JPS62199765A - Material for high surface pressure structural parts - Google Patents

Material for high surface pressure structural parts

Info

Publication number
JPS62199765A
JPS62199765A JP4068686A JP4068686A JPS62199765A JP S62199765 A JPS62199765 A JP S62199765A JP 4068686 A JP4068686 A JP 4068686A JP 4068686 A JP4068686 A JP 4068686A JP S62199765 A JPS62199765 A JP S62199765A
Authority
JP
Japan
Prior art keywords
hardness
depth
structural parts
surface pressure
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4068686A
Other languages
Japanese (ja)
Inventor
Tetsuo Kato
哲男 加藤
Kunio Namiki
並木 邦夫
Kenji Isogawa
礒川 憲二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4068686A priority Critical patent/JPS62199765A/en
Publication of JPS62199765A publication Critical patent/JPS62199765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PURPOSE:To produce a material for high surface pressure structural parts having improved pitting resistance by successively subjecting a steel stock contg. specific ratios of C, Si, Mn, Al, and N to a carburization treatment, chemical vapor deposition treatment, hardening and tempering. CONSTITUTION:The steel contg., by weight %, 0.15-0.30% C, <=1.0% Si, <=1.5 Mn, <=0.1% Al, and <=0.03% Ni, contg., at need 1 or <=2 kinds among <=5.0% Ni, <=5.0% Cr, and <=0.8% Mo, further contg. 1 or >=2 kinds among <=0.5% V, <=0.5% Ti, <=0.5% Nb, and <=0.5% Zr and consisting of the balance Fe and inevitable impurities is used as the stock and is subjected to the carburization treatment. TiC or TiN is then deposited by evaporation thereon to form a hard layer and such steel stock is subjected to hardening and tempering so that the hardness at 0.05mm depth from the surface is >=700Hv and the depth of the effective hardened layer to provide 550Hv is >=0.50mm. The material for the machine structural parts for a largesized gear, etc., which exhibits the excellent pitting resistance under a high surface pressure is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は大型歯車のように高面圧下で転動して用いられ
る機械構造部品用の材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a material for mechanical structural parts that are used while rolling under high surface pressure, such as large gears.

(従来の技術及び問題点) 高面圧下で転動して用いられる機械構造部品のうちでも
、例えば、大型歯車のように200kgf/mm”以上
の如く特に高い面圧下で使用される部品は、耐ピツチン
グ性が優れていることが要求される。
(Prior art and problems) Among mechanical structural parts that are used by rolling under high surface pressure, for example, parts that are used under particularly high surface pressure such as large gears of 200 kgf/mm" or more, Excellent pitting resistance is required.

ピッチングは、歯車のように表面に辷り、すなわち、噛
み合う歯車の歯面の周速に差が存在する場合、剪断応力
のピークが表面に現出し、この剪断応力に起因する疲れ
現象によって表面にピット状の欠陥が生ずる現象であり
1面圧が高ければ高いほど、歯車の寿命向上にとって耐
ピツチング性の向上が望まれるものである。
Pitting occurs when a gear slides on its surface. In other words, when there is a difference in the peripheral speed of the tooth surfaces of meshing gears, a peak of shear stress appears on the surface, and the fatigue phenomenon caused by this shear stress causes pits to form on the surface. This is a phenomenon in which similar defects occur, and the higher the single surface pressure, the better the pitting resistance is desired to extend the life of the gear.

耐ピツチング性を向上させるには、鋼素材に表面硬化処
理を施すことによって表面硬さを高めることが必須であ
る。
In order to improve pitting resistance, it is essential to increase the surface hardness by subjecting the steel material to surface hardening treatment.

従来、そのための表面硬化処理としては、肌焼鋼をベー
スとしたガス浸炭処理が採用されているが、この方法で
は表面硬さが高々Hv700〜8oO程度しか得られな
いという問題があった。
Conventionally, as a surface hardening treatment for this purpose, a gas carburizing treatment based on case hardening steel has been adopted, but this method has had the problem that a surface hardness of only Hv 700 to 8 oO can be obtained at most.

