JPS62199737A - Vacuum arc melting method - Google Patents

Vacuum arc melting method

Info

Publication number
JPS62199737A
JPS62199737A JP3937886A JP3937886A JPS62199737A JP S62199737 A JPS62199737 A JP S62199737A JP 3937886 A JP3937886 A JP 3937886A JP 3937886 A JP3937886 A JP 3937886A JP S62199737 A JPS62199737 A JP S62199737A
Authority
JP
Japan
Prior art keywords
cooling water
ingot
pressure
temperature
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3937886A
Other languages
Japanese (ja)
Inventor
Akihiro Yamanaka
章裕 山中
Hiroyuki Ichihashi
市橋 弘行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3937886A priority Critical patent/JPS62199737A/en
Publication of JPS62199737A publication Critical patent/JPS62199737A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce an ingot having excellent surface quality and internal quality by subjecting Ti, Zr, alloy essentially consisting thereof, etc., to vacuum arc melting while adequately pressurizing and heating the cooling water in a copper crucible. CONSTITUTION:An arc is generated between an electrode 3 consisting of Ti, Zr or essentially consisting thereof and an ingot 4 in the water cooled copper crucible 2 to melt the electrode 3 and the dropping molten metal is laminated and solidified to produce the ingot 4 in a vacuum arc melting furnace 1 in which a high vacuum is maintained. The temp. of the cooling water flowing out of a cooling water outlet 7 of a cooling water jacket 5 of the water-cooled copper crucible 2 is detected by a detector 8 and the temp. of the fed water in a cooling water inlet 6 is controlled to >=40 deg.C by a cooling water temp. controller 9. The pressure of the cooling water is detected by a pressure detector 11 is parallel with such control and a pressure control valve 12 in the outlet of a feed water pump 10 is controlled to set the pressure of the cooling water to >=3.0kgf/cm<2> according to the set temp. of the above-mentioned cooling water.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は真空下で金属を溶解する方法に係り、特に真
空アーク炉で表面性状のすぐれた鋳塊を得る真空アーク
溶解法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for melting metal under vacuum, and more particularly to a vacuum arc melting method for obtaining an ingot with excellent surface quality in a vacuum arc furnace.

従来技術とその問題点 真空下で金属を溶解する方法の一つに真空アーク溶解法
(VAR法)がある。このVAR法は高真空下で電極と
水冷銅るつぼ内溶融金属間のアークにより電極を溶解し
、滴下した溶融金属を積層凝固させる方法であり、チタ
ンのジルコニウム、またはこれらを主成分とする合金等
、高度の品質の信頼性が要求される材料の溶製lこ適用
されている。
Prior art and its problems One of the methods for melting metal under vacuum is the vacuum arc melting method (VAR method). This VAR method is a method in which the electrode is melted by an arc between the electrode and the molten metal in a water-cooled copper crucible under high vacuum, and the dropped molten metal is layered and solidified. It is applied in the melting process of materials that require a high degree of quality reliability.

このVAR法により溶製された金属の鋳塊肌の良否は、
鋳塊トップ部に形成されるスプラッシュのシェルがアー
クまたは溶湯によってどの程度再溶解されるかで決定さ
れる。一般にスプラッシュのシェルの水冷銅るつぼ壁に
接する面は凹凸があり粗く緻密でない。スプラッシュの
シェルが完全に再溶解されないとこの面が鋳塊の表面に
残り品質の悪い鋳塊肌となる。
The quality of the ingot skin of metal melted by this VAR method is as follows:
It is determined by the extent to which the splash shell formed on the top of the ingot is remelted by the arc or molten metal. Generally, the surface of the splash shell in contact with the wall of the water-cooled copper crucible is uneven, rough, and not dense. If the splash shell is not completely remelted, this surface remains on the surface of the ingot, resulting in a poor quality ingot skin.

この真空アーク溶解における鋳塊品質すなわち表面性状
を向上させる方法としては従来、高電力による溶解が採
用されている。すなわち、高電力で溶解することによっ
て溶湯およびアーク過熱を大きくしてスプラッシュを再
溶解する方法である。
Conventionally, melting using high electric power has been adopted as a method for improving the quality of the ingot, that is, the surface quality in vacuum arc melting. That is, this is a method of remelting the splash by increasing the molten metal and arc superheating by melting with high power.

