and solidification of radioactive waste disposal using same material - Google Patents

Inorganic soldifying material and solidification of radioactive waste disposal using same material

Info

Publication number
JPH0345543A
JPH0345543A JP1178365A JP17836589A JPH0345543A JP H0345543 A JPH0345543 A JP H0345543A JP 1178365 A JP1178365 A JP 1178365A JP 17836589 A JP17836589 A JP 17836589A JP H0345543 A JPH0345543 A JP H0345543A
Authority
JP
Japan
Prior art keywords
inorganic
cement
silicon
solidifying
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1178365A
Other languages
Japanese (ja)
Other versions
JPH0735287B2 (en
Inventor
Takashi Nishi
高志 西
Masami Matsuda
将省 松田
Osamu Kuriyama
修 栗山
Itaru Komori
小森 至
Tsutomu Baba
務 馬場
Koichi Chino
耕一 千野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1178365A priority Critical patent/JPH0735287B2/en
Publication of JPH0345543A publication Critical patent/JPH0345543A/en
Publication of JPH0735287B2 publication Critical patent/JPH0735287B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain a hydraulic hardening agent blended with an inorganic compound capable of maintaining a high partition coefficient of Ca by using a solidifying material to increase exchange capacity of cation of adsorbent in cement paste having high pH and solidifying radioactive waste disposal. CONSTITUTION:An inorganic compound having properties wherein adsorption site (ion exchange group) of cation is increased in hydrolysis reaction in an atmosphere of high alkalinity (pH>10) and Ca adsorption capacity is increased rather in alkalinity is prepared. Then the inorganic compound is added to paste of hydraulic solidifying agent to give a solidifying agent. A silicon compound containing a skeleton comprising a siloxane bond and silanol group may be cited as the inorganic compound. Then radioactive waste disposal is solidified using the solidifying agent.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は放射性廃棄物の容器内への固定化や処分用ピッ
トの埋め戻しに用いるに好適な同化材。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is an assimilation material suitable for use in immobilizing radioactive waste in containers and backfilling disposal pits.

及び該固化材を用いた放射性廃棄物の固化方法に関する
and a method for solidifying radioactive waste using the solidifying material.

[従来の技術] 原子力発電所や核燃料再処理施設等から発生する濃縮廃
液や使用済みイオン交換樹脂、雑固体等の放射性廃棄物
を同化処理して固化体とする目的に用いる固化材として
、セメントや水、ガラス(ケイ酸アルカリ)等の水硬性
無機固化材が知られている。
[Conventional technology] Cement is used as a solidifying material to assimilate and solidify radioactive waste such as concentrated waste liquid, used ion exchange resin, and miscellaneous solids generated from nuclear power plants and nuclear fuel reprocessing facilities. Hydraulic inorganic solidifying materials such as water, glass (alkali silicate), etc. are known.

上記のような目的に用いられる固化材(充填材)は、固
化体が水没するような悪条件下でも、放射性核種の同化
体外への溶出を大幅に遅延できる性質を有することが必
要である。そのためには固化材(充填材)が放射性核種
を吸着する性質を持つこと、即ち放射性核種に関する分
配係数が大きいことが要求される。
The solidifying material (filling material) used for the above purpose needs to have properties that can significantly delay the elution of radionuclides out of the assimilated body even under adverse conditions such as when the solidified body is submerged in water. For this purpose, the solidifying material (filling material) is required to have a property of adsorbing radionuclides, that is, to have a large distribution coefficient with respect to radionuclides.

従来より知られているセメント系同化材1例えばポルト
ランドセメント、高炉セメント、シリカセメント、アル
ミナセメント等の水硬化性固化材は、硬化後の固化体の
細孔水のpHが高いため、All、C11等の超ウラン
元素及び”Co等の遷移金属に関する分配係数が大きく
、また細孔表面の電荷分布の特性から131工等の陰イ
オンに関する分配係数が比較的大きい。一方、陽イオン
でアルカリ金属である”’Csを吸着する性質はない。
Conventionally known cement-based assimilation materials 1 For example, hydraulic solidification materials such as Portland cement, blast furnace cement, silica cement, and alumina cement have a high pH of pore water in the solidified material after hardening, so All, C11 The distribution coefficients for transuranic elements such as uranium and transition metals such as Co are large, and the distribution coefficients for anions such as 131 are relatively large due to the characteristics of the charge distribution on the pore surface.On the other hand, for cations and alkali metals It does not have the property of adsorbing Cs.

