JPS62199797A - Flexible metal-ceramic composite material and its production - Google Patents

Flexible metal-ceramic composite material and its production

Info

Publication number
JPS62199797A
JPS62199797A JP4009686A JP4009686A JPS62199797A JP S62199797 A JPS62199797 A JP S62199797A JP 4009686 A JP4009686 A JP 4009686A JP 4009686 A JP4009686 A JP 4009686A JP S62199797 A JPS62199797 A JP S62199797A
Authority
JP
Japan
Prior art keywords
metal
composite material
ceramic
ceramic layer
spark discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4009686A
Other languages
Japanese (ja)
Inventor
Kunihiko Yano
邦彦 矢野
Katsuhide Oshima
勝英 大島
Shuji Igarashi
五十嵐 周二
Hidesato Igarashi
五十嵐 英郷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DEITSUPUSOOLE KK
Dipsol Chemicals Co Ltd
Original Assignee
DEITSUPUSOOLE KK
Dipsol Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DEITSUPUSOOLE KK, Dipsol Chemicals Co Ltd filed Critical DEITSUPUSOOLE KK
Priority to JP4009686A priority Critical patent/JPS62199797A/en
Publication of JPS62199797A publication Critical patent/JPS62199797A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits

Abstract

PURPOSE:To produce a metal-ceramic composite material having superior flexibility by carrying out spark discharge on a metallic base material as the anode in an electrolytic cell contg. a silicate or a metallic salt of an oxyacid. CONSTITUTION:A metallic base material at least the surface part of which is made of a metal is placed as the anode in an electrolytic cell contg. a silicate or a metallic salt of an oxyacid, and spark discharge is carried out on the anode by two-stage electrolysis, that is, constant-current electrolysis and constant-voltage electrolysis. A ceramic layer consisting of particles of <=5mum particle size and having <=20% porosity is uniformly distributed on the surface of the metallic base material and a flexible metal-ceramic composite material is produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、金属とその表面に形成されたセラミックス層
から成る金属−セラミック複合材料に関し、特に陽極火
花放電によって得られる金属−セラミック複合材料及び
その製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a metal-ceramic composite material consisting of a metal and a ceramic layer formed on its surface, and particularly to a metal-ceramic composite material obtained by an anodic spark discharge and It relates to its manufacturing method.

(従来技術) 金属とセラミックスとを組合わせた金属−セラミック複
合材料は従来から知られている。この複合材料を形成す
る方法としては、溶射法、化成法、焼結法、あるいは蒸
着法等が知られているが、これらの方法によって、形成
されたセラミックス層は、金属母材表面との密着性が悪
く、複合材料に僅かな変形が生じた場合でも金属母材か
ら剥離するという問題がある。また、形成されるセラミ
ックス層の厚さの制御が困難であり、このため、複合材
料の適用分野が限定されるという不利が生じる。上記以
外に金属面上に、セラミックス層を形成する方法として
、陽極火花放電による方法が知られている。例えば、特
公昭58−17278号、59−28636号、59−
28637号、59−28638号、59−45722
号、及び60−12438号等には、シリケートあるい
は、各種の金属酸素酸塩のアルカリ性水溶液から成る電
解槽を構成し陽極付近に吸引されるケイ酸イオン、金属
酸素酸イオンと、陽極金属との間に陽極火花放電を生じ
させ、これによって、陽極金属表面上に、シリカ、金属
酸化物等のセラミックス層を形成する方法が開示されて
いる。
(Prior Art) Metal-ceramic composite materials, which are a combination of metal and ceramics, have been known for a long time. Thermal spraying, chemical conversion, sintering, and vapor deposition methods are known as methods for forming this composite material, but the ceramic layer formed by these methods does not adhere tightly to the surface of the metal base material. The problem is that the composite material has poor properties, and even if the composite material is slightly deformed, it will peel off from the metal base material. Furthermore, it is difficult to control the thickness of the ceramic layer formed, which disadvantageously limits the field of application of the composite material. In addition to the above methods, a method using anodic spark discharge is known as a method for forming a ceramic layer on a metal surface. For example, Special Publication No. 58-17278, No. 59-28636, No. 59-
No. 28637, No. 59-28638, No. 59-45722
No. 60-12438, etc., an electrolytic cell is constructed of an alkaline aqueous solution of silicate or various metal oxyacids, and the silicate ions and metal oxyacid ions drawn near the anode are combined with the anode metal. A method of forming a ceramic layer of silica, metal oxide, etc. on the anode metal surface by generating an anode spark discharge between the two methods is disclosed.

この陽極火花放電による方法で形成されたセラミックス
層は、他の方法に比べて、金属母材表面に対する良好な
密着性を有するとともに、形成される層の厚さを広範囲
に制御できる等の利点を有するものである。
Compared to other methods, the ceramic layer formed by this method using anodic spark discharge has advantages such as good adhesion to the surface of the metal base material and the ability to control the thickness of the formed layer over a wide range. It is something that you have.

