JPS62126400A - Method of solidifying radioactive waste - Google Patents

Method of solidifying radioactive waste

Info

Publication number
JPS62126400A
JPS62126400A JP60264901A JP26490185A JPS62126400A JP S62126400 A JPS62126400 A JP S62126400A JP 60264901 A JP60264901 A JP 60264901A JP 26490185 A JP26490185 A JP 26490185A JP S62126400 A JPS62126400 A JP S62126400A
Authority
JP
Japan
Prior art keywords
solidifying
water
radioactive waste
sodium sulfate
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60264901A
Other languages
Japanese (ja)
Inventor
龍男 泉田
務 馬場
根本 恒夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60264901A priority Critical patent/JPS62126400A/en
Publication of JPS62126400A publication Critical patent/JPS62126400A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は放射性廃棄物の固化方θ;に係り、特に原子力
発電所などから発生する放射性の濃縮廃液(硫酸ナトリ
ウムが1:、成分)の固化方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method of solidifying radioactive waste θ; in particular, the solidification of concentrated radioactive waste liquid (component of 1:1 sodium sulfate) generated from nuclear power plants, etc. Regarding the method.

〔発明の背景〕[Background of the invention]

原子力発電所から発生する放射性廃棄物を減容し、固形
化することは施設内の保管スペースを確保する上で重要
であるばかりでなく、最終処分法の一つである陸地保管
上不可欠な要因である。
Reducing the volume and solidifying radioactive waste generated from nuclear power plants is not only important for securing storage space within the facility, but also an essential factor for land storage, which is one of the final disposal methods. It is.

放射性廃棄物を減容する方法の一つとしてBWRプラン
トから発生する主要な廃棄物である濃縮廃液(主成分N
azSO4)および粉状イオン交換樹脂のスラリーを乾
燥粉末化して放射性廃棄物の体積の大部分を占める水を
除去し、これをペレット化する方法が知られている。こ
の方法によって、廃液やスリラーを直接セメント固化す
る従来の方法にくらべ約178に減容できることが確認
されている。
One of the ways to reduce the volume of radioactive waste is to use concentrated waste liquid (main component N), which is the main waste generated from BWR plants.
A method is known in which a slurry of azSO4) and a powdered ion exchange resin is dried and powdered to remove water, which accounts for most of the volume of radioactive waste, and then pelletized. It has been confirmed that this method can reduce the volume of waste liquid or chiller to about 178 ml compared to the conventional method of directly cementing the waste liquid or chiller.

しかし、この方法においても・に燥粉末をペレット化す
るゴー程が難しいという問題があり、乾燥粉末のままで
固化材と均質に混合して固化する方法が検討されている
。この均質固化方法として代表的なものは、プラスチッ
ク、アスファルトおよび無機材質による固化である。プ
ラスチックおよびアスファル1−固化法は主に海洋投棄
に対応して開発されたものであるが、前者はコス1〜、
後者は耐熱性の面で問題がある。廃棄物を陸地処分する
際には、」二環および岩石と整合性のよい無機材質の固
化材が望ましく、セメント及びケイ酸ナトリウム(水ガ
ラス)を固化材とする同化方法が検討されている。これ
らの固化材は適当暇の水及び廃棄物粉末と混合して固化
するが、ベレット状に圧縮成形した場合と異なり、廃棄
物粉末と同化材及び水との接触面積が著しく増大する。
However, even with this method, there is a problem that it is difficult to pelletize the dry powder, and a method of solidifying the dry powder by homogeneously mixing it with a solidifying material is being considered. Typical homogeneous solidification methods include solidification using plastics, asphalt, and inorganic materials. Plastics and asphalt 1 - The solidification method was developed mainly in response to ocean dumping, but the former has
The latter has a problem in terms of heat resistance. When disposing of waste on land, it is desirable to use an inorganic solidifying agent that is compatible with two rings and rocks, and assimilation methods using cement and sodium silicate (water glass) as solidifying agents are being considered. These solidifying materials are mixed with appropriate water and waste powder to solidify, but unlike when compression molded into a pellet shape, the contact area between the waste powder, assimilated material, and water increases significantly.