そこで、固化材のCs分配係数を高めるため、日本原子
力研究所新報JAERI−M5779に記載されている
ように、陽イオンを吸着する性質をもつゼオライトをセ
メン1−に混和する方法がある。
Therefore, in order to increase the Cs distribution coefficient of the solidifying material, there is a method of mixing zeolite, which has a property of adsorbing cations, with cement 1-, as described in the Japan Atomic Energy Research Institute Newspaper JAERI-M5779.

[発明が解決しようとする課M] しかし、上記のゼオライトを用いる従来技術では、セメ
ントをはじめとする水硬性固化材ペーストが高アルカリ
性(pH>10)であり、その成分である陽イオンCa
”+の高濃度溶液となっていることが考慮されておらず
、ゼオライトのCs吸着容量(分配係数)が著しく低下
する問題があることを本発明者は見出した。
[Problem M to be solved by the invention] However, in the conventional technology using the above-mentioned zeolite, the hydraulic solidifying material paste including cement is highly alkaline (pH>10), and its component cation Ca
The present inventors have found that there is a problem in that the Cs adsorption capacity (partition coefficient) of zeolite is significantly reduced because the fact that the solution is a highly concentrated solution of ``+'' is not taken into account.

本発明の目的は、上記のようなアルカリ性の液性をもつ
水硬性固化材のペースト中においても。
The object of the present invention is also in the paste of a hydraulic solidifying material having alkaline liquid properties as described above.

高いCs分配係数を維持できる無機化合物を混和した水
硬性固化材および、かかる水硬性固化材を用いた放射性
廃棄物固化方法を提供することにある。
It is an object of the present invention to provide a hydraulic solidifying material mixed with an inorganic compound that can maintain a high Cs distribution coefficient, and a method for solidifying radioactive waste using such a hydraulic solidifying material.

[課題を解決するための手段] 上記目的の達成のため、本発明は高アルカリ性(pH>
10)の雰囲気で、加水分解反応により、陽イオンの吸
着サイト(イオン交換基)が増加することによってCs
 15!lti容量がむしろアルカリ性で増加する性質
を持つ無機化合物を水硬性固化材のペーストに混和した
ものを固化材とし、この固化材を用いて放射性廃棄物を
固化するものである。
[Means for Solving the Problem] In order to achieve the above object, the present invention provides highly alkaline (pH >
In the atmosphere described in 10), Cs
15! The solidifying material is a mixture of an inorganic compound whose lti capacity increases with alkalinity into a hydraulic solidifying material paste, and this solidifying material is used to solidify radioactive waste.

上記の性質を持つ無機化合物としては、シロキサン結合
からなる骨格とシラノール基とを有するケイ素化合物が
挙げられる。
Examples of inorganic compounds having the above properties include silicon compounds having a skeleton composed of siloxane bonds and silanol groups.

[作   用] 発明者らは、高アルカリ性でCaイオン濃度が高い水硬
性固化材ペースト中で、高いCs分配係数を維持できる
無機化合物として、シロキサン結合(SL−0−8i)
からなる骨格とシラノール基(S i −OH)とを有
するケイ素化合物が好適であることを実験的に見い出し
た。
[Function] The inventors have developed a siloxane bond (SL-0-8i) as an inorganic compound that can maintain a high Cs distribution coefficient in a hydraulic solidifying material paste that is highly alkaline and has a high Ca ion concentration.
It has been experimentally found that a silicon compound having a skeleton consisting of and a silanol group (S i -OH) is suitable.

水硬性固化材の一例としてポルトランドセメントペース
トの液性を模擬した水酸化カルシウム飽和溶液中(pH
= 12.5)に、及び純水中(PH=6)に、137
Cを1−レーサー量(微量)入れ、これに下記の各種無
機材を添加したときの該各種無機材のCs分配係数を測
定した結果を表1に示す。
As an example of a hydraulic solidifying material, a calcium hydroxide saturated solution (pH
= 12.5) and in pure water (PH = 6), 137
Table 1 shows the results of measuring the Cs distribution coefficients of the various inorganic materials when a 1-racer amount (trace amount) of C was added and the following various inorganic materials were added thereto.