(解決しようとする問題点) 従来、陽極火花放電によってセラミックス層を金属母材
上に形成する場合、印加電流密度を一定に保持しながら
放電を行わせるいわゆる定電流処理によってセラミック
ス層を形成するのが普通である。しかし、この従来の陽
極火花放電による方法で形成したセラミックス層は、金
属母材表面に対する密着性は良好であるが、セラミック
ス層組織自体の強度が十分でなく、複合材料に変形が生
じた場合、組織の一部が破壊して脱落するという現象が
頻繁に生じるという問題があった。この問題はセラミッ
クス層の厚さが増大する程、顕著となる。
(Problem to be solved) Conventionally, when forming a ceramic layer on a metal base material by anodic spark discharge, the ceramic layer is formed by a so-called constant current process in which discharge is performed while keeping the applied current density constant. is normal. However, although the ceramic layer formed by this conventional anodic spark discharge method has good adhesion to the surface of the metal base material, the strength of the ceramic layer structure itself is not sufficient, and if the composite material is deformed, There has been a problem in that a part of the tissue frequently breaks down and falls off. This problem becomes more pronounced as the thickness of the ceramic layer increases.

(問題を解決するための手段) 本発明は、上記事情に鑑みて構成されたものであって、
セラミックス層と金属母材とが強固な結合力を存し、か
つ、セラミックス層自体も十分な強度を有しており、従
って、複合材料が変形した場合であっても、組織の脱落
が生じにくい性質を有する、すなわち、可撓性を有する
金属−セラミック複合材料を提供することを目的として
いる。
(Means for solving the problem) The present invention was constructed in view of the above circumstances, and includes:
The ceramic layer and the metal base material have strong bonding strength, and the ceramic layer itself also has sufficient strength, so even if the composite material is deformed, the structure is unlikely to fall off. The object of the present invention is to provide a metal-ceramic composite material having the properties, ie, flexibility.

本発明者らは、陽極火花放電により全屈表面上に形成さ
れるセラミックス層の性質について研究を重ねた結果、
セラミックス粒子の大きさ、粒子の分布状態、及び気孔
率がセラミックス層の可撓性、及び金属母材表面への密
着性に対して重大な影警を与えることを見出した。そし
て、この知見に基づき、さらに研究をすすめた結果、本
発明に到達したものである。本発明者らは、様々な陽極
火花放電方法により陽極金属母材表面上に10〜20μ
m厚さのセラミックス層を形成し、その金属母材表面へ
の密着性及び可撓性について調査した。この目的のため
に、本発明者らは、上記セラミックス層につき、JIS
  H8684に規定される延伸率を測定した。この延
伸率は上記セラミックス層を備えた金属−セラミックス
複合材料の所定の試験片を作成し、該試験片の一端を固
定し湾曲面に沿って試験片を曲げ、セラミックス層にひ
びわれが現れる境界点の目盛りを、読み取ることによっ
て求めることができる。この延伸率はセラミックス層自
体の強度、すなわち可撓性を表すものとして評価できる
。また、本発明者らは、JIS  K5400に規定さ
れる方法にしたがってこの複合材料の耐屈曲性試験をお
こなった。この耐屈曲性はセラミックス層を有する複合
材料の所定の試験片を作成し、所定の試験装置を用い、
セラミックス層が内側になるようにして180度折り曲
げ、セラミックス層の剥離が生じる心棒の大きさの逆数
に基づいて求められる。この試験はセラミックス層の密
着性及び可撓性の両方を表すものとして評価できる。第
1図に示すように延伸率はセラミックス層の最大粒径が
大きくなる程また気孔率が大きくなる程低下する。そし
て、気孔率がほぼ20%を越えると延伸率は著しい低下
傾向を示す。第2図には耐屈曲性試験の結果が示されて
いる。これによれば、耐屈曲性も延伸率と同様の傾向を
示し、最大粒子径が大きくなる程、気孔率が増大する程
低下する。そして、最大粒子径がほぼ5μmを越えると
、また、気孔率が20%を越えると耐屈曲性は著しく低
下する。また、本発明者らの研究によれば粒子の分布状
態が不均一になると、延伸率及び耐屈曲性が低下しセラ
ミックス粒子の脱落傾向が顕著となる。従って、本発明
の可撓性金属−セラミック複合材料は、ケイ酸塩又は金
属酸素酸塩を含む電解槽において少なくとも表置部分が
金属で構成された金属母材を陽極火花放電によって金属
母材表面にセラミックス層を電着して成る可撓性金属−
セラミック複合材料であって、前記セラミックス層がほ
ぼ一様に分布した実質的に5μm以下の粒子から成り、
かつ気孔率がほぼ20%以下であることを特徴とする。
As a result of repeated research on the properties of the ceramic layer formed on the fully curved surface by anode spark discharge, the present inventors found that
It has been found that the size of the ceramic particles, the state of distribution of the particles, and the porosity have important effects on the flexibility of the ceramic layer and the adhesion to the surface of the metal base material. Based on this knowledge, we conducted further research and as a result, we arrived at the present invention. The present inventors deposited 10-20μ on the surface of the anode metal matrix by various anode spark discharge methods.
A ceramic layer with a thickness of m was formed, and its adhesion to the surface of a metal base material and flexibility were investigated. For this purpose, the present inventors have determined that the ceramic layer is
The stretching ratio specified in H8684 was measured. This elongation rate is determined by creating a specified test piece of the metal-ceramic composite material with the above-mentioned ceramic layer, fixing one end of the test piece, and bending the test piece along a curved surface to determine the boundary point at which cracks appear in the ceramic layer. It can be determined by reading the scale. This stretching ratio can be evaluated as an expression of the strength, ie, flexibility, of the ceramic layer itself. The present inventors also conducted a bending resistance test on this composite material according to the method specified in JIS K5400. This bending resistance is measured by creating a specified test piece of a composite material with a ceramic layer and using a specified test device.
It is determined based on the reciprocal of the size of the mandrel that is bent 180 degrees so that the ceramic layer is on the inside and peeling of the ceramic layer occurs. This test can be evaluated as representing both the adhesion and flexibility of the ceramic layer. As shown in FIG. 1, the stretching ratio decreases as the maximum grain size of the ceramic layer increases and as the porosity increases. When the porosity exceeds approximately 20%, the drawing rate tends to decrease significantly. FIG. 2 shows the results of the bending resistance test. According to this, the bending resistance also shows the same tendency as the stretching ratio, and decreases as the maximum particle diameter increases and as the porosity increases. When the maximum particle diameter exceeds approximately 5 μm or when the porosity exceeds 20%, the bending resistance is significantly reduced. Further, according to research by the present inventors, when the distribution of particles becomes non-uniform, the drawing rate and bending resistance decrease, and the tendency of ceramic particles to fall off becomes significant. Therefore, the flexible metal-ceramic composite material of the present invention can be applied to a metal base material in which at least the surface portion is made of metal in an electrolytic cell containing a silicate or a metal oxysate by an anodic spark discharge. A flexible metal made by electrodepositing a ceramic layer on
A ceramic composite material, wherein the ceramic layer consists of substantially uniformly distributed particles of 5 μm or less,
It is also characterized by having a porosity of approximately 20% or less.