しかしこの方法では、鋳塊肌の向上に限界があり、また
一般的に高電力で溶解を行なった場合、ポロシティやマ
クロ偏析等の発生率が高くなり鋳塊内質の低下を招く。
However, with this method, there is a limit to the improvement of the ingot surface, and in general, when melting is performed at high power, the incidence of porosity, macro segregation, etc. increases, leading to a decrease in the internal quality of the ingot.

一方、溶解末期にホットトップを行なう場合は電力を低
下させなければならないため、この高電力溶解を採用す
ることはできなくなる。
On the other hand, when performing hot top at the final stage of melting, the electric power must be lowered, making it impossible to employ this high-power melting.

発  明  の  目  的 この発明は従来の前記問題を屏決するためになされたも
ので、溶解炉の冷却条件を適正に制御するこきによって
表面品質の良好な鋳塊を得ることができる真空アーク溶
解法を提案することを目的とするものである。
Purpose of the Invention This invention was made to resolve the above-mentioned conventional problems, and it provides a vacuum arc melting method that allows ingots with good surface quality to be obtained by appropriately controlling the cooling conditions of the melting furnace. The purpose is to propose the following.

発  明  の  構  成 この発明に係る真空アーク溶解法は、チタン。Structure of invention The vacuum arc melting method according to this invention is applicable to titanium.

ジルコニウム、またはこれらを主成分とする合金を真空
アーク炉で溶解するに際し、水冷銅るつぼの冷却水の圧
力および温度をそれぞれ3.0 ks+ f /cd、
40℃以上に調節することを特徴とするものである。
When melting zirconium or an alloy mainly composed of zirconium in a vacuum arc furnace, the pressure and temperature of the cooling water in the water-cooled copper crucible are set to 3.0 ks+f/cd, respectively.
It is characterized by adjusting the temperature to 40°C or higher.

以下、この発明方法について詳剖に説明する。The method of this invention will be explained in detail below.

従来のVAR溶解装置に匂いて、水冷銅るつぼの冷却水
は通常、クーリングタワー等により可及的に冷却された
状態で通水されるが、この発明ではこの銅るつぼ入側冷
却水の温度を40℃以上に高めるとともに、水圧を3 
hf/cd以上に調節する。
Unlike conventional VAR melting equipment, the cooling water of the water-cooled copper crucible is normally passed through a cooling tower or the like in a state as cool as possible, but in this invention, the temperature of the cooling water on the inlet side of the copper crucible is set to 40°C. At the same time as increasing the water pressure to 3℃ or higher,
Adjust to hf/cd or higher.

ここで、入側冷却水の温度を40℃以上に限定したのは
、この温度がチタン、ジルコニウム、またはこれらを主
成分とする合金の鋳塊のスプラッシュのシェルを緩冷却
によって完全に再溶解できる最低の温度であるためであ
る。また、水圧を3kff/cd以上とした理由は、冷
却水沸点を約130℃以上に保ち、40℃以上の冷却水
の通水においても銅るつぼ内壁面が損傷に敗らないよう
にするためである。
Here, the temperature of the inlet cooling water was limited to 40°C or higher, because this temperature allows the splash shell of titanium, zirconium, or alloys mainly composed of these to be completely remelted by slow cooling. This is because it is the lowest temperature. In addition, the reason why the water pressure was set at 3 kff/cd or higher was to maintain the boiling point of the cooling water at approximately 130°C or higher and to prevent the inner wall surface of the copper crucible from being damaged even when cooling water of 40°C or higher is passed through. be.

第2図および第3図はそれぞれ純Ti、純ZrのvAR
溶解における冷却水入側温度と鋳塊表面手入れ歩留りの
関係を示す。図中の縦線は各条件によって得られる歩留
りの最高〜最低値の幅を示している。すなわち、同一の
銅るつぼ冷却水の温度においては投入電力の大小によっ
ても歩留りは変化し、投入電力が大きい程高い歩留りが
得られる。
Figures 2 and 3 show the vAR of pure Ti and pure Zr, respectively.
The relationship between the cooling water inlet temperature during melting and the ingot surface care yield is shown. The vertical lines in the figure indicate the range from the highest to lowest yield values obtained under each condition. That is, at the same copper crucible cooling water temperature, the yield changes depending on the amount of input power, and the higher the input power, the higher the yield.