表工 ”’Cs分配係数の比較 ここに、本発明に係る無機材というのはシロキサン結合
からなる骨格とシラノール基とを有するケイ素化合物で
ある。
Comparison of Cs Distribution Coefficients for Surface Treatment Here, the inorganic material according to the present invention is a silicon compound having a skeleton composed of siloxane bonds and a silanol group.

表1に示したように、ゼオライトやフライアッシュは純
水中では高い分配係数を示すが、セメントペースト中の
液性を模擬した水酸化カルシウム飽和溶液の液性におい
ては著しくそのCs吸着性能が低下することがわかる。
As shown in Table 1, zeolite and fly ash exhibit high partition coefficients in pure water, but their Cs adsorption performance decreases significantly in a calcium hydroxide saturated solution that simulates the liquid property in cement paste. I understand that.

−殻内にイオン交換反応でCsを分配する(すなわち吸
着する)無機材は、おおむね、このようなpH依存性を
示す。
- Inorganic materials that distribute (that is, adsorb) Cs in their shells through ion exchange reactions generally exhibit such pH dependence.

特に純水中で高い吸着係数をもつゼオライトやベントナ
イトのような、結晶構造の眉間に陽イオンをイオン交換
する無機材は、pHが高くなると結晶構造が変化し、吸
着容量が著しく低下する。
In particular, inorganic materials that ion-exchange cations between the eyebrows of their crystal structures, such as zeolite and bentonite, which have a high adsorption coefficient in pure water, change their crystal structure when the pH increases, resulting in a significant decrease in their adsorption capacity.

これに対して本発明に係る無機材、すなわちシロキサン
骨格とシラノール基とを有するケイ素化合物は、次のよ
うな性質を持っている。この化合物は純水中(pH=6
)では、 のような構造をとっており、シラノール基の部分が解離
することによって陽イオンを吸着する性質を持つ。高ア
ルカリ雰囲気では。
On the other hand, the inorganic material according to the present invention, that is, the silicon compound having a siloxane skeleton and a silanol group, has the following properties. This compound was dissolved in pure water (pH=6
) has a structure like this, and has the property of adsorbing cations when the silanol group dissociates. in a highly alkaline atmosphere.

○−H”           0 のようにシロキサン結合(Si−0−8i)部分が一部
加水分解反応を起こし新たにシラノール基が生じる。こ
のことは陽イオンの吸着サイトが増加することを意味し
ている。すなわち上記ケイ素化金物は高アルカリ性溶液
中でも高い陽イオン分配係数を維持できる特徴を有する
As shown in ○-H" 0, the siloxane bond (Si-0-8i) part partially undergoes a hydrolysis reaction and new silanol groups are generated. This means that the number of adsorption sites for cations increases. That is, the above-mentioned metal silicide has the characteristic that it can maintain a high cation distribution coefficient even in a highly alkaline solution.

本発明に係る無機材である、シロキサン結合よりなる骨
格とシラノール基とを有するケイ素化合物の一般的な構
造式は、中性条件の場合には第1図に、アルカリ性条件
の場合には第2図に示す如くである。
The general structural formula of a silicon compound having a skeleton made of siloxane bonds and a silanol group, which is an inorganic material according to the present invention, is shown in Figure 1 under neutral conditions, and as shown in Figure 2 under alkaline conditions. As shown in the figure.

このような無機材をセメン1〜のような水硬性固化材に
混合することにより、セメントが本来持っている陰イオ
ン吸着能と、添加した無機材の陽イオン吸着能とを合わ
せ持った充填材(固化材)を実現することが可能となる
。このような充填材を用いることによって、各種の放射
性核種の溶出が著しく小さい放射性廃棄物の固化体を作
成できる。
By mixing such an inorganic material with a hydraulic solidifying material such as Cement 1, a filler can be created that has both the anion adsorption ability inherent in cement and the cation adsorption ability of the added inorganic material. (solidified material). By using such a filler, it is possible to create a solidified body of radioactive waste in which the elution of various radionuclides is extremely small.

[実 施 例] 実施例1 本発明の実施例上を第3図により説明する。本実施例は
放射性の廃液をセメント系の固化材で容器内に均質に固
化するのに好適な例である。
[Examples] Example 1 An example of the present invention will be described with reference to FIG. This embodiment is a suitable example for uniformly solidifying radioactive waste liquid in a container using a cement-based solidifying material.