従来の陽極火花放電による方法では、セラミックス層の
気孔率を約30%以下に、また、最大粒子径を約10μ
m以下にすることができないとともに、均一な粒子分布
状態を有する組織を形成することが困難であり、このた
め、十分な強度を有するセラミックス層を得ることが不
可能であった。
In the conventional method using anode spark discharge, the porosity of the ceramic layer is set to about 30% or less, and the maximum particle size is set to about 10 μm.
m or less, and it is also difficult to form a structure with a uniform particle distribution state, and for this reason, it has been impossible to obtain a ceramic layer with sufficient strength.

しかし、本発明者らの研究により、陽極火花放電の処理
電流及び電圧を一定の条件を満足するように制御するこ
とにより十分な強度すなわち、可撓性を有するセラミッ
クス層が得られることが確認された。本発明の可撓性金
属−セラミック複合材料は、ケイ酸塩又は金属酸素酸塩
を含む電解槽を調製し、少なくとも表面部分が金属で構
成された金属母材で陽極を形成しパルス電源を使用して
陽極火花放電を定電流処理と定電圧処理との2段処理に
よって行い、前記金属母材表面にセラミックス層を電着
形成することによって製造される。
However, the research conducted by the present inventors has confirmed that a ceramic layer with sufficient strength, that is, flexibility, can be obtained by controlling the processing current and voltage of anode spark discharge to satisfy certain conditions. Ta. The flexible metal-ceramic composite material of the present invention is produced by preparing an electrolytic cell containing a silicate or a metal oxylate, forming an anode with a metal base material with at least a surface portion made of metal, and using a pulsed power source. It is manufactured by performing anodic spark discharge through a two-step process of constant current treatment and constant voltage treatment, and electrodepositing a ceramic layer on the surface of the metal base material.

この場合、火花放電が開始する前後まで電流密度を一定
に保持して定電流処理を行い、その後、はぼ火花放電開
始時のピーク電圧により、継続して定電圧処理を行うよ
うにすることが好ましい。
In this case, it is possible to perform constant current processing by keeping the current density constant until before and after the spark discharge starts, and then continue to perform constant voltage processing using the peak voltage at the start of the spark discharge. preferable.

本発明の複合材料の金属母材としては、八t、Mg。The metal base material of the composite material of the present invention is 8t, Mg.

Tiあるいは、これらの合金を使用゛することができる
。また、電解液として使用されるケイ酸塩は、一般式i
A 20・nSi2(Mはアルカリ金属を示し、nは0
.5乃至20の正数を示す)で表される種々の水溶性の
又は水分散性のものであって、例えばケイ酸ナトリウム
、メタケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチ
ウム、コロイダルシリカ等を挙げることができる。
Ti or an alloy thereof can be used. In addition, the silicate used as an electrolyte has the general formula i
A 20・nSi2 (M represents an alkali metal, n is 0
.. 5 to 20), such as sodium silicate, sodium metasilicate, potassium silicate, lithium silicate, colloidal silica, etc. be able to.