そこで、飛躍的に表面硬さを高める表面処理としてTi
C,TiNなどの硬質層を化学的に蒸着する方法が試み
られている。しかし1通常の肌焼鋼に蒸着のみを行った
だけでは、表面の硬化層で表面硬さを高めることはでき
るものの、表面直下の強度が十分に得られず、疲れ強さ
の向上には寄与しない。
Therefore, Ti is used as a surface treatment to dramatically increase surface hardness.
Attempts have been made to chemically deposit a hard layer of C, TiN, or the like. However, if only vapor deposition is performed on ordinary case-hardened steel, although it is possible to increase the surface hardness with a hardened layer on the surface, sufficient strength just below the surface cannot be obtained, and it does not contribute to improving fatigue strength. do not.

(発明の目的) 本発明は、上記従来技術の欠点を解消し、特に200 
kic f / mm”以上の如く高い面圧下で使用さ
九ても優れた耐ピツチング性を発揮できる大型歯車等の
機械構造部品用材料を提供とすることを目的とするもの
である。
(Objective of the Invention) The present invention solves the drawbacks of the above-mentioned prior art, and in particular
The object of the present invention is to provide a material for mechanical structural parts such as large gears that can exhibit excellent pitting resistance even when used under high surface pressures such as kic f/mm'' or higher.

(発明の構成) 上記目的を達成するため1本発明者らは、まず飛躍的に
表面硬さを高め得る手法として、TiN、TiC,Al
202などの硬質粒子を化学的或いは物理的に鋼素材表
面に被覆することを試みたところ、蒸着によりいずれも
Hv2000〜400゜の表面硬さが得られた。
(Structure of the Invention) In order to achieve the above object, the present inventors first investigated TiN, TiC, Al as a method that can dramatically increase the surface hardness.
When attempts were made to chemically or physically coat the surface of steel materials with hard particles such as No. 202, surface hardness of Hv 2000 to 400° was obtained in all cases by vapor deposition.

しかし1表面硬さが従来よりも大幅に高められはするも
のの、歯車等の高面圧機械構造部品の場合、表面硬さの
みならず、適正な各部硬さと硬化深さが要求され、上記
の如く表層の硬さが飛躍的に高い場合には、各部と表層
との硬さの段差が可能な限りなだらかになる適正な硬化
深さを確保する必要があることから、更にそのための手
法を種々研究した結果、上記蒸着処理だけでは不十分で
あり、鋼素材の材質と蒸着処理前の浸炭処理並びに蒸着
処理後の熱処理との組合せが必要不可欠であることが判
明した。
However, although the surface hardness is significantly higher than before, in the case of high surface pressure mechanical structural parts such as gears, not only surface hardness but also appropriate hardness and hardening depth of each part are required. When the hardness of the surface layer is dramatically high, as in the case of the hardness of each part, it is necessary to ensure an appropriate hardening depth so that the difference in hardness between each part and the surface layer is as smooth as possible. As a result of research, it was found that the above-mentioned vapor deposition treatment alone is insufficient, and that a combination of the material of the steel material, carburizing treatment before the vapor deposition treatment, and heat treatment after the vapor deposition treatment is essential.

すなわち1本発明に係る高面圧機械構造部品用材料は、
 C: 0.15〜0.30%、Si≦1.0%、Mn
≦1.5%、Al≦0.1%及びN≦0.03%を含み
、必要に応じて、Ni≦5.0%、Cr≦5.0%及び
Mo≦1.80%のうちの1種又は2種以上或いは更に
V≦1.5%、Ti≦1.5%。
In other words, the material for high surface pressure mechanical structural parts according to the present invention is:
C: 0.15-0.30%, Si≦1.0%, Mn
≦1.5%, Al≦0.1% and N≦0.03%, and if necessary, Ni≦5.0%, Cr≦5.0% and Mo≦1.80%. One type or two or more types, or further V≦1.5%, Ti≦1.5%.

Nb≦1.5%及びZr≦1.5%のうちの1種又は2
種以上を含み、残部がFe及び不可避的不純物からなる
鋼を素材とし、該素材を浸炭後、TiC1TiNなどを
蒸着した硬質層を有し、焼入れ・焼もどしを施した後の
表面から0.05mm深さの硬さがHv700以上で、
かつ、Hv550が得られる有効硬化層深さが0.50
mm以上であることを特徴とするものである。
One or two of Nb≦1.5% and Zr≦1.5%
After carburizing the material, it has a hard layer deposited with TiC1TiN, etc., and is 0.05 mm from the surface after quenching and tempering. Hardness at depth is Hv700 or more,
And, the effective hardened layer depth to obtain Hv550 is 0.50
It is characterized by being larger than mm.