セメントサイロ1よりセメントがフィーダ6により、ま
た吸着材タンク2より吸着材として本発明に係る無機材
の粉末がフィーダ7により、それぞれ一定量、混練槽5
に供給される。混練槽5には予め、廃液タンク3よりバ
ルブ8を介して放射性廃液が混練411y5に供給され
ており、セメントの供給時にモータ10により撹拌翼1
1を回転させてセメントを混練する。場合に応じて、混
練水タンク4よりバルブ9を介して混練水を添加し、セ
メントペース1−の粘度を調整する。なお混練水タンク
4は、減水剤タンクに置換可能であり、減水剤としてβ
ナフタレンスルホン酸塩縮合物等を用い、ペースト粘度
を下げるときに使用する。
Cement from the cement silo 1 is fed to the feeder 6, and inorganic powder according to the present invention as an adsorbent from the adsorbent tank 2 is fed to the feeder 7 in fixed amounts to the kneading tank 5.
supplied to Radioactive waste liquid is previously supplied to the kneading tank 5 from the waste liquid tank 3 via the valve 8 to the kneading tank 411y5, and when the cement is supplied, the stirring blade 1 is activated by the motor 10.
Rotate 1 to mix the cement. Depending on the case, kneading water is added from the kneading water tank 4 via the valve 9 to adjust the viscosity of the cement paste 1-. The kneading water tank 4 can be replaced with a water reducing agent tank, and β
Used when reducing paste viscosity using naphthalene sulfonate condensates, etc.

1−分混線の終了したペーストは、固化容器12に注入
され、約1カ月間、密閉養生した後、固化体が完成する
After the 1-minute crosstalk has been completed, the paste is poured into a solidification container 12, and after curing in a sealed container for about one month, a solidified product is completed.

以上の手順で作成した固化体の水浸漬試験の結果につい
て以下に示す。使用したセメントは普通ポルトランドセ
メントであり、これに前記吸着材として活性ケイ酸を混
和した。それぞれの投入量はセメント70重量部に対し
、吸着材30重量部である。模擬廃液として”7CsC
Q  100μCLを含む純水を使用した。この模擬廃
液にはその他の無機塩は含まれていない。廃液/(セメ
ント+吸着材)重量比は0.3で実施した。本実施例と
比較するため、吸着材を含まないセメント単独の固化材
を用いて作った固化体、及び合成ゼオライ1〜を吸着材
としてセメントに混和した固化材を使用して作った固化
体も供試した。”’CsC11の添加量、廃液/固形分
比等の条件は上記と同一である。
The results of a water immersion test of the solidified body prepared by the above procedure are shown below. The cement used was ordinary Portland cement, to which activated silicic acid was mixed as the adsorbent. The amount of each input was 70 parts by weight of cement and 30 parts by weight of adsorbent. 7CsC as a simulated waste liquid
Q Pure water containing 100μCL was used. This simulated waste liquid does not contain any other inorganic salts. The waste liquid/(cement + adsorbent) weight ratio was 0.3. In order to compare with this example, a solidified body made using cement alone as a solidifying agent without an adsorbent, and a solidified body made using a solidifying agent mixed with cement using synthetic zeolite 1 as an adsorbent were also used. I tried it. ``'The conditions such as the amount of CsC11 added and the waste liquid/solid content ratio are the same as above.

以上の3種類の固化体からの3力月水浸漬後の”’Cs
浸出率の比を、セメント単独の固化体からの浸出率を1
として表わした結果を表2に示す6表2  ”’Cs浸
出率の比較 表2の結果かられかるように、本発明に係る無機材とし
て活性ケイ酸をセメントに混和した同化材を使用するこ
とによって、固化体からの”’Csの浸出率を、セメン
ト単独の場合の115、ゼオライト使用の場合の215
以下に低減する効果が得られた。これは、前述のように
、高アルカリであるセメントペースト中でも添加した活
性ケイ素のCs吸着容量が大きいためである。
"'Cs" after immersion in water from the above three types of solidified bodies
The leaching rate ratio is 1, and the leaching rate from solidified cement alone is 1.
The results are shown in Table 2. As can be seen from the results in Table 2, a comparison of Cs leaching rates, an assimilated material in which activated silicic acid is mixed with cement is used as the inorganic material according to the present invention. According to
The effect of reducing the amount below was obtained. This is because, as mentioned above, the active silicon added has a large Cs adsorption capacity even in the highly alkaline cement paste.