また、電解液に金属酸素酸塩を溶解させて調製すること
ができ、この場合の酸素酸塩としてタングステン酸塩、
すず酸塩、モリブデン酸塩、りん酸塩、バナジン酸塩、
はう酸塩、クロム酸塩及び過マンガン酸塩を挙げること
ができる。これらは単独で若しくは2種又はそれ以上を
組み合わせて(重用することができる。さらに、これら
の金属酸素酸塩は、適当な割合でケイ酸塩と混合して使
用することもできる。本発明の電解処理に使用し碍る電
源には、直流電源をスイッチでオン、オフするもの、パ
ルスや、三角波形の電流を出力するものが代表的なパル
ス電源と考えることができ、その他任意の電流波形を有
するものが含まれる。そして、電解処理は被処理金属材
料を陽極として、鉄、ステンレス又はニッケル等を陰極
として上記電解浴に浸漬し、パルス電源を使用する場合
には電解浴の成分及び濃度に応じて通電中及び体電巾を
制御し、火花放電が生じはじめる前後まで一定の電流密
度を保持する定電流処理を行い、次いで火花放電を維持
しつつ所定電圧まで上昇させ所定厚さの被膜が形成され
るまで該電圧を維持する。
It can also be prepared by dissolving a metal oxyacid in an electrolytic solution; in this case, the oxyacid includes tungstate,
stannate, molybdate, phosphate, vanadate,
Mention may be made of phosphates, chromates and permanganates. These can be used alone or in combination of two or more.Furthermore, these metal oxyacids can also be used in a mixture with silicates in an appropriate ratio. Typical power supplies that can be used for electrolytic treatment include DC power supplies that turn on and off with a switch, pulse power supplies that output pulse or triangular waveform current, and other arbitrary current waveforms. In the electrolytic treatment, the metal material to be treated is used as an anode and iron, stainless steel, nickel, etc. is used as a cathode and immersed in the above electrolytic bath.If a pulse power source is used, the components and concentration of the electrolytic bath are A constant current process is performed to maintain a constant current density until before and after spark discharge begins, by controlling the current flow and body conductance according to the current flow, and then increasing the voltage to a predetermined voltage while maintaining spark discharge to form a coating with a predetermined thickness. The voltage is maintained until .

形成される被膜の厚さは、電解浴の濃度、電解浴温度、
処理電圧、処理時間等によって決定され、この内の電解
浴温度は目的とする被膜に応じて決定されるが、通例5
〜80℃でおこなわれる。
The thickness of the film formed depends on the concentration of the electrolytic bath, the temperature of the electrolytic bath,
It is determined by the processing voltage, processing time, etc., and the electrolytic bath temperature is determined depending on the desired coating, but it is usually 5.
Performed at ~80°C.

(発明の効果) 本発明の金属−セラミックス複合材料のセラミックス層
は金属母材表面との良好な密着性を有しているとともに
、材料が変形した場合であっても容易に脱落しない強固
な組織構造を有している。
(Effects of the Invention) The ceramic layer of the metal-ceramic composite material of the present invention has good adhesion to the surface of the metal base material, and has a strong structure that does not easily fall off even when the material is deformed. It has a structure.

即ち、本発明にしたがう複合材料は可撓性、屈曲性に富
んでおり、この点において、従来の金属−セラミック複
合材料にない新たな有用性を見出すことができるもので
ある。
That is, the composite material according to the present invention is highly flexible and bendable, and in this respect, new usefulness can be found that is not found in conventional metal-ceramic composite materials.

例えば、本発明に係る金属−セラミックス複合材料を用
いて、耐衝撃性の良好なプリント基板を製造することが
できる。 また、金、曙材料とセラミックス材料とを組
み合わせたものとして遠赤外線ヒーターが知られており
、この不重のヒーターでは遠赤外線を効果的に発生させ
るためにセラミックス材料の使用が不可欠となるが、従
来の遠赤外線ヒーターでは過熱源としての金属材料を覆
うセラミックス層は衝撃が加わると極めて容易に脆性破
壊や!7;す離を生じる傾向があり、耐久性の面で問題
を有するものである。しかし、本発明に従う金属−セラ
ミックス複合材料におけるセラミックス層は、金属材料
との良好な密着性及び可撓性を有するので、本発明の複
合材料を遠赤外線ヒーターに用いることによりヒーター
の耐久性を著しく向上させることができる。
For example, a printed circuit board with good impact resistance can be manufactured using the metal-ceramic composite material according to the present invention. In addition, far-infrared heaters are known as combinations of gold, Akebono materials, and ceramic materials, and in order to effectively generate far-infrared rays, this heavy-duty heater requires the use of ceramic materials. In conventional far-infrared heaters, the ceramic layer that covers the metal material that serves as the heating source is extremely susceptible to brittle fracture when subjected to impact! 7: There is a tendency for peeling to occur and there is a problem in terms of durability. However, since the ceramic layer in the metal-ceramic composite material according to the present invention has good adhesion and flexibility with metal materials, the durability of the heater can be significantly improved by using the composite material of the present invention in a far-infrared heater. can be improved.