しかし、第2図に示す純Tiの場合は40℃以下の冷却
水温度では最高でも93%程度の歩留りとなっているの
に対し、冷却水入側温度を40℃以上に設定すると、各
るつぼ径において5〜20%の歩留りの向上が見られる
。これは、入側の冷却水温度を高く設定することによっ
て鋳塊の表面性状が′向上した結果によるものである。
However, in the case of pure Ti shown in Figure 2, when the cooling water temperature is 40°C or lower, the yield is at most about 93%, but when the cooling water inlet temperature is set at 40°C or higher, each crucible A yield improvement of 5 to 20% is seen in the diameter. This is due to the fact that the surface quality of the ingot was improved by setting the cooling water temperature on the inlet side high.

また、第3図に示す純Zrにおいては、冷却水温度が4
0℃となっても歩留りの向上はさほど大きくはないが、
入側冷却水温度を70℃以上に設定すると著しく歩留り
が向上することがわかる。
In addition, in the case of pure Zr shown in Fig. 3, the cooling water temperature is 4
Although the improvement in yield is not that great even at 0°C,
It can be seen that the yield is significantly improved when the inlet cooling water temperature is set to 70° C. or higher.

このように、純Ti、純zrの例からも、表面品質の良
好な鋳塊を得るためには、冷却水の入側通水温度を40
℃以上に設定することが重要である。
In this way, from the examples of pure Ti and pure ZR, in order to obtain an ingot with good surface quality, the inlet water flow temperature of the cooling water should be set at 40°C.
It is important to set the temperature above ℃.

また、第4図は前記第2図および第3図と同様に350
8’〜750Hφの銅るつぼを使用して純Ti、純Zr
を真空アーク溶解した時の冷却水入側温度と冷却水圧力
の程度による鋼るつぼの損傷および鋳塊への銅付着の有
無を調査した結果を示す。この第4図から明らかなよう
に、冷却水の入側温度を高くすると、冷却水の圧力が低
いと銅るつぼの損傷および鋳塊への銅付着が司っている
。これは、冷却水温度が高くなると銅るつぼの冷却水側
壁面が容易に冷却水の沸点に1奉じ、壁面の伝熱が悪く
なって銅るつぼが局所的に高温になるためであると考え
られる。しかし、冷却水の圧力を高く保つことにより沸
点が高くなり、銅るつぼの冷却水は容易に沸点に達しな
くなるとともに、仮に沸点に達しても壁面での沸点から
の過熱度は小さくてすむので、冷却水の圧力を高くすれ
ば銅るつぼの損傷および鋳塊への銅付着の機会は少なく
なる。入側冷却水温度が40’C以上において、銅るつ
ぼの損傷および鋳塊への銅付着を起こさないようにする
ためには、第4図より少なくとも3kff/mの冷却水
圧力が必要である。
In addition, FIG. 4 is similar to FIGS. 2 and 3 above,
Pure Ti and pure Zr using a copper crucible of 8'~750Hφ
This paper shows the results of an investigation into damage to the steel crucible and the presence or absence of copper adhesion to the ingot depending on the cooling water inlet temperature and cooling water pressure during vacuum arc melting. As is clear from FIG. 4, when the inlet temperature of the cooling water is increased, and the pressure of the cooling water is low, damage to the copper crucible and copper adhesion to the ingot occur. This is thought to be because when the cooling water temperature rises, the side wall surface of the cooling water of the copper crucible easily approaches the boiling point of the cooling water, causing poor heat transfer on the wall surface and causing the copper crucible to become locally high temperature. . However, by keeping the pressure of the cooling water high, the boiling point becomes high, and the cooling water in the copper crucible does not easily reach the boiling point, and even if it does reach the boiling point, the degree of superheating from the boiling point on the wall surface is small. Increasing the pressure of the cooling water reduces the chance of damage to the copper crucible and copper adhesion to the ingot. In order to prevent damage to the copper crucible and copper adhesion to the ingot when the inlet cooling water temperature is 40'C or higher, a cooling water pressure of at least 3 kff/m is required as shown in FIG. 4.

以上の知見より、この発明では真空アーク溶解における
銅るつぼ入側冷却水の温度と圧力をそれぞれ40℃以上
、3呻f/−以上に設定する方法をとったのである。な
お、入側冷却水の温度と圧力の上限は特に限定するもの
ではないが、それぞれ110℃、6呻f/−である。
Based on the above findings, the present invention adopts a method in which the temperature and pressure of the cooling water on the inlet side of the copper crucible in vacuum arc melting are set at 40° C. or higher and 3 mm f/- or higher, respectively. Note that the upper limits of the temperature and pressure of the inlet cooling water are not particularly limited, but are 110° C. and 6 mm f/-, respectively.