以下に本発明を実施例に基づいて詳細に説明する。The present invention will be explained in detail below based on examples.

まず、本発明における鋼素材の成分限定理由を以下に示
す。
First, the reasons for limiting the components of the steel material in the present invention are shown below.

C: Cは浸炭処理及び焼入れ・焼もどしによって所定の各部
強度を得るのに必要な元素であり、そのためには0.1
5%以上含有せしめる。しかし、多すぎると各部強度が
高くなりすぎ、疲れ強さ、耐衝撃性を共に劣化させるの
で、上限を0.30%とする。
C: C is an element necessary to obtain the specified strength of each part by carburizing, quenching and tempering, and for that purpose 0.1
Contain 5% or more. However, if the content is too large, the strength of each part becomes too high and both fatigue strength and impact resistance deteriorate, so the upper limit is set at 0.30%.

Si: Siは脱酸剤として必要な元素であるが、多すぎると鍛
造性を阻害するので、1.0%以下で添加する。
Si: Si is a necessary element as a deoxidizing agent, but if it is too large, it impedes forgeability, so it is added in an amount of 1.0% or less.

Mn: Mnは焼入れ性を向上させるために添加するが、多すぎ
ると鍛造性を阻害するので、1.0%以下で添加する。
Mn: Mn is added to improve hardenability, but since too much Mn inhibits forgeability, it is added in an amount of 1.0% or less.

Al、N: Al及びNはAlNを形成し、結晶粒の粗大化を防止す
るのに有効な元素であり、そのためには各々Al≦0.
1%、N:i;0.03%の範囲で足りる。
Al, N: Al and N are effective elements for forming AlN and preventing coarsening of crystal grains, and for this purpose, each of Al≦0.
A range of 1%, N:i; 0.03% is sufficient.

Ni、Cr、Mo: Ni、Cr及びMoはいずれも焼入れ性を向上させるの
に効果がある元素であり、必要に応じて適量を添加する
ことができる。添加するときは、Ni≦5.0%、Cr
≦5.0%、Mo≦1.80%の範囲でそれらのうちの
1種又は2種以上を添加する。各元素ともそれより多量
に添加しても上記効果が飽和する。なお、Ni及びMo
は焼入れ性の向上と共に浸炭層の靭性をも向上させる効
果がある。
Ni, Cr, Mo: Ni, Cr, and Mo are all elements that are effective in improving hardenability, and can be added in appropriate amounts as necessary. When adding, Ni≦5.0%, Cr
One or more of them are added within the range of Mo≦5.0% and Mo≦1.80%. Even if each element is added in a larger amount, the above effects are saturated. In addition, Ni and Mo
has the effect of improving the hardenability as well as the toughness of the carburized layer.

V、  Ti、  Nb、 Zr: V、Ti、Nb及びZrはいずれも炭化物或いは炭窒化
物を形成して結晶粒の微細化に寄与し、耐衝撃性を向上
させる元素であり、必要に応じてそれらの1種又は2種
以上を適量添加することができる。添加するときは各元
素とも0.5%を上限とし、0.5%を超えて添加して
も上記効果が飽和する。
V, Ti, Nb, Zr: V, Ti, Nb, and Zr are all elements that form carbides or carbonitrides, contribute to grain refinement, and improve impact resistance. Appropriate amounts of one or more of them can be added. When adding each element, the upper limit is 0.5%, and even if added in excess of 0.5%, the above effects will be saturated.

本発明では、上記成分組成を有する鋼を素材とし、これ
にTiN、TiC,Al、○、などの10μm前後の硬
質粒子を化学的蒸着法(CVD)によって被覆する必要
がある。これにより、鋼索材の表層は表面硬さがHv2
000〜4000程度もの極めて硬い硬質層とすること
ができる。勿論。
In the present invention, steel having the above-mentioned composition is used as a material, and it is necessary to coat it with hard particles of about 10 μm such as TiN, TiC, Al, ○, etc. by chemical vapor deposition (CVD). As a result, the surface layer of the steel cable has a surface hardness of Hv2.
The hard layer can be made extremely hard with a hardness of about 000 to 4000. Of course.