本実施例における吸着材添加量は、(固化打子吸着材)
100重量部に対して、吸着材10〜50重量部が好ま
しく、20〜30重量部が最適である。
The amount of adsorbent added in this example is (solidified batten adsorbent)
10 to 50 parts by weight of the adsorbent is preferably 10 to 50 parts by weight, and optimally 20 to 30 parts by weight.

また、活性ケイ酸の代わりに、有機ケイ素化合物である
シリコーン類やケイ酸アルカリの重合体、含水酸化チタ
ン等を用いても同様の効果が得られる。
Furthermore, the same effect can be obtained by using organic silicon compounds such as silicones, alkali silicate polymers, hydrous titanium oxide, etc. in place of activated silicic acid.

実施例2 本実施例はシロキサン結合よりなる骨格とシラノール基
とを有し、高pH領域でも陽イオン交換能をもつケイ素
化合物の調整方法に関する。
Example 2 This example relates to a method for preparing a silicon compound that has a skeleton composed of siloxane bonds and silanol groups and has cation exchange ability even in a high pH region.

水ガラス(ケイ酸アルカリ)の水溶液に、重合開始剤と
して、好ましくはケイ酸アルカリと等モルのリン酸ケイ
素を加え、十分に撹拌する。この混合物を室温で1〜2
週間養生させる。この間にケイ酸アルカリは脱水重合し
、シロキサン結合によるポリマーを形成し、硬化する。
Silicon phosphate, preferably in an equimolar amount to the alkali silicate, is added as a polymerization initiator to an aqueous solution of water glass (alkali silicate) and stirred thoroughly. Mix this mixture at room temperature for 1 to 2
Let it cure for a week. During this time, the alkali silicate undergoes dehydration polymerization, forms a polymer with siloxane bonds, and hardens.

この硬化体を、50〜100メツシュ程度に粗粉砕した
後水洗いし、リン酸塩等の可溶性塩を抽出する。水洗後
This hardened product is roughly pulverized to about 50 to 100 meshes and then washed with water to extract soluble salts such as phosphates. After washing with water.

乾燥し、25oメツシュ程度に微粉砕することによって
セメントペースト添加用の吸着剤を作成できる。
By drying and pulverizing to about 25° mesh, an adsorbent for use in adding cement paste can be prepared.

以上の手順で調整したケイ素化合物の134C8分配係
数を測定した結果、中性液中で2000〜3000 。
As a result of measuring the 134C8 distribution coefficient of the silicon compound prepared by the above procedure, it was 2000 to 3000 in a neutral liquid.

アルカリ性液中で3000〜4000とp H> 5の
領域でpHに依存しない高いCs吸着性能を持ち、セメ
ントを始めとする水硬性固化材に混和する吸着材として
好適な性質を有することが確認された。
It has been confirmed that it has high Cs adsorption performance independent of pH in the pH range of 3000 to 4000 in alkaline liquids and pH > 5, and has properties suitable as an adsorbent that can be mixed with hydraulic solidifying materials such as cement. Ta.

実施例3 本発明の実施例3を第4図を用いて説明する。Example 3 Example 3 of the present invention will be described using FIG. 4.

本実施例は原子力発電所から発生する使用済の放射性イ
オン交換樹脂(廃樹脂という)を直接セメン1−と混合
し、容器内に固化するのに好適な例である。
This embodiment is a suitable example in which used radioactive ion exchange resin (referred to as waste resin) generated from a nuclear power plant is directly mixed with cement 1- and solidified in a container.

樹脂脱水機13には、発電所から廃棄された廃樹脂が供
給され、遠心脱水により含水率50%前後に脱水される
。脱水後のl15I樹脂は樹脂受槽14に送られ、フィ
ーダ18で混練槽21へ定量供給される。この廃樹脂は
各種の放射線核種をイオンまたはクラッドの形で吸着し
ている。この混練槽21にセメントサイロ15よりフィ
ーダ19を介してセメントを、又、吸着材タンク16よ
りフィーダ29を介して吸着材をそれぞれ定量供給する
Waste resin discarded from a power plant is supplied to the resin dehydrator 13, and is dehydrated to a water content of around 50% by centrifugal dehydration. The l15I resin after dehydration is sent to the resin receiving tank 14 and fed in a fixed amount to the kneading tank 21 by the feeder 18. This waste resin adsorbs various radioactive nuclides in the form of ions or cladding. A fixed amount of cement is supplied to the kneading tank 21 from the cement silo 15 via the feeder 19, and a fixed amount of adsorbent is supplied from the adsorbent tank 16 via the feeder 29.