第1図はこの発明方法を実施するための装置の一例を示
す概略図であり、(1)は真空アーク溶解炉、(2)は
水冷銅るつぼ、(3)は電極、(4)は鋳塊、(5)は
冷却水ジャケット、(6)は冷却水入口、(7)は冷却
水出口、(8)は冷却水の温度検知器、(9)は冷却水
の温度調節器、θGは給水ポンプ、0℃は冷却水の圧力
検知器、(2)は冷却水の圧力調節弁である。
FIG. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention, in which (1) is a vacuum arc melting furnace, (2) is a water-cooled copper crucible, (3) is an electrode, and (4) is a cast iron. block, (5) is the cooling water jacket, (6) is the cooling water inlet, (7) is the cooling water outlet, (8) is the cooling water temperature sensor, (9) is the cooling water temperature regulator, θG is Water supply pump, 0°C is a cooling water pressure detector, and (2) is a cooling water pressure regulating valve.

より電極を溶解し、鋳塊を鋳造する際、冷却水出口(7
)より流出する冷却水の温度を温度検知器(8)により
検知し、冷却水入口(6)の給水温度が40℃以上にな
るように温度調節器(9)にて冷却水温度を調節する一
方、圧力検知器α℃にて冷却水の圧力を検知し、前記冷
却水の設定温度に応じて圧力調節弁@を操作し3、O1
wf/i以上の圧力に設定する。
When melting the electrode and casting the ingot, the cooling water outlet (7
) The temperature of the cooling water flowing out from the cooling water inlet (6) is detected by the temperature sensor (8), and the temperature of the cooling water is adjusted by the temperature controller (9) so that the temperature of the water supplied at the cooling water inlet (6) is 40°C or higher. On the other hand, the pressure of the cooling water is detected by the pressure detector α℃, and the pressure regulating valve @ is operated according to the set temperature of the cooling water.
Set the pressure to wf/i or higher.

次に、上記第1図に示す装置を用いたこの発明の実施例
1こついて説明する。
Next, a first embodiment of the present invention using the apparatus shown in FIG. 1 will be described.

実   施   例 第1表に示す操業条件で純Ti、純Zrを溶解し7、得
られた鋳塊の表面注状および鋳塊表面切削による歩留り
を第2表をこ示す。
EXAMPLES Pure Ti and pure Zr were melted under the operating conditions shown in Table 17, and the yields obtained by surface pouring and cutting of the ingot surface are shown in Table 2.

本実施例における試験& 1 、 A 2は純Tiの溶
解例で、悪1(従来法)においては銅るつぼ冷却水の通
水条件を流! 1000 e/min 、給水温度20
℃。
Test & 1 and A 2 in this example are examples of dissolving pure Ti, and in Bad 1 (conventional method), the copper crucible cooling water flow conditions were used! 1000 e/min, water supply temperature 20
℃.

水圧2.0kqf/−とし、/12(本発明法)におい
ては應1と同一流量で給水温度を45℃と高くし、かつ
水圧を3.51wf/dと大きくした。
The water pressure was set to 2.0 kqf/-, and in /12 (method of the present invention), the water supply temperature was increased to 45° C. at the same flow rate as in 1, and the water pressure was increased to 3.51 wf/d.

第2表に示すとおり、冷却水温度の低いAIは鋳塊肌の
悪化が著しいのに対し、黒2は表面性状の良好な鋳塊が
得られ、鋳塊表面手入れによる歩留も向上した。
As shown in Table 2, AI with low cooling water temperature significantly deteriorated the ingot surface, whereas Black 2 produced ingots with good surface properties and improved yield due to ingot surface care.

また、試験Fa 3 、 Ifa 4は純Zrの溶解例
である。
Further, tests Fa 3 and Ifa 4 are examples of dissolving pure Zr.