そのため、廃棄物粉末が固化材と化学反応する場合は作
成した固化体に1R人な影響を与える。また廃棄物粉末
が水に溶解性のものである場合、固化体内の微小な細孔
を通じて水が内部に浸透するため廃棄物が溶解して外部
に漏出することとなり、その際放射性核種も同時に漏出
する。r+ W R濃縮廃液の乾燥粉末(N、1zsO
4)を固化する場合、−[〕記の問題が1噴著になる。
Therefore, if the waste powder undergoes a chemical reaction with the solidifying material, it will have a 1R effect on the produced solidified material. In addition, if the waste powder is soluble in water, water will penetrate into the solidified body through minute pores, causing the waste to dissolve and leak outside, and radionuclides will also leak at the same time. do. r+ W R Dry powder of concentrated waste liquid (N, 1zsO
When solidifying 4), the problem in -[] becomes one issue.

例えば、セメントで固化すると、セメント中のアルミン
酸カルシウAs (3C,′IO・^QzOa)および
水酸化カルシラ1% (C,a(all ) Z )と
N+125O4が反応し、下火に示すエトリンガイトを
生成するため体積膨張し固化体を破壊する。
For example, when solidified with cement, N+125O4 reacts with calcium aluminate As (3C,'IO・^QzOa) and calcilla hydroxide 1% (C,a(all)Z) in the cement, producing ettringite shown in the lower part. To generate, the volume expands and destroys the solidified body.

3CaOA Q、 zos + 3C;l (011)
z + 3NazSO* + 32HzO固化材として
ケイ酸ナトリウム(水ガラス)を使用すれば、(1)の
反応は起こらず問題を回避できるが、同化体からの可溶
性な硫酸ナトリウムの溶出を防ぐことは極めて鷺しく、
そのため放射性核種の漏出を防ぎ難い。
3CaOA Q, zos + 3C;l (011)
z + 3NazSO* + 32HzO If sodium silicate (water glass) is used as a solidifying agent, the reaction (1) will not occur and the problem can be avoided, but it is extremely difficult to prevent the elution of soluble sodium sulfate from the assimilate. Like a heron,
Therefore, it is difficult to prevent leakage of radionuclides.

上述の問題点を解決するためには、いずれにしても可溶
性の硫酸ナトリウムを水へ不溶な状態にする必要があり
、このための対策として、硫酸ナトリウムを不溶化して
固化する方法が検討されている。この方法において、極
めて耐久性に優れた同化体を作製できるが、不溶化反応
槽、水分の蒸発装置等の設備を新たに必要とする。
In order to solve the above-mentioned problems, it is necessary to make the soluble sodium sulfate insoluble in water, and as a countermeasure for this, a method of making sodium sulfate insoluble and solidifying it has been studied. There is. In this method, an extremely durable assimilate can be produced, but new equipment such as an insolubilization reaction tank and a moisture evaporator are required.

以」二述べたように、′a縮廃液の乾燥粉末、とりわけ
硫酸ナトリウムを主成分とするI”4WRa縮廃液から
の乾燥粉末を低廉に、しかも耐久性に優れた同化体とす
る簡便な同化技術が強く望まれている。
As mentioned above, there is a simple assimilation method that converts dry powder of 'a'a degenerate liquid, especially dry powder from I'4WRa degenerate liquid whose main component is sodium sulfate, into an inexpensive and highly durable assimilate. Technology is highly desired.

〔発明の[]的] 本発明の目的は、硫酸ナトリウムを主成分とする放射性
1縮廃液からの乾燥粉末を、無機質固化材で固化する際
の上述の問題点、すなわち固化体からの硫酸ナトリウム
の溶出を防1トしかつ低廣なコス1−で耐久性の高い固
化体の作成方法を提供することにある7 〔発明の概要〕 本発明は、硫酸ナトリウムを主成分とする濃縮廃液の乾
燥粉末を、固化容器内で不溶性物質に改質し、さらに同
化材を合成し固化することを特徴とするものである。
[Objective of the invention] The object of the present invention is to solve the above-mentioned problem when solidifying a dry powder from a radioactive waste liquid containing sodium sulfate as a main component with an inorganic solidifying material, that is, to solve the [Summary of the Invention] The present invention provides a method for producing a highly durable solidified material that prevents the elution of sodium sulfate, has a low cost, and is highly durable. This method is characterized by modifying a dry powder into an insoluble substance in a solidification container, and then synthesizing and solidifying an assimilated material.