化学的蒸着法(CVD)に代えて物理的蒸着法(PVD
)を採用してもよく、いずれの蒸着法もその処理条件は
特に制限されない。
Physical vapor deposition (PVD) replaces chemical vapor deposition (CVD).
) may be employed, and the processing conditions for either vapor deposition method are not particularly limited.

但し、上記蒸着法によって鋼素材の表層は極めて硬くな
るものの、各部との硬さの違いが極めて大きい状態とな
り、高面圧構造部品に要求される耐ピツチング性は向上
しないため、本発明では、上記蒸着法を施す前に浸炭処
理を施し、かつ、蒸着後に焼入れ・焼もどしを実施する
ようにしたものである。これにより、蒸着層(硬質層)
の下部の硬さ分布がなだらかに変化する好ましい状態に
なり1表層の硬質層直下に十分な圧縮残留応力が残る応
力分布にすることができ、耐ピツチング性が向上する。
However, although the surface layer of the steel material becomes extremely hard by the above vapor deposition method, the difference in hardness between each part is extremely large, and the pitting resistance required for high surface pressure structural parts does not improve. Carburizing is performed before the above vapor deposition method, and quenching and tempering are performed after vapor deposition. As a result, the vapor deposited layer (hard layer)
The hardness distribution in the lower part of the layer changes smoothly, making it possible to achieve a stress distribution in which sufficient compressive residual stress remains directly under the first hard layer, thereby improving pitting resistance.

すなわち、第1図に示すように1本発明においては、上
記硬さ分布を得るために、まず浸炭処理を行って同図(
a)の如きC分布を確保しておき、次いで蒸着法で鋼素
材の表層に硬質層を形成する。
That is, as shown in Fig. 1, in the present invention, in order to obtain the above-mentioned hardness distribution, carburizing treatment is first performed to obtain the hardness distribution shown in Fig. 1.
A carbon distribution as shown in a) is secured, and then a hard layer is formed on the surface layer of the steel material by vapor deposition.

この段階では、硬さ分布は同図(b)に示す如く表層の
硬質層の硬さと各部の硬さとに大きな違いがある分布で
あるが1次に実施する焼入れ・焼もどしにより、浸炭処
理で得たC分布に基づいて同図(c)に示す如く両者の
硬さがなだらかにつらなる硬さ分布を得ることが可能に
なる。すなねち1表面から0.05mm深さの硬さがH
v700以上で、かつ、I(v550が得られる有効硬
化層深さが0.50mm以上の硬さ分布が得られ、耐ピ
ツチング性を飛躍的に向上させることができるのである
At this stage, the hardness distribution is as shown in Figure (b), where there is a large difference between the hardness of the hard surface layer and the hardness of each part. Based on the obtained C distribution, it is possible to obtain a hardness distribution in which the hardnesses of both the hardnesses are gently curved, as shown in FIG. 3(c). The hardness at a depth of 0.05 mm from the surface of sag 1 is H
It is possible to obtain a hardness distribution in which the effective hardened layer depth is 0.50 mm or more when v700 or more and I (v550) is obtained, and the pitting resistance can be dramatically improved.

その際、浸炭並びに焼入れ・焼もどしの各処理条件とも
特に制限はされず、焼入れ方法は通常の焼入れ手段でも
或いは高周波焼入れやレーザー又はプラズマ焼入れなど
いわゆる高密度エネルギー焼入れでもよい。
At this time, there are no particular restrictions on the treatment conditions for carburizing, quenching, and tempering, and the quenching method may be a normal quenching method, or so-called high-density energy quenching such as induction quenching, laser quenching, or plasma quenching.

なお、C含有量を高めておき、浸炭処理を行わずに焼入
れ・焼もどしによっても成る程度漸減する硬さ分布は得
られるものの、各部強度が高すぎることになるので、本
発明では、C量を最低限必要とされる各部強度を確保す
るに十分な程度に抑え、浸炭処理にて必要な深さにのみ
C量を多くするように図ったものである。したがって、
浸炭処理は焼入れ前の蒸着後に行うことも考えられるが
Although it is possible to obtain a hardness distribution that gradually decreases by increasing the C content and quenching and tempering without carburizing, the strength of each part will be too high. The aim is to suppress this to a level sufficient to ensure the minimum required strength of each part, and to increase the amount of C only to the required depth in the carburizing process. therefore,
It is also conceivable that carburizing treatment may be performed after vapor deposition before quenching.