一般tこ純Zrl’!縄Tiに比べ溶解力は大きくとら
なければならないため溶解電流、電圧は純Tiより約1
0〜20%大きくした。銅るつぼ冷却水の通水条件Cm
f1.水EE)は、A3(従来法)では五1の純Tiの
場合と同様で、五4(本発明法)では入側冷却水温度を
75℃と高くとり、これに応じて冷却水圧も5.5に9
f/−と大きくした。
General tko pure Zrl'! Since the melting power must be greater than that of rope Ti, the melting current and voltage are approximately 1 lower than that of pure Ti.
Increased size by 0-20%. Copper crucible cooling water flow conditions Cm
f1. In A3 (conventional method), the water EE) is the same as in the case of pure Ti in No. 51, and in No. 4 (method of the present invention), the inlet cooling water temperature is set as high as 75°C, and the cooling water pressure is also increased accordingly. .5 to 9
I increased it to f/-.

第2表に示すとおり、冷却水温度20℃のA3では悪1
の純Tiの場合と同様二重肌が全面に見られ、かつ表面
lこはスプラッシュのシェルが未溶融のままかなりの厚
みで残存しており、鋳塊肌は悪1の純Tiよりも悪い。
As shown in Table 2, A3 with a cooling water temperature of 20°C has a bad rating of 1.
As in the case of pure Ti, a double skin can be seen on the entire surface, and the shell of the splash remains unmelted and quite thick on the surface, and the ingot skin is worse than that of pure Ti, grade 1. .

しかし、冷却水温度を75℃とした應4は平滑で緻密な
表面肌が得られ、表面手入れ歩留りも97%と高くなっ
ている。
However, when the cooling water temperature was set to 75° C., a smooth and dense surface was obtained, and the surface care yield was as high as 97%.

また、本発明法の& 2 、 A 4において、冷却水
温をそれぞれ45℃、75℃と高くしたことに対応して
冷却水圧をそれぞれ3.5 kgf/d 、、 5.5
kpf/−jと高く設定したことにより、銅るつぼの損
傷および鋳塊表面への銅付着といった現象も全く見られ
なかった。
In addition, in &2 and A4 of the method of the present invention, the cooling water pressure was increased to 3.5 kgf/d, 5.5 in response to increasing the cooling water temperature to 45°C and 75°C, respectively.
Due to the high kpf/-j setting, no phenomena such as damage to the copper crucible or copper adhesion to the ingot surface were observed.

(以下余白) 発明の詳細 な説明したごとく、この発明方法によれば、真空アーク
溶解炉の水冷銅るつぼの冷却水の温度および圧力をコン
トロールするだけで表面性状のすぐれた鋳塊を溶製する
ことができるので、低電力でも良好な表面性状を有する
鋳塊を得ることができ、表面手入れ歩留りも向上できる
。また特に高電力にする必要がないためポロシティやマ
クロ偏析等により鋳塊内質の低下を招くといった問題も
解決することができ、チタン、ジルコニウム及び、これ
らを主成分とする合金の真空アーク溶解tこ大なる効果
を奏するものである。
(Left below) As described in detail, according to the method of this invention, an ingot with excellent surface properties can be melted by simply controlling the temperature and pressure of the cooling water in the water-cooled copper crucible of the vacuum arc melting furnace. Therefore, an ingot with good surface quality can be obtained even with low electric power, and the surface treatment yield can also be improved. In addition, since there is no need for particularly high power, it is possible to solve the problem of deterioration of the internal quality of the ingot due to porosity, macro segregation, etc., and vacuum arc melting of titanium, zirconium, and alloys containing these as main components. This has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明方法を実施するための装置の一例を示
す概略図、第2図は純Tiの真空アーク溶における冷却
水入側温度と鋳塊表面手入れ歩留りの関係を示す図、第
4図は純Ti、!s!zrを真空アーク溶解した時の冷
却水入側温度と冷却水圧力の程度による銅るつぼの損傷
および鋳塊への銅付着の有無を調べた結果を示す図であ
る。 1・・・真空アーク溶解炉、2・・・水冷銅るつぼ、3
・・・電極、4・・・鋳塊、5・・・冷却水ジャケット
、6・・・冷却水入口、7・・・冷却水出口、8・・・
冷却水温度検知器、9・・・冷却水温度調節器、11・
・・冷却水の圧力検知器、12・・・冷却水の圧力調節
弁。
Fig. 1 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention, Fig. 2 is a diagram showing the relationship between the cooling water inlet temperature and the ingot surface care yield in vacuum arc melting of pure Ti, and Fig. 4 The figure is pure Ti! s! FIG. 2 is a diagram showing the results of investigating damage to a copper crucible and the presence or absence of copper adhesion to an ingot depending on the cooling water inlet temperature and cooling water pressure level when vacuum arc melting of Zr was performed. 1... Vacuum arc melting furnace, 2... Water-cooled copper crucible, 3
...electrode, 4...ingot, 5...cooling water jacket, 6...cooling water inlet, 7...cooling water outlet, 8...
Cooling water temperature detector, 9...Cooling water temperature regulator, 11.
...Cooling water pressure detector, 12...Cooling water pressure control valve.