(実施例の説明) (実施例1) NaJo○4・2l−(20tOg/l及びNaz  
B4O7・10H2020g/]を含む電解液を調製し
、この電解液中に厚さ50μのA4−1100箔を陽極
、Fe板を陰掻とし、パルス電源の通電巾と体電巾との
比を0.25”/ 10”に設定し、I A /dm2
 の定電流密度となるように電圧を調整し火花放電が開
始するまで印加した。この時の印加ピーク電圧は300
■であり、火花放電が開始するまでの時間は10分であ
った。その後、印加ピーク電圧を250■に保持しなが
ら、通電電流値が0になるまで定電圧電解を10分おこ
なった。この結果、AI陽極上に膜厚が10.2μmの
セラミックス被膜が得られた。このセラミックス層の気
孔率をJIS  C−2141にしたがって測定したと
ころ、6.6%であった。また、このセラミックス被膜
を電子顕微鏡により観察したところ、第3図の写真に示
すように、粒径が約2〜4μmのほぼ一様な組織を有し
ていることが判明した。
(Description of Examples) (Example 1) NaJo○4・2l-(20tOg/l and Naz
Prepare an electrolytic solution containing 2020g/] of B4O7.10H, use an A4-1100 foil with a thickness of 50μ as an anode, an Fe plate as a shank, and set the ratio of the current-carrying width of the pulse power source to the body-conducting width to 0. Set to .25”/10”, I A /dm2
The voltage was adjusted to a constant current density of , and the voltage was applied until spark discharge started. The peak voltage applied at this time is 300
(2), and the time until spark discharge started was 10 minutes. Thereafter, constant voltage electrolysis was carried out for 10 minutes while maintaining the applied peak voltage at 250 cm until the applied current value became 0. As a result, a ceramic coating with a thickness of 10.2 μm was obtained on the AI anode. The porosity of this ceramic layer was measured according to JIS C-2141 and was found to be 6.6%. Further, when this ceramic coating was observed using an electron microscope, it was found that it had a substantially uniform structure with a grain size of approximately 2 to 4 μm, as shown in the photograph of FIG.

(実施例2) K2O・5102 50g/lの電解液を調製し、実施
例1と同様の電極を用い、パルス電源の通電巾ト体1r
lB:ノ比ヲ0.25”/ 10”l、:設定し、lΔ
/dm2 の定電流密度となるように電圧を調整し火花
放電が開始するまで印加した。この時の印加ピーク電圧
は300■であり、火花放電が開始するまでの時間は2
分であった。その後、この印加ピーク電圧300■を保
持しながら、通電電流値が0になるまで定電圧電解をお
こなった。この定電圧電解処理時間は15分であった。
(Example 2) An electrolytic solution of 50 g/l of K2O.5102 was prepared, and using the same electrode as in Example 1, a current-carrying width body 1r of a pulse power source was used.
lB: ratio of 0.25"/10"l: set, lΔ
The voltage was adjusted to have a constant current density of /dm2 and was applied until spark discharge started. The peak voltage applied at this time was 300μ, and the time until spark discharge started was 2
It was a minute. Thereafter, while maintaining this applied peak voltage of 300 cm, constant voltage electrolysis was performed until the applied current value became 0. The constant voltage electrolytic treatment time was 15 minutes.

この結果、A1陽極上に膜厚が約10.8μmのセラミ
ックス被膜が得られた。このセラミックス層の気孔率は
15.1%であった。また、このセラミックス被膜を電
子顕微鏡により観察したところ、第4図の写真に示すよ
うに、粒径が2〜4μmのほぼ一様な組織を有している
ことが判明した。
As a result, a ceramic coating having a thickness of about 10.8 μm was obtained on the A1 anode. The porosity of this ceramic layer was 15.1%. Further, when this ceramic coating was observed using an electron microscope, it was found that it had a substantially uniform structure with a grain size of 2 to 4 μm, as shown in the photograph in FIG.

(実施例3) 実施例2と同様の電解液を調製し、同様の電極を用い、
パルス電源の通電巾と体電巾との比を1.0”/9”に
設定し、l A /dm2 の定電流密度となるように
電圧を調整し火花放電が開始するまで印加した。この時
の印加ピーク電圧は300■であり、火花放電が開始す
るまでの時間は3分であった。その後、この印加ピーク
電圧300■を保持しながら、通電電流値が0になるま
で定電圧電解をおこなった。この定電圧電解処理時間は
12分であった。この結果、層陽極上に膜厚が約10.
5μmのセラミックス被膜が得られた。このセラミック
ス層の気孔率は19.8%であった。また、このセラミ
ックス被膜を電子’;ln 6’&鏡により観察したと
ころ、第5図の写真に示すように、粒径が2〜5μmの
ほぼ一様な組織を有していることが判明した。
(Example 3) The same electrolyte solution as in Example 2 was prepared, and the same electrode was used.
The ratio of the conduction width of the pulsed power source to the body current width was set to 1.0''/9'', and the voltage was adjusted to have a constant current density of 1 A /dm2, and the voltage was applied until spark discharge started. The peak voltage applied at this time was 300 μ, and the time until spark discharge started was 3 minutes. Thereafter, while maintaining this applied peak voltage of 300 cm, constant voltage electrolysis was performed until the applied current value became 0. The constant voltage electrolytic treatment time was 12 minutes. As a result, the film thickness on the layer anode is approximately 10.
A ceramic coating of 5 μm was obtained. The porosity of this ceramic layer was 19.8%. Furthermore, when this ceramic coating was observed using an electron beam and a mirror, it was found that it had a nearly uniform structure with a grain size of 2 to 5 μm, as shown in the photograph in Figure 5. .