蒸着法で表層に硬質層を形成する前に実施した方が浸炭
作用が効果的である。
The carburizing effect is more effective if it is carried out before forming a hard layer on the surface layer by vapor deposition.

(実施例) 第1表に示す化学成分の鋼素材を溶製し、φ30mmに
鋳造後、焼ならしを施してローラーピッチング試験片を
加工した。これに第2表に示す条件で浸炭処理を、次い
で化学的蒸着処理を施して同表に示す硬質層を形成し、
その後、800〜850℃から焼入れだ後、180℃で
焼もどしを行い。
(Example) A steel material having the chemical composition shown in Table 1 was melted, cast to a diameter of 30 mm, and then normalized to form a roller pitting test piece. This was subjected to carburizing treatment under the conditions shown in Table 2, and then chemical vapor deposition treatment to form a hard layer shown in the same table,
Then, after hardening from 800 to 850°C, tempering is performed at 180°C.

ローラーピッチング試験を実施した。A roller pitching test was conducted.

また、同様の手順でシャルピー衝撃試験片(ノツチ形状
: 10mmR,2mm深さ)を準備し、上記の複合処
理を実施した後、衝撃試験に供した。
In addition, a Charpy impact test piece (notch shape: 10 mm R, 2 mm depth) was prepared in the same manner, subjected to the above composite treatment, and then subjected to an impact test.

なお、ローラーピッチング試験としては、第2図に示す
形状、寸法(mm)の試験片を第3図に示す如く小ロー
ラー1とし、これに対して回転している大ローラ−2に
接触させ、面圧300 kgf/ms+2(同図中、太
矢印)、すべり率が一40%(すなわち、大ローラーに
対しての周速の比)の試験条件で小ローラー(試験片)
1を回転させ、B、。寿命(回)を調べた。
In addition, as a roller pitting test, a test piece having the shape and dimensions (mm) shown in FIG. 2 was brought into contact with a small roller 1 as shown in FIG. The small roller (test piece) was tested under the test conditions of a surface pressure of 300 kgf/ms+2 (thick arrow in the same figure) and a slip ratio of 140% (i.e., the ratio of the circumferential speed to the large roller).
Rotate 1, B,. The lifespan (times) was investigated.

以上の各試験の結果を第3表に示す。なお、硬化表層の
硬さ及び各部の硬さ、並びに表面から0.05mm深さ
の硬さと有効硬化層深さくJISに準拠してHv550
が得られる深さ)を調べ、その結果を第2表に併記した
The results of each of the above tests are shown in Table 3. In addition, the hardness of the hardened surface layer, the hardness of each part, the hardness at a depth of 0.05 mm from the surface and the effective hardened layer depth are Hv550 according to JIS.
The results are also listed in Table 2.

【以下余白1 第2表及び第3表かられかるように、従来のように単に
浸炭処理のみを施した比較例Nα6.12はいずれも耐
ピツチング性が劣っており、また化学的蒸着処理を更に
施しただけの比較例Nα7.13は、靭性がよくても、
硬さ分布が好ましくないため、耐ピツチング性は却って
劣化している。
[Margin below 1] As can be seen from Tables 2 and 3, all of the comparative examples Nα6.12 that were simply carburized as in the past had poor pitting resistance, and that they were not subjected to chemical vapor deposition treatment. Comparative example Nα7.13, which was only subjected to further treatment, had good toughness, but
Since the hardness distribution is unfavorable, the pitting resistance is rather deteriorated.

これに対し1本発明(1)、(2)は耐ピツチング性が
著しく向上しており、特に本発明(2)は、材料の強度
化を図ったにも拘らず、細粒化によって靭性の問題を克
服したので、衝撃値も向上している。
On the other hand, the present inventions (1) and (2) have significantly improved pitting resistance, and in particular, the present invention (2) has poor toughness due to grain refinement, even though the material is strengthened. Since the problem has been overcome, the impact value has also improved.