放射性濃縮廃液の主成分である硫酸ナトリウムは、25
℃において水への溶解度が約20wし%であり、また潮
解性を有するため水へは迅速に溶解する性質をもつ。そ
のため、セメントや水ガラス等の水硬性固化材と混合し
た場合、混練中に硫酸ナトリウムは水へ溶解もしくは潮
f’ff、r31象を引き起こし、固化した後も極めて
水に溶は柿い状1ルにある。同化体が外部の水に浸漬す
ると同化体内のミクロな細孔を通じて水が浸入し、硫酸
ナトリウムがいちはやく溶解・溶出し、固化体を劣化さ
せる。
Sodium sulfate, the main component of radioactive concentrated waste liquid, has a concentration of 25
It has a solubility in water of about 20% by weight at ℃, and since it has deliquescent properties, it has the property of quickly dissolving in water. Therefore, when mixed with hydraulic solidifying materials such as cement or water glass, sodium sulfate dissolves in water during kneading or causes a tide f'ff, r31 phenomenon, and even after solidifying, it is extremely soluble in water. It is located in Le. When the assimilate is immersed in external water, water enters through the microscopic pores inside the assimilate, and sodium sulfate quickly dissolves and elutes, degrading the solidified product.

一方、硫酸ナトリウムをアルカリ土類金属の水酸化物で
不溶化すれば上述の問題はなく、また副生ずる水酸化ナ
トリウムから同化材のケイ酸ナトリウムの合成が可能で
ある。本発明は、この2点に着目し、これらの反応を同
化容器内で完結させることにより、同化システ11を簡
略化するものである。
On the other hand, if sodium sulfate is insolubilized with an alkaline earth metal hydroxide, the above-mentioned problems will not occur, and sodium silicate, which is an assimilation agent, can be synthesized from the by-produced sodium hydroxide. The present invention focuses on these two points and simplifies the assimilation system 11 by completing these reactions within the assimilation container.

上述の不溶化反応および固化材合成反応は、水を溶媒と
して進行し、通常は水が過剰な条件で実施される。その
ため、同化に際しては過剰な水を蒸発濃縮した後同化す
る必要があった。
The above-mentioned insolubilization reaction and solidification material synthesis reaction proceed using water as a solvent, and are usually carried out under conditions where water is in excess. Therefore, during assimilation, it was necessary to evaporate and concentrate excess water before assimilating it.

本発明は、不溶化反応に際しては水酸化バリウムの8水
塩を水ガラス合成反応に際しては、ケイ酸の4水塩を用
いることにより、外部からの過剰な水を一切使用せずに
反応を完結できることに基づいている。すなわち水酸化
バリウ11は通常8水塩が安定であるが、80℃以上の
温度では結晶水が溶けて水となり、スラリー状に溶解す
る。
The present invention is capable of completing the reaction without using any excess water from the outside by using barium hydroxide octahydrate for the insolubilization reaction and silicic acid tetrahydrate for the water glass synthesis reaction. Based on. That is, barium hydroxide 11 is normally stable as an octahydrate salt, but at a temperature of 80° C. or higher, the water of crystallization dissolves to form water and dissolves in the form of a slurry.

このスラーりに、硫酸ナトリウムを主成分とする廃棄物
粉末を添加すると、(2)式に示すように硫酸ナトリウ
ウムが不溶性の硫酸バリウムと水酸化ナトリウムに変化
していく。
When a waste powder containing sodium sulfate as a main component is added to this slurry, the sodium sulfate changes into insoluble barium sulfate and sodium hydroxide, as shown in equation (2).

na2+ +2011− +811,0+Na25ot
→nasO4+ 2Na011 + 811zO(2)
(+)、 (2)の反応は80℃以上で1. O0%の
効率となり、外部からの水の添加は一切不要である。
na2+ +2011- +811,0+Na25ot
→nasO4+ 2Na011 + 811zO(2)
(+), (2) reaction takes place at 80°C or higher. The efficiency is 0%, and there is no need to add water from the outside.

さらに、(2)式で生成した反応物スラーりに酸化ケイ
素の4水塩を添加することにより、ケイ酸はケイ酸ナト
リウムに変色する。添加する酸化ケイ素の結晶水は、2
〜6が望ましい、、2以下では、粘性が上昇し、撹拌が
鴛しくなる。また6以下では、水が過剰となり、減容性
が低下する6以上、速入た如く、水酸化バリウムおよび
酸化、  ケイ素の結晶水を利用することしこより、過
剰な水の添加が不要となり、水の蒸発操作を省略できる
Furthermore, by adding silicon oxide tetrahydrate to the reaction product slurry produced in formula (2), silicic acid changes color to sodium silicate. The crystal water of silicon oxide to be added is 2
-6 is desirable; below 2, the viscosity increases and stirring becomes difficult. In addition, if it is less than 6, water becomes excessive and the volume reduction property decreases.If it is more than 6, barium hydroxide, oxidation, and crystal water of silicon are used, so there is no need to add excessive water. Water evaporation operation can be omitted.