(比較例1) K2O・8102.100g/l及びに2C,047、
5g / Iを含む電解液を調製し、実施例1と同様の
電極を用い、パルス電源の通電巾と体電巾との比を0.
5″s/ 3”に設定し、0.5 A /dm2 の定
電流密度となるように電圧を調整し25分間火花放電処
理をおこなった。この結果、へ1陽極上に膜厚が約15
.8μmのセラミックス被膜が得られた。
(Comparative Example 1) K2O・8102.100g/l and 2C,047,
An electrolytic solution containing 5 g/I was prepared, and the same electrodes as in Example 1 were used, and the ratio of the current carrying width of the pulse power supply to the body electrical width was set to 0.
The spark discharge treatment was performed for 25 minutes by setting the voltage to 5''s/3'' and adjusting the voltage to give a constant current density of 0.5 A/dm2. As a result, the film thickness on the He1 anode is approximately 15
.. A ceramic coating of 8 μm was obtained.

このセラミックス層の気孔率は27.0%であった。The porosity of this ceramic layer was 27.0%.

また、このセラミックス被膜を電子顕微鏡により観察し
たところ、第6図の写真に示すように、1〜10μm程
度の粒径を有し、表面に近づく程粒径がおおきくなるよ
うな組織を有していることが判明した。
Furthermore, when this ceramic coating was observed using an electron microscope, it was found that it had a grain size of approximately 1 to 10 μm, and had a structure in which the grain size increased as it approached the surface, as shown in the photograph in Figure 6. It turned out that there was.

(比較例2) 実施例3と同じ成分及び濃度の電解液、電極、及びパル
ス電源を使用し、印加電流密度を1.OA/dm2 と
して定電流火花放電処理を5分間おこなった。この結果
、へ1陽極上に膜厚が約13.2μmのセラミックス被
膜が得られた。このセラミックス層の気孔率は19.6
%であった。また、このセラミ、クス被膜を電子顕微鏡
により観察したところ、第7図の写真に示すように、5
〜15μm程度の粒径を有し、表面に近づく程粒径がお
おきくなるような組織を有している。
(Comparative Example 2) Using an electrolytic solution, an electrode, and a pulse power source having the same components and concentrations as in Example 3, the applied current density was set to 1. Constant current spark discharge treatment was performed at OA/dm2 for 5 minutes. As a result, a ceramic coating having a thickness of about 13.2 μm was obtained on the He1 anode. The porosity of this ceramic layer is 19.6
%Met. Furthermore, when this ceramic and wax coating was observed using an electron microscope, as shown in the photograph in Figure 7, 5.
It has a particle size of about 15 μm, and has a structure in which the particle size increases as it approaches the surface.

(比較例3〉 実施例2及び実施例3と同じ成分及び濃度の電解液すな
わちに20・S+0250g/lの電解液を調製し、実
施例1と同様の電極を用い、パルス電源の通電巾と体電
巾との比を0.5”/3’″5に設定し、印加電流密度
を2. OA /dm2 として定電流火花放電処理を
10分間おこなった。この結果、へ1陽極上に膜厚が約
10.1μmのセラミックス被膜が得られた。このセラ
ミックス層の気孔率は15.0%であった。また、この
セラミックス被膜を電子顕微鏡により観察したところ、
第8図の写真に示すように、5〜15μm程度の粒径を
有し、表面に近づく程粒径がおおきくなるような組織を
有している。
(Comparative Example 3) An electrolytic solution with the same components and concentration as in Examples 2 and 3, that is, an electrolytic solution of 20.S+0250 g/l, was prepared, and using the same electrode as in Example 1, the current carrying width of the pulse power source and the Constant current spark discharge treatment was carried out for 10 minutes with the ratio to the body conductance width set to 0.5''/3'''5 and the applied current density to 2.OA/dm2.As a result, a film was formed on the anode. A ceramic coating with a thickness of approximately 10.1 μm was obtained.The porosity of this ceramic layer was 15.0%.Furthermore, when this ceramic coating was observed using an electron microscope,
As shown in the photograph of FIG. 8, it has a grain size of approximately 5 to 15 μm, and has a structure in which the grain size increases as it approaches the surface.

(比較例4) 比較例3と同じ成分及び濃度の電解液すなわちに20・
S、0,50g/lの電解液を調製し、実施例1と同様
の電極を用い、パルス電源の通電巾と体電巾との比を0
.5”/3”に設定し、印加電流密度を1. OA /
dm2 として定電流火花放電処理を7分間おこなった
。この結果、AI陽極上に膜厚が約10.9μmのセラ
ミックス被膜が得られた。
(Comparative Example 4) An electrolytic solution with the same components and concentration as Comparative Example 3, that is, 20.
An electrolytic solution of 0.50 g/l of S was prepared, and using the same electrode as in Example 1, the ratio of the current carrying width of the pulse power source to the body electrical width was set to 0.
.. 5"/3", and the applied current density was set to 1. OA/
Constant current spark discharge treatment was performed for 7 minutes at dm2. As a result, a ceramic coating with a thickness of about 10.9 μm was obtained on the AI anode.