(発明の効果) 以上詳述したように、本発明によれば1表面硬さを飛躇
的に高めることができ、しかも、適正な心部強度を具備
しつつ好ましい硬さ分布及び応力分布が得られるので、
耐ピツチング性を著しく向上することが可能である。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to increase the surface hardness in an instant, and moreover, it is possible to achieve a preferable hardness distribution and stress distribution while maintaining an appropriate core strength. Because you can get
It is possible to significantly improve pitting resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る高面圧構造部品用材料の製造過程
における硬化層の硬さ分布の推移等を説明する図で、(
a)は浸炭後のC量分布、(b)は蒸着処理後の硬さ分
布、(c)は焼入れ・焼もどし後の硬さ分布を示し、 第2図及び第3図は各々ローラーピッチング試験片の形
状、寸法(mm)と試験要領を示す図である。
FIG. 1 is a diagram illustrating changes in the hardness distribution of the hardened layer during the manufacturing process of the material for high surface pressure structural parts according to the present invention.
a) shows the C content distribution after carburizing, (b) shows the hardness distribution after vapor deposition treatment, (c) shows the hardness distribution after quenching and tempering, and Figures 2 and 3 show the roller pitting test, respectively. It is a figure which shows the shape of a piece, a dimension (mm), and a test procedure.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、C:0.15〜0.3
0%、Si≦1.0%、Mn≦1.5%、Al≦0.1
%及びN≦0.03%を含み、残部がFe及び不可避的
不純物からなる鋼を素材とし、該素材を浸炭後、TiC
、TiNなどを蒸着した硬質層を有し、焼入れ・焼もど
しを施した後の表面から0.05mm深さの硬さがHv
700以上で、かつ、Hv550が得られる有効硬化層
深さが0.50mm以上であることを特徴とする高面圧
構造部品用材料。
(1) In weight% (the same applies hereinafter), C: 0.15 to 0.3
0%, Si≦1.0%, Mn≦1.5%, Al≦0.1
% and N≦0.03%, with the balance consisting of Fe and unavoidable impurities, and after carburizing the material, TiC
, has a hard layer deposited with TiN, etc., and has a hardness of Hv at a depth of 0.05 mm from the surface after quenching and tempering.
700 or more, and an effective hardened layer depth at which Hv550 is obtained is 0.50 mm or more.
(2)C:0.15〜0.30%、Si≦1.0%、M
n≦1.5%、Al≦0.1%及びN≦0.03%を含
み、更にNi≦5.0%、Cr≦5.0%及びMo≦0
.80%のうちの1種又は2種以上を含み、残部がFe
及び不可避的不純物からなる鋼を素材とし、該素材を浸
炭後、TiC、TiNなどを蒸着した硬質層を有し、焼
入れ・焼もどしを施した後の表面から0.05mm深さ
の硬さがHv700以上で、かつ、Hv550が得られ
る有効硬化層深さが0.50mm以上であることを特徴
とする高面圧構造部品用材料。
(2) C: 0.15-0.30%, Si≦1.0%, M
n≦1.5%, Al≦0.1% and N≦0.03%, furthermore Ni≦5.0%, Cr≦5.0% and Mo≦0.
.. Contains one or more of 80%, and the remainder is Fe.
After carburizing the material, it has a hard layer deposited with TiC, TiN, etc., and after quenching and tempering, the hardness reaches a depth of 0.05 mm from the surface. A material for high surface pressure structural parts, characterized in that the effective hardened layer depth at which Hv 700 or more and Hv 550 is obtained is 0.50 mm or more.
(3)C:0.15〜0.30%、Si≦1.0%、M
n≦1.50%、Al≦0.1%及びN≦0.03%を
含み、更にNi≦5.0%、Cr≦5.0%及びMo≦
0.80%のうちの1種又は2種以上と、V≦0.5%
、Ti≦0.5%、Nb≦0.5%及びZr≦0.5%
のうちの1種又は2種以上を含み、残部がFe及び不可
避的不純物からなる鋼を素材とし、該素材を浸炭後、T
iC、TiNなどを蒸着した硬質層を有し、焼入れ・焼
もどしを施した後の表面から0.05mm深さの硬さが
Hv700以上で、かつ、Hv550が得られる有効硬
化層深さが0.50mm以上であることを特徴とする高
面圧構造部品用材料。
(3) C: 0.15-0.30%, Si≦1.0%, M
n≦1.50%, Al≦0.1% and N≦0.03%, furthermore Ni≦5.0%, Cr≦5.0% and Mo≦
One or more of 0.80% and V≦0.5%
, Ti≦0.5%, Nb≦0.5% and Zr≦0.5%
A steel containing one or more of the following, the remainder being Fe and unavoidable impurities, is used as a material, and after carburizing the material, T
It has a hard layer deposited with iC, TiN, etc., and the hardness at a depth of 0.05 mm from the surface after quenching and tempering is Hv700 or more, and the effective hardened layer depth to obtain Hv550 is 0. A material for high surface pressure structural parts, characterized by a thickness of 50 mm or more.
JP4068686A 1986-02-26 1986-02-26 Material for high surface pressure structural parts Pending JPS62199765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4068686A JPS62199765A (en) 1986-02-26 1986-02-26 Material for high surface pressure structural parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4068686A JPS62199765A (en) 1986-02-26 1986-02-26 Material for high surface pressure structural parts