この間、強制撹拌翼22は回転させておく。撹拌翼22
を駆動するモータ23はトルク計241回転計25と連
動しており、これらの計測信8・は制御盤26に入り、
モニタされる。主として1〜ルク値をモニタしながら、
トルク値が設定値を越える場合、バルブ20を開いて混
練水タンク17から混練水を混練槽21に供給し、ペー
スト粘度を下げ、容器への注入を容易にする。混練槽2
1において1分に混合されペースト状になった廃樹脂と
セメントは容器27へ注入される。この際、加振機28
で脱泡を行なうと、マクロポアのない良好な固化体が作
成できる。
During this time, the forced stirring blades 22 are kept rotating. Stirring blade 22
The motor 23 that drives the is linked with a torque meter 241 and a tachometer 25, and these measurement signals 8 are sent to the control panel 26.
be monitored. While mainly monitoring the 1 to lux values,
If the torque value exceeds the set value, the valve 20 is opened to supply kneading water from the kneading water tank 17 to the kneading tank 21 to lower the paste viscosity and facilitate pouring into the container. Kneading tank 2
In step 1, the waste resin and cement, which are mixed for one minute and become a paste, are poured into a container 27. At this time, the vibrator 28
If defoaming is performed with , a good solidified material without macropores can be created.

以上の手順で作成した固化体の水浸漬試験結果を次に示
す。使用したセメントは0種高炉セメン1〜であり、吸
着材として実施例2の手順で調整したケイ素化合物粉末
を混和した。セメント/吸着材重量比は7/3であった
。模擬廃樹脂として、放射性の陽イオン核種である13
’ Csおよび陰イオン核種である125工を吸着させ
た粒状イオン交換樹脂(カチオン樹脂/アニオン樹脂=
2/1)を。
The results of the water immersion test of the solidified body prepared by the above procedure are shown below. The cement used was Class 0 blast furnace cement 1~, and silicon compound powder prepared according to the procedure of Example 2 was mixed as an adsorbent. The cement/adsorbent weight ratio was 7/3. 13, which is a radioactive cation nuclide, was used as a simulated waste resin.
' Granular ion exchange resin (cation resin/anion resin =
2/1).

50kg/200Q同化体の割合で充填した。本実施例
と比較するため、吸着材を含まないセメント単独の同化
材を用いた廃樹脂同化体、及びセメントに合成ゼオライ
トを添加した同化材を用いた廃樹脂同化体についても同
一の実験を実施した。放射性核種の添加量、樹脂/(固
化材+吸着材)比等の条件は全て同一である。以上の3
種類の同化体からの134 Cs、 tzs I浸出率
を、セメント単独の廃樹脂固化体の1ff4C8浸出率
を基準として表わした結果を表3に示す。
It was filled at a ratio of 50 kg/200Q assimilate. In order to compare with this example, the same experiment was also conducted on waste resin assimilate using an assimilation agent of cement alone without adsorbent, and waste resin assimilate using an assimilation agent of cement with synthetic zeolite added. did. All conditions such as the amount of radioactive nuclide added and the resin/(solidification material + adsorption material) ratio are the same. Above 3
Table 3 shows the leaching rates of 134 Cs and tzs I from different types of assimilates, based on the leaching rate of 1ff4C8 of waste resin solidified with cement alone.

表3 浸出率の比較 12′工は陰イオンであり、セメント自身に吸着能力が
あるため、各固化体について浸出率は小さい。13’C
sについては、本発明の実施例2の吸着材を添加したセ
メントを用いた固化体が、無添加のセメントを用いた同
化体に対してl/10、またゼオライトを添加したセメ
ントを用いた固化体に対しても1/4と低い浸出率を示
しており、廃棄物の形態が変化しても”’Csの吸着に
よる溶出遅延効果は変わらないことが示された。
Table 3: Comparison of leaching rates Since 12' is an anion and cement itself has adsorption capacity, the leaching rate is small for each solidified material. 13'C
Regarding s, the solidified material using the cement added with the adsorbent of Example 2 of the present invention is 1/10 compared to the assimilated material using the cement without additives, and the solidified material using the cement added with zeolite is The leaching rate was as low as 1/4 compared to the body, indicating that even if the form of the waste changed, the elution retardation effect due to Cs adsorption did not change.