その結果、不溶化及び固化材合成反応を固化容器内で完
結可能となった。固化する場合には、さらに硬化剤を添
加すれば良い。
As a result, it became possible to complete the insolubilization and solidification material synthesis reactions within the solidification container. In case of solidification, a curing agent may be further added.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図により説明する。濃縮廃液タ
ンク2から濃縮廃液1.が遠心薄膜乾燥機3に供給され
乾燥粉末化される。一方、タンク6より水酸化バリウム
8水塩の粉末5が固化容器12に供給され、加熱器13
によってあらかじめ80℃に維持してスラーりに変換し
ておく。」―記スラーりに、3より乾燥粉末を供給し、
撹拌羽根14により撹拌しながら約1時間反応させる。
Embodiments of the present invention will be described below with reference to the drawings. Concentrated waste liquid from concentrated waste liquid tank 2 1. is supplied to the centrifugal thin film dryer 3 and dried and powdered. On the other hand, barium hydroxide octahydrate powder 5 is supplied from the tank 6 to the solidification container 12, and the heater 13
The temperature is maintained at 80°C in advance to convert it into slurry. ” - Supply the dry powder from step 3 to the slurry,
The mixture is reacted for about 1 hour while being stirred by the stirring blade 14.

その後、タンク8より酸化ケイ素の4水塩7を供給し、
80℃で約1時間反応させる。反応後、20〜30℃に
冷却した後、タンク10より硬化剤9を供給して混合し
、固化体とする。
After that, silicon oxide tetrahydrate 7 is supplied from the tank 8,
React at 80°C for about 1 hour. After the reaction, the mixture is cooled to 20 to 30°C, and then the hardening agent 9 is supplied from the tank 10 and mixed to form a solidified product.

濃縮廃液の乾燥粉末化には遠心薄膜乾燥機である必要は
ないが、粉末の水分量は少なければ少ないほど良い。乾
燥粉末と水酸化バリウ11の混合割合は、乾燥粉末中の
硫酸ナトリウムと水酸化バリウムを等モルどするのが望
ましい。硫酸ナトリウム過剰では、不溶化しない硫酸ナ
トリウムが固化体に残存し、固化体を劣化させる。一方
、水酸化バリウム過剰では、減容性が低下する。酸化ケ
イ素の添加吐け、任意であるが、硫酸ナトリウムとモル
比1〜3が望ましい。また酸化ケイ素中の結晶水量は、
少なければ少ないほど減容性は良くなるが、ケイ酸ナト
リウムの生成速度が遅くなる。
Although it is not necessary to use a centrifugal thin film dryer to dry and powder concentrated waste liquid, the lower the moisture content of the powder, the better. The mixing ratio of the dry powder and barium hydroxide 11 is preferably such that sodium sulfate and barium hydroxide in the dry powder are equimolar. When sodium sulfate is excessive, sodium sulfate that is not insolubilized remains in the solidified material, degrading the solidified material. On the other hand, if barium hydroxide is excessive, the volume reduction property decreases. The addition of silicon oxide is optional, but a molar ratio of 1 to 3 with respect to sodium sulfate is desirable. In addition, the amount of crystal water in silicon oxide is
The smaller the amount, the better the volume reduction properties will be, but the production rate of sodium silicate will be slower.