Claims (1)

【特許請求の範囲】[Claims] チタン、ジルコニウム、またはこれらを主成分とする合
金の真空アーク溶解方法において、水冷銅るつぼの冷却
水を3.0kgf/cm^3以上に加圧し、かつ給水温
度を40℃以上に調節することを特徴とする真空アーク
溶解法。
In the vacuum arc melting method for titanium, zirconium, or alloys containing these as main components, it is recommended to pressurize the cooling water in the water-cooled copper crucible to 3.0 kgf/cm^3 or higher and adjust the water supply temperature to 40°C or higher. Characteristic vacuum arc melting method.
JP3937886A 1986-02-25 1986-02-25 Vacuum arc melting method Pending JPS62199737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3937886A JPS62199737A (en) 1986-02-25 1986-02-25 Vacuum arc melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3937886A JPS62199737A (en) 1986-02-25 1986-02-25 Vacuum arc melting method

Publications (1)

Publication Number Publication Date
JPS62199737A true JPS62199737A (en) 1987-09-03

Family

ID=12551360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3937886A Pending JPS62199737A (en) 1986-02-25 1986-02-25 Vacuum arc melting method

Country Status (1)

Country Link
JP (1) JPS62199737A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912152A (en) * 2012-09-19 2013-02-06 攀钢集团江油长城特殊钢有限公司 Vacuum arc remelting method for inhibiting macrosegregation of high-temperature alloy with high content of Nb
JP2015030876A (en) * 2013-08-02 2015-02-16 株式会社大阪チタニウムテクノロジーズ Manufacturing method of ingot by vacuum arc melting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102912152A (en) * 2012-09-19 2013-02-06 攀钢集团江油长城特殊钢有限公司 Vacuum arc remelting method for inhibiting macrosegregation of high-temperature alloy with high content of Nb
JP2015030876A (en) * 2013-08-02 2015-02-16 株式会社大阪チタニウムテクノロジーズ Manufacturing method of ingot by vacuum arc melting

Similar Documents

Publication Publication Date Title
CA2771264C (en) Method for producing large diameter ingots of nickel base alloys
AU2002242239A1 (en) Method for producing large diameter ingots of nickel base alloys
CN101200783B (en) Method for manufacturing high-strength aluminium-magnesium-slicon alloy wire
US20220228243A1 (en) Method for produing high nitrogen steel by duplex melting process of pressurized ladle refining and pressurized electroslag remelting
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
CN107164639B (en) A kind of electron beam covers the method that formula solidification technology prepares high temperature alloy
CN102912152B (en) Vacuum arc remelting method for inhibiting macrosegregation of high-temperature alloy with high content of Nb
CN108339953A (en) It is a kind of it is antivacuum under draw the production technology of continuous casting chromium-zirconium-copper slab ingot
CN107653386A (en) A kind of preparation method of Cu Cr Nb alloys
CN108546850A (en) A kind of production method of 6101 aluminum alloy plate materials of high conductivity
CN105803257A (en) Method for improving liquid-state fluidity of TiAl-Nb alloy
JPS62199737A (en) Vacuum arc melting method
CN116287807A (en) Preparation method of short-process alloy forging
CN112981129B (en) Helium cooling process for smelting large-ingot type GH4742 alloy by VAR
CN110484742B (en) Method for preparing Fe-W intermediate alloy by electron beam melting and high purification
EP2748355B1 (en) Purification of a metalloid by consumable electrode vacuum arc remelt process
JPS63303016A (en) Vacuum arc melting method
RU2191836C2 (en) Method of ingots production
CN117564200A (en) Preparation method of short-process alloy forging
CN117600703A (en) Welding wire for high-grade petroleum pipeline and preparation method thereof
JPH0791845A (en) Method for judging base metal hanging, and its elimination for crucible type induction melting furnace
JPS6167725A (en) Method for vacuum arc-melting active metal having high melting point and alloy thereof
JP2001107155A (en) Electro-slag remelting method
JPS6334214B2 (en)