このセラミックス層の気孔率は21.1%であった。The porosity of this ceramic layer was 21.1%.

また、このセラミックス被膜を電子顕微鏡により観察し
たところ、第9図の写真に示すように、5〜15μm程
度の粒径を有し、表面に近づく程粒径がおおきくなるよ
うな組織を有している。
Furthermore, when this ceramic coating was observed using an electron microscope, it was found that it had a structure in which the grain size was approximately 5 to 15 μm, and the grain size became larger as it approached the surface, as shown in the photograph in Figure 9. There is.

(延伸率及び耐屈曲性試験) 上記実施例及び比較例の金属−セラミックス複合材料に
つきJIS  H8684に従い、延伸率を測定すると
ともに、JIS  K5400にしたがって耐屈曲性試
験をおこなった。その結果を第1表に示す。これによれ
ば、本発明にしたがう複合材料は延伸率及び耐屈曲性の
いずれにおいても比較例のものに比し優れた特性を有し
ている。
(Stretching ratio and bending resistance test) The stretching ratio of the metal-ceramic composite materials of the above examples and comparative examples was measured according to JIS H8684, and a bending resistance test was conducted according to JIS K5400. The results are shown in Table 1. According to this, the composite material according to the present invention has superior properties compared to the comparative example in both stretching ratio and bending resistance.

第  1  表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、金属−セラミックス複合材料の延伸率と気孔
率との関係を示すグラフ、第2図は金属−セラミックス
複合材料の耐屈曲性と気孔率との関係を示すグラフ、第
3図は実施例1の金属−セラミックス複合材料のセラミ
ックス層の顕微鏡写真、第4図は実施例2の金属−セラ
ミックス複合材料のセラミックス層の顕微鏡写真、第5
図は実施例30金属−セラミックス複合材料のセラミッ
クス層の顕微鏡写真、第6図は比較例10金属−セラミ
ックス複合材料のセラミックス層の顕微鏡写真、第7図
は比較例20金属−セラミックス複合材料のセラミック
ス層の顕微鏡写真、第8図は比較例3の金属−セラミッ
クス複合材料のセラミックス層の顕微鏡写真、第9図は
比較例4の金属−セラミックス複合材料のセラミックス
層の顕微鏡写真である。 迭神井(A) 113図 第1A (X 1000) 第51補 第6図 (X1000) 第7図 (xlooO) 第8図 第j図
Figure 1 is a graph showing the relationship between elongation and porosity of metal-ceramic composite materials, Figure 2 is a graph showing the relationship between bending resistance and porosity of metal-ceramic composite materials, and Figure 3 is a graph showing the relationship between bending resistance and porosity of metal-ceramic composite materials. FIG. 4 is a micrograph of the ceramic layer of the metal-ceramic composite material of Example 1, and FIG. 5 is a micrograph of the ceramic layer of the metal-ceramic composite material of Example 2.
The figure shows a photomicrograph of the ceramic layer of the metal-ceramic composite material of Example 30, FIG. 6 shows the photomicrograph of the ceramic layer of the metal-ceramic composite material of Comparative Example 10, and FIG. 7 shows the ceramic layer of the metal-ceramic composite material of Comparative Example 20. FIG. 8 is a photomicrograph of the ceramic layer of the metal-ceramic composite material of Comparative Example 3, and FIG. 9 is a photomicrograph of the ceramic layer of the metal-ceramic composite material of Comparative Example 4. 113 Figure 1A (X 1000) 51st Supplementary Figure 6 (X1000) Figure 7 (xlooO) Figure 8 Figure j

Claims (2)

【特許請求の範囲】[Claims] (1)ケイ酸塩又は金属酸素酸塩を含む電解槽において
少なくとも表面部分が金属で構成された金属母材を陽極
火花放電によって金属母材表面にセラミックス層を電着
して成る可撓性金属−セラミック複合材料であって、前
記セラミックス層がほぼ一様に分布した実質的に5μm
以下の粒子から成り、かつ気孔率がほぼ20%以下であ
ることを特徴とする可撓性金属−セラミック複合材料。
(1) A flexible metal made by electrodepositing a ceramic layer on the surface of a metal base material, at least the surface of which is made of metal, by an anodic spark discharge in an electrolytic bath containing a silicate or metal oxysate. - a ceramic composite material, wherein the ceramic layer has a substantially uniform distribution of substantially 5 μm;
A flexible metal-ceramic composite material comprising the following particles and having a porosity of approximately 20% or less.
(2)ケイ酸塩又は金属酸素酸塩を含む電解槽を調製し
、少なくとも表面部分が金属で構成された金属母材で陽
極を形成し、定電流処理と定電圧処理との2段処理によ
って陽極火花放電を行い、前記金属母材表面にセラミッ
クス層を電着形成することを特徴とする可撓性金属−セ
ラミック複合材料の製造方法。
(2) Prepare an electrolytic cell containing silicate or metal oxysate, form an anode with a metal base material whose surface portion is made of metal, and perform two-stage treatment of constant current treatment and constant voltage treatment. 1. A method for producing a flexible metal-ceramic composite material, which comprises performing anodic spark discharge to electrodeposit a ceramic layer on the surface of the metal base material.
JP4009686A 1986-02-25 1986-02-25 Flexible metal-ceramic composite material and its production Pending JPS62199797A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4009686A JPS62199797A (en) 1986-02-25 1986-02-25 Flexible metal-ceramic composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4009686A JPS62199797A (en) 1986-02-25 1986-02-25 Flexible metal-ceramic composite material and its production