酸化ケイM1モルに対して結晶水が2モル以」二でかつ
6モル以下の範囲が望ましい。
It is desirable that the amount of water of crystallization is 2 moles or more and 6 moles or less per mole of silicon oxide M.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、濃縮廃液の主成分である硫酸す1〜リ
ウムの不溶化と固化材合成及び同化を固化容器内で一括
して実施し、かつ蒸発操作を不要にできる。その結果、
固化体の耐久性を大幅に向−4−できると共に、同化シ
ステ11を簡略化できる。
According to the present invention, the insolubilization of sodium to lithium sulfate, which is the main component of the concentrated waste liquid, and the synthesis and assimilation of the solidifying agent can be carried out all at once in the solidifying container, and an evaporation operation can be made unnecessary. the result,
The durability of the solidified material can be greatly improved, and the assimilation system 11 can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例のシステム概略図である。 The figure is a system schematic diagram of an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、硫酸ナトリウムを含有する放射性廃液を固化する方
法において、放射性廃液を乾燥粉末化し該乾燥粉末に結
晶水を含有するアルカリ土類金属の水酸化物の少なくと
も1種の化合物を添加し不溶性の硫酸塩と水酸化ナトリ
ウムを生成せしめた後、酸化ケイ素化合物を添加してケ
イ酸ナトリウムを生成せしめ、ついでケイ酸ナトリウム
を硬化させる物質を添加して固化することを特徴とする
放射性廃棄物の固化方法。
1. In a method of solidifying a radioactive waste solution containing sodium sulfate, the radioactive waste solution is dried and powdered, and at least one compound of alkaline earth metal hydroxide containing water of crystallization is added to the dry powder to form an insoluble sulfuric acid solution. A method for solidifying radioactive waste, which comprises generating salt and sodium hydroxide, adding a silicon oxide compound to generate sodium silicate, and then adding a substance that hardens the sodium silicate to solidify it. .
JP60264901A 1985-11-27 1985-11-27 Method of solidifying radioactive waste Pending JPS62126400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60264901A JPS62126400A (en) 1985-11-27 1985-11-27 Method of solidifying radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60264901A JPS62126400A (en) 1985-11-27 1985-11-27 Method of solidifying radioactive waste

Publications (1)

Publication Number Publication Date
JPS62126400A true JPS62126400A (en) 1987-06-08

Family

ID=17409791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60264901A Pending JPS62126400A (en) 1985-11-27 1985-11-27 Method of solidifying radioactive waste

Country Status (1)

Country Link
JP (1) JPS62126400A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137014A1 (en) * 2000-03-20 2001-09-26 Institute Of Nuclear Energy Research, Taiwan, R.O.C. Co-solidification of low-level radioactive wet wastes produced from BWR nuclear power plants

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1137014A1 (en) * 2000-03-20 2001-09-26 Institute Of Nuclear Energy Research, Taiwan, R.O.C. Co-solidification of low-level radioactive wet wastes produced from BWR nuclear power plants
US6436025B1 (en) 2000-03-20 2002-08-20 Institute Of Nuclear Energy Research Co-solidification of low-level radioactive wet wastes produced from BWR nuclear power plants

Similar Documents

Publication Publication Date Title
JPH0631850B2 (en) How to dispose of radioactive liquid waste
US5645518A (en) Method for stabilizing low-level mixed wastes at room temperature
US4620947A (en) Solidification of aqueous radioactive waste using insoluble compounds of magnesium oxide
JPS60166898A (en) Method and device for solidifying and treating radioactive waste
JPH0646236B2 (en) How to dispose of radioactive waste
JPS58155398A (en) Method of solidifying radioactive waste
US4533395A (en) Method of making a leach resistant fixation product of harmful water-containing waste and cement
JPS62126400A (en) Method of solidifying radioactive waste
JP2908107B2 (en) Solidification material for radioactive waste and method for treating radioactive waste
EP0157771A1 (en) Improved solidification of aqueous radioactive waste using insoluble compounds of magnesium oxide
JPS6345598A (en) Radioactive waste solidifying body and method of processing radioactive waste
JP4060498B2 (en) Solidification method for radioactive waste
KR900000341B1 (en) Solidified radioactive wastes and process for producing the same
JPS62201399A (en) Solidifying processing method of phosphate waste liquor
JPS6191600A (en) Method of solidifying radioactive concentrated waste liquor
JPS61258198A (en) Method and device for encapsulating low-level and intermediate-level radioactive waste with hydraulic cement
JPS6056299A (en) Method of solidifying granular radioactive waste
JPS60171498A (en) Method of solidifying radioactive waste
JP2854691B2 (en) Stabilization method for radioactive waste
JPH066486B2 (en) Method for producing water-glass solidified body
JPH0230751B2 (en)
JPS63261200A (en) Solidifying processing method of spent ion exchange resin
JP2000275392A (en) Processing method for boric acid waste liquid and waste liquid processing device
JPS6247597A (en) Manufacture of water glass cured body
JPS61250598A (en) Method of processing radioactive waste