本発明による充填材(固化材)は、雰囲気のpHに依ら
ず、陽イオンの交換能力を有するので、固化容器内への
廃棄物の固化用としてだけでなく、自然環境と直接接す
る放射性廃棄物処分用のピット構造材やピット内埋め戻
し材に好適であり、核種の性質(イオンの極性)によら
ず、その移行速度を従来の充填材の1/2以下に低減す
ることが可能となる。
The filler (solidifying material) according to the present invention has the ability to exchange cations regardless of the pH of the atmosphere, so it can be used not only for solidifying waste in solidifying containers, but also for radioactive waste that comes into direct contact with the natural environment. It is suitable for pit structure materials for disposal and backfilling materials in pits, and regardless of the nature of the nuclide (ion polarity), it is possible to reduce the migration speed to less than half that of conventional filling materials. .

[発明の効果] 本発明の無機同化材によれば、p Hが高いセメントペ
ースト中で吸着材の陽イオンの交換容量(吸着容量)が
増加するので、本発明の固化材を用いて放射性廃棄物を
固化処理すれば、Csを始めとする可溶性の陽イオン核
種の外部への浸出率を大幅に低減する効果がある。
[Effects of the Invention] According to the inorganic assimilation material of the present invention, the cation exchange capacity (adsorption capacity) of the adsorbent increases in cement paste with a high pH. Solidifying materials has the effect of significantly reducing the rate of leaching of soluble cation nuclides such as Cs to the outside.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明において固化材に混和する無機材の中性
域での分子構造図、第2図は該無機材のアルカリ域での
分子構造図、第3図は本発明の一実施例のフロー図、第
4図は本発明の別の実施例のフロー図を示す。 5.21・・混練pW   1.15・・・セメントサ
イロ2.16・・・吸着材タンク 4.17・・・混練水タンク 12.27・・・固化容器 3・・・廃液タンク3・・
・樹脂脱水機 0.23・・モータ 5・・・回転計 8・・・加振機 14・・・樹脂受槽 24・・・トルク計 26・・・制御盤
Figure 1 is a molecular structure diagram of the inorganic material mixed in the solidification material in the present invention in a neutral range, Figure 2 is a molecular structure diagram of the inorganic material in an alkaline range, and Figure 3 is an example of the present invention. FIG. 4 shows a flow diagram of another embodiment of the present invention. 5.21...Kneading pW 1.15...Cement silo 2.16...Adsorbent tank 4.17...Kneading water tank 12.27...Solidification container 3...Waste liquid tank 3...
・Resin dehydrator 0.23... Motor 5... Tachometer 8... Vibrator 14... Resin receiver tank 24... Torque meter 26... Control panel

Claims (1)