Publications (1)

Publication Number Publication Date
JPS62199797A true JPS62199797A (en) 1987-09-03

Family

ID=12571342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4009686A Pending JPS62199797A (en) 1986-02-25 1986-02-25 Flexible metal-ceramic composite material and its production

Country Status (1)

Country Link
JP (1) JPS62199797A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104514027A (en) * 2014-12-25 2015-04-15 广东省工业技术研究院(广州有色金属研究院) Electrolyte solution for preparing aluminum and aluminum alloy ceramic membrane through micro-arc oxidation technology
CN105951149A (en) * 2016-05-14 2016-09-21 西安科技大学 Alumina ceramic foil can be bent substantially without damage and preparation method thereof
CN106350848A (en) * 2016-09-19 2017-01-25 上海应用技术大学 Method for preparing nanometer material by depositing molybdate on carbon fiber surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883042A (en) * 1972-01-25 1973-11-06
JPS5817278A (en) * 1981-07-23 1983-02-01 三菱重工業株式会社 Method of repairing pipe
JPS5928636A (en) * 1982-07-17 1984-02-15 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Monitor device for pressure sensor
JPS5945722A (en) * 1982-09-09 1984-03-14 Matsushita Electric Ind Co Ltd Programmable logic array

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883042A (en) * 1972-01-25 1973-11-06
JPS5817278A (en) * 1981-07-23 1983-02-01 三菱重工業株式会社 Method of repairing pipe
JPS5928636A (en) * 1982-07-17 1984-02-15 ロ−ベルト・ボツシユ・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Monitor device for pressure sensor
JPS5945722A (en) * 1982-09-09 1984-03-14 Matsushita Electric Ind Co Ltd Programmable logic array

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104514027A (en) * 2014-12-25 2015-04-15 广东省工业技术研究院(广州有色金属研究院) Electrolyte solution for preparing aluminum and aluminum alloy ceramic membrane through micro-arc oxidation technology
CN105951149A (en) * 2016-05-14 2016-09-21 西安科技大学 Alumina ceramic foil can be bent substantially without damage and preparation method thereof
CN106350848A (en) * 2016-09-19 2017-01-25 上海应用技术大学 Method for preparing nanometer material by depositing molybdate on carbon fiber surface
CN106350848B (en) * 2016-09-19 2018-08-03 上海应用技术大学 A kind of preparation method of carbon fiber surface deposition molybdate nano material

Similar Documents

Publication Publication Date Title
US4818572A (en) Process for production of calcium phosphate compound-coated composite material
EP0034408B1 (en) A method of forming an anticorrosive coating on a metal electrode substrate
JPS6013074B2 (en) Electrolytic cathode and its manufacturing method
JPH02247393A (en) Electrolytic electrode with durability and its production
JP2757084B2 (en) Electrolytic method for stripping metal coatings from titanium-based metal supports
JPH02200790A (en) Electrode for electrolysis
KR100402919B1 (en) An electrochemical surface treating method for implants comprising metallic titanium or titanium alloys
JP2505560B2 (en) Electrode for electrolysis
JP3116490B2 (en) Manufacturing method of anode for oxygen generation
US6699379B1 (en) Method for reducing stress in nickel-based alloy plating
JPS62199797A (en) Flexible metal-ceramic composite material and its production
KR101304990B1 (en) Method for forming hydroxyapatite coating layer on titanium implant surface and titanium implant having coating layer formed by the same
JP2003534635A (en) Surface treatment of metal parts of electrochemical cells with improved adhesion and corrosion resistance
JP3422885B2 (en) Electrode substrate
CN110512249B (en) Preparation method of titanium carbonitride and hydroxyapatite composite coating
JPS5925985A (en) Low overvoltage cathode having high durability and its production
JP3431715B2 (en) Manufacturing method of spray-coated electrode with excellent durability
JPH05156480A (en) Production of oxygen generating anode
RU2777827C1 (en) Method for obtaining a structured porous coating on titanium and its alloys
JP2003293196A (en) Electrode for electrolysis and production method therefor
JPS5967380A (en) Cathode for generating hydrogen
JP2779953B2 (en) Method for forming ceramic film on aluminum substrate surface
JPH03277780A (en) Method for coating surface of aluminum substrate having ceramic coating film
JPH03253590A (en) Production of electrode for water electrolysis
JPH0313593A (en) Formation of ceramic coating film on surface of aluminum substrate