Publications (1)

Publication Number Publication Date
JPS62199765A true JPS62199765A (en) 1987-09-03

Family

ID=12587427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4068686A Pending JPS62199765A (en) 1986-02-26 1986-02-26 Material for high surface pressure structural parts

Country Status (1)

Country Link
JP (1) JPS62199765A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115542A (en) * 1989-09-27 1991-05-16 Aichi Steel Works Ltd High strength case hardening steel
JP2002286115A (en) * 2001-03-23 2002-10-03 Nissan Motor Co Ltd Highly strength gear and its producing method
JP2006312767A (en) * 2005-05-09 2006-11-16 Ayabo:Kk Surface treatment method for imparting abrasion resistance and oxidation resistance to steel member
JP2021006659A (en) * 2019-06-27 2021-01-21 Jfeスチール株式会社 Steel component and method for producing the same
CN113388783A (en) * 2021-06-24 2021-09-14 马鞍山钢铁股份有限公司 Nb, V and Ti microalloyed gear steel and preparation method, heat treatment method, carburization method and carburized gear steel thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115542A (en) * 1989-09-27 1991-05-16 Aichi Steel Works Ltd High strength case hardening steel
JP2002286115A (en) * 2001-03-23 2002-10-03 Nissan Motor Co Ltd Highly strength gear and its producing method
JP2006312767A (en) * 2005-05-09 2006-11-16 Ayabo:Kk Surface treatment method for imparting abrasion resistance and oxidation resistance to steel member
JP2021006659A (en) * 2019-06-27 2021-01-21 Jfeスチール株式会社 Steel component and method for producing the same
CN113388783A (en) * 2021-06-24 2021-09-14 马鞍山钢铁股份有限公司 Nb, V and Ti microalloyed gear steel and preparation method, heat treatment method, carburization method and carburized gear steel thereof
CN113388783B (en) * 2021-06-24 2022-04-29 马鞍山钢铁股份有限公司 Nb, V and Ti microalloyed gear steel and preparation method, heat treatment method, carburization method and carburized gear steel thereof

Similar Documents

Publication Publication Date Title
JP2007077411A (en) Machine structural component having excellent fatigue strength and wear property, and method for producing the same
JP3033349B2 (en) Carburized steel parts with excellent pitting resistance
JPS62199765A (en) Material for high surface pressure structural parts
JPH08120438A (en) Production of parts for machine structure
JP3273634B2 (en) Steel material for carburizing and machine structural parts for machine structural parts excellent in pitting resistance and method for producing the same
JPH07188895A (en) Manufacture of parts for machine structure use
JPS5916949A (en) Soft-nitriding steel
JP7264117B2 (en) Steel part and its manufacturing method
JP2005325398A (en) High-strength gear and manufacturing method therefor
JPH04201128A (en) Manufacture of high bearing part
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JP3340016B2 (en) Structural steel for soft nitriding
JP2839481B2 (en) Heat-treated steel part and method of manufacturing the same
JPS5916948A (en) Soft-nitriding steel
JPH04160135A (en) Steel for carburization
JP7310723B2 (en) Steel part and its manufacturing method
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JPH06346142A (en) Production of machine structural parts excellent in bearing fatigue strength
JPS61104065A (en) Carburized part
JPS62188784A (en) Material for high-surface pressure structural parts
JPH05279794A (en) Soft-nitriding steel
JPS5916950A (en) Soft-nitriding steel
JPH108199A (en) Case hardening steel excellent in carburizing hardenability
JP2689809B2 (en) Steel for soft nitriding
JPH0578782A (en) Rolling bearing