【特許請求の範囲】 1 負に帯電した交換基に陽イオンを吸着する性質を有
する無機物化合物であって、pH>10のアルカリ雰囲
気で加水分解により陽イオンの交換基が増加する性質を
持つ無機物化合物をセメントペースト中に混和してなる
無機固化材。 2 前記無機化合物はケイ素および酸素で構成されるシ
ロキサン結合とケイ素、酸素および水素で構成されるシ
ラノール基とを有するケイ素化合物であることを特徴と
する請求項1記載の無機固化材。 3 前記無機化合物はケイ素および酸素で構成されるシ
ロキサン結合とケイ素原子に結合する有機基、ケイ素、
酸素および水素で構成されるシラノール基とを有するケ
イ素化合物であることを特徴とする請求項1記載の無機
固化材。 4 前記無機化合物はケイ酸アルカリを脱水重合し、し
かる後に可溶性塩を抽出して得たケイ素化合物であるこ
とを特徴とする請求項1記載の無機固化材。 5 請求項1、2、3又は4記載の無機固化材を用いる
放射性廃棄物の固化方法。
[Scope of Claims] 1. An inorganic compound having the property of adsorbing cations to negatively charged exchange groups, the inorganic compound having the property of increasing the number of cation exchange groups by hydrolysis in an alkaline atmosphere with pH > 10. An inorganic solidifying material made by mixing a compound into cement paste. 2. The inorganic solidifying material according to claim 1, wherein the inorganic compound is a silicon compound having a siloxane bond composed of silicon and oxygen and a silanol group composed of silicon, oxygen, and hydrogen. 3 The inorganic compound includes a siloxane bond composed of silicon and oxygen, an organic group bonded to the silicon atom, silicon,
The inorganic solidifying material according to claim 1, which is a silicon compound having a silanol group composed of oxygen and hydrogen. 4. The inorganic solidifying material according to claim 1, wherein the inorganic compound is a silicon compound obtained by dehydrating and polymerizing an alkali silicate and then extracting a soluble salt. 5. A method for solidifying radioactive waste using the inorganic solidifying material according to claim 1, 2, 3, or 4.
JP1178365A 1989-07-11 1989-07-11 Solidifying material and method for solidifying radioactive waste using the same Expired - Fee Related JPH0735287B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1178365A JPH0735287B2 (en) 1989-07-11 1989-07-11 Solidifying material and method for solidifying radioactive waste using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1178365A JPH0735287B2 (en) 1989-07-11 1989-07-11 Solidifying material and method for solidifying radioactive waste using the same

Publications (2)

Publication Number Publication Date
JPH0345543A true JPH0345543A (en) 1991-02-27
JPH0735287B2 JPH0735287B2 (en) 1995-04-19

Family

ID=16047223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1178365A Expired - Fee Related JPH0735287B2 (en) 1989-07-11 1989-07-11 Solidifying material and method for solidifying radioactive waste using the same

Country Status (1)

Country Link
JP (1) JPH0735287B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327549A (en) * 2006-06-07 2007-12-20 Zojirushi Corp Vacuum structure
JP2013096781A (en) * 2011-10-31 2013-05-20 Jfe Engineering Corp Method for manufacturing cement solidification matter of fly ash containing radioactive cesium
JP2013100263A (en) * 2011-10-20 2013-05-23 Medical Life Quality Medical Corp Method of treating surface of object

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007327549A (en) * 2006-06-07 2007-12-20 Zojirushi Corp Vacuum structure
JP2013100263A (en) * 2011-10-20 2013-05-23 Medical Life Quality Medical Corp Method of treating surface of object
JP2013096781A (en) * 2011-10-31 2013-05-20 Jfe Engineering Corp Method for manufacturing cement solidification matter of fly ash containing radioactive cesium

Also Published As

Publication number Publication date
JPH0735287B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
US3988258A (en) Radwaste disposal by incorporation in matrix
EP0124965B1 (en) Process for the encapsulation of ion exchange resins
US4379081A (en) Method of encapsulating waste radioactive material
JPS6233560B2 (en)
EP2784039B1 (en) Cement curing formulation and method for high-level radioactive boron waste resins from nuclear reactor
JPH0631850B2 (en) How to dispose of radioactive liquid waste
JPH0646236B2 (en) How to dispose of radioactive waste
US5457262A (en) Preparation of inorganic hardenable slurry and method for solidifying wastes with the same
JPH0345543A (en) Inorganic soldifying material and solidification of radioactive waste disposal using same material
JP2908107B2 (en) Solidification material for radioactive waste and method for treating radioactive waste
CN115159917B (en) Formula and method for curing and treating radioactive waste resin by cement
TWI741802B (en) Method of processing liquid borate waste
WO1989011149A1 (en) Process for cementing radioactive waste and product of cementation
CN115159920B (en) Formula and method for solidifying cement by radioactive waste liquid
JPH08285995A (en) Method for solidification process of radioactive waste
JPH0422238B2 (en)
JPH0252999B2 (en)
JPH0810278B2 (en) Method for solidifying phosphate waste liquid
JPS6186692A (en) Method of solidifying spent radioactive ion exchange resin
JPH0668555B2 (en) Radioactive waste solidification method
JPS62267699A (en) Method of solidifying and processing radioactive waste
JPS61250598A (en) Method of processing radioactive waste
Ghattas et al. Retention capability of cement barriers applied in nuclear field
JPH07244194A (en) Solidification method for radioactive waste
JPH0418640B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees