JPS62199722A - Improvement of residual stress of cylindrical body - Google Patents

Improvement of residual stress of cylindrical body

Info

Publication number
JPS62199722A
JPS62199722A JP61040896A JP4089686A JPS62199722A JP S62199722 A JPS62199722 A JP S62199722A JP 61040896 A JP61040896 A JP 61040896A JP 4089686 A JP4089686 A JP 4089686A JP S62199722 A JPS62199722 A JP S62199722A
Authority
JP
Japan
Prior art keywords
stress
cylinder
cylindrical body
distribution
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61040896A
Other languages
Japanese (ja)
Inventor
Kunio Enomoto
榎本 邦夫
Shinji Sakata
信二 坂田
Tasuku Shimizu
翼 清水
Naoto Saito
直人 斉藤
Isao Sugihara
杉原 勲
Hidetoshi Takehara
武原 秀俊
Tsukasa Ikegami
司 池上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61040896A priority Critical patent/JPS62199722A/en
Publication of JPS62199722A publication Critical patent/JPS62199722A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To easily improve the residual stress of a cylindrical body by heating the cylindrical body from the outside surface side for a short period to generate the distribution of the temp. difference between the inside and outside surfaces of the cylindrical body in the longitudinal direction thereof and the distribution of the average temp. in the thickness of the cylindrical body in the longitudinal direction thereof. CONSTITUTION:The cylindrical body having the residual tensile stress on the inside surface by welding, etc., is heated for the short period from the outside surface side. The distribution of the temp. difference between the inside and outside surfaces of the cylindrical body in the longitudinal direction thereof and the distribution of the average temp. in the thickness of the cylindrical body in the longitudinal direction thereof are thereby generated. The tensile stress on the inside surface of the cylindrical body occurring in the above-mentioned former distribution and the tensile stress on the inside surface of the cylindrical body occurring in the latter distribution are superposed and the above-mentioned heating is so executed that the tensile stress on the inside surface of the cylindrical body, i.e., the sum thereof exceeds the yield point in the range of the above-mentioned residual stress to be improved. The heating is thereafter stopped and the above-mentioned residual tensile stress is modified to the extremely small residual tensile stress or residual compressive stress, by which the residual stress of the cylindrical body is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は筒体、特に溶接された筒体の溶接部を含む内面
の残留応力の改善方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for improving residual stress in the inner surface of a cylindrical body, particularly a welded cylindrical body, including a welded portion.

〔従来の技術〕[Conventional technology]

溶接された筒体の内面には溶接部およびその近傍に引張
応力が残留していることが多く、この残留引張応力は応
力腐食割れ等の原因になる。そこで、残留引張応力を極
めて小さい値に改変するか、又は、むしろ残留圧縮応力
に改変すること(これを残留応力の改善という)が必要
となる。筒体内面の残留応力の改善は、一旦、筒体の内
面および外面K、夫々、降伏点を超える引張応力および
圧縮応力を加えることによって行うことができ、これに
よシ、ヒステリシス効果のため筒体内面の残留応力は極
めて小さい引張応力に改変されるか又は圧縮応力に改変
される。
Tensile stress often remains on the inner surface of a welded cylinder at and near the weld, and this residual tensile stress causes stress corrosion cracking and the like. Therefore, it is necessary to modify the residual tensile stress to an extremely small value, or rather to a residual compressive stress (this is referred to as improving residual stress). The residual stress on the inner surface of the cylinder can be improved by applying tensile stress and compressive stress exceeding the yield point to the inner and outer surfaces K of the cylinder, respectively. Residual stresses on the inner surface of the body are converted into extremely small tensile stresses or into compressive stresses.

従来このような溶接筒体の内面の残留応力改善を行う方
法として、筒体を外面から加熱すると同時に内部に冷却
流体を強制的に流して内面を冷却することによシ変態点
以下の温度に訃いて筒体く内外面間の温度差を発生させ
、この温度差によって前記の如く降伏点を超える応力を
加えるようKする方法が行われていた。しかし、この方
法では、対象とする筒体が二重円筒の外筒であって核外
筒の内面を冷却流体で強制冷却できないような場合には
、外筒の内外面温度差を充分に大きくすることができず
、残留応力の改善ができない。
Conventionally, the method of improving the residual stress on the inner surface of a welded cylinder is to heat the cylinder from the outside and at the same time cool the inner surface by forcing a cooling fluid to flow inside, thereby bringing the temperature below the transformation point. A method has been used in which a temperature difference is generated between the inner and outer surfaces of the cylindrical body, and this temperature difference is used to apply stress exceeding the yield point as described above. However, with this method, if the target cylinder is a double-cylindrical outer cylinder and the inner surface of the nuclear outer cylinder cannot be forcibly cooled with cooling fluid, the temperature difference between the inner and outer surfaces of the outer cylinder cannot be made sufficiently large. Therefore, residual stress cannot be improved.

この点に配慮した二重円筒の残留応力改善のための熱処
理方法として特開昭60−141825公報には、原子
炉圧力容器ノズル部に設けられた二重円筒と一重円筒の
連接した筒体に関するものが開示されている。この方法
は、−重円筒部と二重円筒部とを幅広くカバーする高周
波誘導加熱コイルを設置し、初めに一重円筒部のみの内
外面に板厚方向温度差を与え、次いで一重円筒の内外面
及び二重円筒部の外筒の内外面の両方に板厚方向温度差
を与えるために極〈短間加熱を行りた後K、二重円筒部
の加熱のみを停止し、時間差をおいた後に一重円筒部の
加熱を停止するものである。これKよって、二重円筒部
の加熱時間が極く短いためにこの部分の内面温度を上昇
させずに済むという利点がもたらされた。しかし、この
方法は一重円筒加熱→−重円筒と二重円筒の極〈短時加
熱→二重円筒加熱停止、−重円筒加熱継続→−重円筒加
熱停止という加熱範囲の変更を伴う数ステツブの手順を
要する。また、板厚内外面の温度差のみを利用する応力
改善処理であるため、内外面温度差のみによシ降伏点以
上のひずみを発生させる必要があシ、この温度差が長手
方向において一定の長さ以上達成されていなければなら
ない。またこの方法は熱処理途中で加熱範囲の変更、す
なわちコイルの切換えを伴うために加熱設備の整合性の
調整(電流−電圧の位相調整等)を必要とする。
As a heat treatment method for improving the residual stress of a double cylinder in consideration of this point, JP-A-60-141825 describes a cylindrical body in which a double cylinder and a single cylinder are connected in the nozzle part of a reactor pressure vessel. something is disclosed. This method involves installing a high-frequency induction heating coil that widely covers the double cylinder part and the double cylinder part, first applying a temperature difference in the thickness direction to the inner and outer surfaces of only the single cylinder part, and then In order to create a temperature difference in the thickness direction of both the inner and outer surfaces of the outer cylinder of the double cylindrical part, heating was performed for a very short period of time, and then only the heating of the double cylindrical part was stopped and a time difference was left. The heating of the single cylinder portion is then stopped. This has the advantage that since the heating time of the double cylindrical portion is extremely short, there is no need to increase the internal temperature of this portion. However, this method requires several steps that involve changing the heating range: single cylinder heating → - heavy cylinder and double cylinder heating (short time heating → double cylinder heating stop, - heavy cylinder heating continued → - heavy cylinder heating stop). Requires steps. In addition, since this is a stress improvement treatment that utilizes only the temperature difference between the inner and outer surfaces of the plate, it is necessary to generate a strain greater than the yield point only by the temperature difference between the inner and outer surfaces. Must have been achieved over a length of time. Furthermore, this method requires adjustment of the consistency of the heating equipment (current-voltage phase adjustment, etc.) because the heating range is changed during the heat treatment, that is, the coils are switched.

また特許第957324にも内外面温度差のみを利用す
る残留応力改善のための熱処理法が示されているが、前
記公報と同様に所要の内外面温度差の長手方向分布が一
定範囲確保できない場合には効果的な応力改善は達成さ
れない。また、外面温度を変態温度以下にして温度差を
大にするためには内面温度を低くする必要があるが、二
重円筒の環状隙間内の冷却水は強制冷却が困難であシ自
然対流しか生じないためにすぐに沸騰冷却状態となり、
そのために外筒の内面温度が高くなって内外面温度差の
確保が難しい。このため、上記特許も二重円筒の外筒の
応力改善熱処理として最適ではない。
Furthermore, Patent No. 957324 also discloses a heat treatment method for improving residual stress that utilizes only the temperature difference between the inner and outer surfaces, but as in the above publication, when the required longitudinal distribution of the temperature difference between the inner and outer surfaces cannot be secured within a certain range. No effective stress improvement is achieved. In addition, in order to bring the outer surface temperature below the transformation temperature and increase the temperature difference, it is necessary to lower the inner surface temperature, but it is difficult to forcefully cool the cooling water in the annular gap of a double cylinder, so natural convection is necessary. Because it does not occur, it immediately enters a boiling and cooling state,
As a result, the inner surface temperature of the outer cylinder becomes high, making it difficult to maintain a temperature difference between the inner and outer surfaces. For this reason, the above-mentioned patent is also not optimal as a stress improvement heat treatment for the outer cylinder of a double cylinder.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述のようK、従来の技術は筒体の内外面温度差のみに
よる熱ひずみを利用する残留応力改善方法であるため、
この温度差はそれのみで降伏点以上の応力を生ずるに充
分なものにしなければならず、しかもこの温度差は長手
方向の相当な範囲に亘って実現されなければならない(
例えば外径350 m 、板厚305mの5US304
ステンレス鋼管では内外面温度差250℃が長手方向に
おいて約200mに亘って実現されねばならない)。し
かしながら、このようなことは、断面形状が一定でない
筒体や、内面の強制冷却が困難で冷却液の自然対流冷却
や沸騰冷却しかできないような筒体(例えば二重筒の外
筒)の場合には、達成が困難である。
As mentioned above, the conventional technology is a residual stress improvement method that utilizes only the thermal strain caused by the temperature difference between the inner and outer surfaces of the cylinder.
This temperature difference alone must be sufficient to generate a stress above the yield point, and this temperature difference must be realized over a considerable range in the longitudinal direction (
For example, 5US304 with an outer diameter of 350 m and a plate thickness of 305 m.
For stainless steel pipes, a temperature difference of 250° C. between the inside and outside surfaces must be achieved over a length of about 200 m). However, this is not the case with cylinders whose cross-sectional shape is not constant, or cylinders where forced cooling of the inner surface is difficult and only natural convection or boiling cooling of the cooling liquid is possible (for example, a double-walled outer cylinder). is difficult to achieve.

本発明は、このような筒体の場合にも上記の問題を回避
して内面の残留応力を改善し得る方法を提供しようとす
るものである。
The present invention aims to provide a method that can avoid the above-mentioned problems and improve the residual stress on the inner surface even in the case of such a cylindrical body.

〔問題・点を解決するための手段〕[Means for solving problems/points]

本発明は筒体の内面の残留引張応力を極めて小さい残留
引張応力または残留圧縮応力に改変するための筒体の残
留応力改善方法であって、筒体を外面側から短時間加熱
することによって筒体の内外面温度差の筒体長手方向分
布および筒体の板厚内平均温度の筒体長手方向分布を生
ぜしめ、且つ該加熱は、上記前者の分布に起因する筒体
内面の引張応力と上記後者の分布に起因する筒体内面の
引張応力との和が筒体内面の残留応力改善対象範囲に亘
って降伏点を超えるようになし、その後肢加熱を停止す
ることを特徴とするものである。
The present invention is a method for improving the residual stress of a cylinder by changing the residual tensile stress on the inner surface of the cylinder into extremely small residual tensile stress or residual compressive stress. This heating produces a longitudinal distribution of the temperature difference between the inner and outer surfaces of the cylinder and a longitudinal distribution of the average temperature within the thickness of the cylinder, and the heating causes the tensile stress on the inner surface of the cylinder due to the former distribution. The system is characterized in that the sum of the tensile stress on the inner surface of the cylinder due to the latter distribution exceeds the yield point over the range to be improved for residual stress on the inner surface of the cylinder, and heating of the hind limbs is stopped. be.

〔作用〕[Effect]

加熱によって筒体の板厚内平均温度の長手方向分布を生
じさせると、熱膨張のため筒体の該平均温度の高い部分
が低い部分よシも径方向に膨らむことによって筒体に応
力が加わる。例えば第2図(、)のように長手方向の狭
い範囲(二重斜線を施した範囲)で他の長手方向範囲よ
シも板厚内平均温度Ttnが一定の値だけ高いような分
布の場3合には、第2図(b)の如く外面の点Aには引
張応力、内面の点Bには圧縮応力、その両脇の内面の点
C1,C2には引張応力が加わる。また第3図(、)の
ように、板厚内平均温度Tmが長手方向の比較的広い範
囲に亘りて他の長手方向よシも一定の値だけ高いような
分布の場合には、第3図伽)の如く該範囲の両端近くの
内面の点311B、に圧縮応力、その脇の内面の点C3
+04には引張応力が加わシ、点Blと82間には応力
の加わらない範囲が生ずる。
When heating produces a longitudinal distribution of the average temperature within the plate thickness of the cylinder, due to thermal expansion, the parts of the cylinder with a higher average temperature swell in the radial direction as well as the parts with a lower average temperature, which applies stress to the cylinder. . For example, in the case of a distribution where the average in-thickness temperature Ttn is higher by a certain value in a narrow longitudinal range (double hatched range) than in other longitudinal ranges, as shown in Figure 2 (,), At the third point, as shown in FIG. 2(b), tensile stress is applied to point A on the outer surface, compressive stress is applied to point B on the inner surface, and tensile stress is applied to points C1 and C2 on both sides of the inner surface. In addition, as shown in Fig. 3(,), when the thickness average temperature Tm is distributed over a relatively wide range in the longitudinal direction and is higher by a certain value than in other longitudinal directions, the third As shown in Figure 3), compressive stress is applied to point 311B on the inner surface near both ends of the range, and point C3 on the inner surface next to it is
A tensile stress is applied to +04, and a range where no stress is applied occurs between points Bl and 82.

実際の加熱では図示の如き角形の分布にはならず、第2
図(、)は鋭い山形のピークをなす分布となシ、第3図
(b)は角がとれて丸味を帯びた台形状分布となるが、
応力に関するその作用は本質的には上記と同じである。
In actual heating, the distribution does not have a rectangular shape as shown in the figure.
Figure (,) shows a distribution with a sharp mountain-shaped peak, and Figure 3 (b) shows a trapezoidal distribution with rounded corners.
Its effect on stress is essentially the same as above.

他方、加熱によって第4図(、)の如く筒体の外面が内
面よシも高温度であるような内外面温度差を生じさせる
と、その長手方向範囲の広狭にかかわらず、第4図(b
)のように筒体外面には圧縮応力、内面には引張応力が
加わる。
On the other hand, if heating produces a temperature difference between the inner and outer surfaces of the cylindrical body, such that the outer surface of the cylinder is higher in temperature than the inner surface, as shown in FIG. b
), compressive stress is applied to the outer surface of the cylinder, and tensile stress is applied to the inner surface.

従りて、加熱によシ板厚内平均温度の長手方向分布と内
外面温度差の長手方向分布を同時に生じさせると、前者
に起因する応力と後者に起因する応力とが重畳されるこ
とになる。この場合、前者に起因する筒体内面の引張応
力および後者に起因する筒体内面の引張応力が夫々単独
では降伏点を超えない部分があっても、それらの重畳し
た和である筒体内面の引張応力が残留応力改善対象範囲
に亘って降伏点を超えるようKすることができ、これに
よって加熱停止後の筒体内面の残留応力を極めて小さい
引張シ応力または圧縮応力に改変することができる。
Therefore, if the longitudinal distribution of the average temperature within the plate thickness and the longitudinal distribution of the temperature difference between the inner and outer surfaces are simultaneously generated by heating, the stress caused by the former and the stress caused by the latter will be superimposed. Become. In this case, even if there is a part where the tensile stress on the inner surface of the cylinder due to the former and the tensile stress on the inner surface of the cylinder due to the latter do not exceed the yield point independently, the inner surface of the cylinder which is the sum of their superimposition is The tensile stress can be increased to exceed the yield point over the residual stress improvement target range, and thereby the residual stress on the inner surface of the cylinder after heating is stopped can be changed to an extremely small tensile stress or compressive stress.

〔実施例〕〔Example〕

原子炉圧力容器9のノズル部溶接構造における残留応力
の改善に実施した場合の本発明の一実施例を第1図によ
り説明する。
An embodiment of the present invention applied to improve residual stress in a nozzle welded structure of a reactor pressure vessel 9 will be described with reference to FIG.

第1図において、1は内筒(サーマルスリーっであり、
分岐部2で外筒3′から分岐している。外筒3′は原子
炉圧力容器9のノズルの先端部を成す他の外筒3“と溶
接部4で溶接されている。外筒3′および3”(これら
の全体を外筒3と称することKする)と内筒1とで二重
円筒部を形成してお夛、その間には環状隙間が形成され
ている。外筒3および内筒1はステンレスw4製である
。外筒3′は分岐部2よシ先の方では−1円筒6となり
、他の一重円筒6′と溶接部7により溶接されている。
In Fig. 1, 1 is the inner cylinder (thermal three),
It branches off from the outer cylinder 3' at a branching part 2. The outer cylinder 3' is welded to another outer cylinder 3'', which forms the tip of the nozzle of the reactor pressure vessel 9, at a welding part 4. The inner cylinder 1 and the inner cylinder 1 form a double cylindrical part, and an annular gap is formed therebetween. The outer cylinder 3 and the inner cylinder 1 are made of stainless steel W4. The outer cylinder 3' becomes a -1 cylinder 6 beyond the branching part 2, and is welded to another single cylinder 6' by a welding part 7.

溶接部4およびその近傍における外筒3の内面の残留引
張応力を残留圧縮応力に改変することが本実施例の残留
応力改善方法の目的である。
The purpose of the residual stress improvement method of this embodiment is to convert the residual tensile stress on the inner surface of the outer cylinder 3 in the welded portion 4 and its vicinity into residual compressive stress.

8は本発明方法を実施するために外筒3の周りに配置し
た誘導加熱コイルであり、直列接続されたコイル8−1
.8’−2,8−3よシなる(上半分の図示は省略しで
ある)。コイル8に電力を印加したときの外筒3の板厚
内平均温度の外筒長手方向の分布が、溶接部4よシもや
や右側に一方のピークを生じ、分岐部2の近傍に他方の
ピークを生じ、且つこれら両ピーク間の部分では谷間を
生ずるように、これらコイルを配置する。そのためには
右方のコイル8−1は溶一部4の右方で且つ外筒3“と
の距離を狭くとって、また、左方のコイル8−3は分岐
部2に面して外筒3′との距離を狭くとって、ま、た中
間のコイル8−2は外筒3’IC面してそれとの距離を
広くとって、配置される。
8 is an induction heating coil arranged around the outer cylinder 3 in order to carry out the method of the present invention, and the coil 8-1 is connected in series.
.. 8'-2 and 8-3 (the upper half is not shown). When power is applied to the coil 8, the distribution of the average temperature within the thickness of the outer cylinder 3 in the longitudinal direction of the outer cylinder 3 has one peak slightly to the right of the welding part 4, and the other peak near the branch part 2. These coils are arranged so as to produce a peak and a valley between the two peaks. To do this, the right coil 8-1 should be placed to the right of the welding part 4 and at a narrow distance from the outer cylinder 3'', and the left coil 8-3 should be placed outside facing the branch part 2. The middle coil 8-2 is arranged with a narrow distance from the cylinder 3', and a wide distance from the outer cylinder 3', with the intermediate coil 8-2 facing the IC.

二重円筒部の外筒3と内筒1との間の環状隙間内には冷
却水5を満たす。この冷却水5は、該環状隙間が狭くま
た分岐部2で行き止りになりているため、強制的に流動
させることは困難である。
Cooling water 5 is filled in the annular gap between the outer cylinder 3 and the inner cylinder 1 of the double cylindrical part. It is difficult to force the cooling water 5 to flow because the annular gap is narrow and it ends at the branch 2.

内、筒1および一重円筒6,6′の内部にも冷却水10
を満す。冷却水10は強制的に流動させなくともよいが
、本実施例では強制的に流動させる場合について述べる
There is also cooling water 10 inside the cylinder 1 and the single cylinders 6 and 6'.
satisfy. Although the cooling water 10 does not have to be forced to flow, in this embodiment, a case will be described in which it is forced to flow.

このような誘導加熱コイルの配置と冷却の条件下で誘導
加熱コイル8−1〜8−3に同時に大入力を加え、短時
間の加熱を行い、その後、加熱を停止し常温まで冷却す
る。第5図のカーブAとBは、夫々このときの外筒3“
の外面と内面の温度時間曲線である。外筒3“の内面温
度Bを見るに、前記環状隙間内の冷却水5が強制流動さ
れていないために自然対流冷却となシ、しかも環状隙間
が狭いのでB1点で沸騰冷却となシ、さらに加熱を継続
すると82点で膜沸騰となシ1.該内面の温度上昇が急
になる。一方、曲線CとDは夫々、外筒ぎの外面と内面
の温度一時間曲線であり、前述の如くコイル8−2と外
筒3′との距離を大きくして外筒3“側よシも温度上昇
を低く押えるようなコイル配置にしたことが功を奏して
外筒3′の外面温度は外筒3”のそれよシも低くなって
いる。
Under such arrangement and cooling conditions of the induction heating coils, a large input is simultaneously applied to the induction heating coils 8-1 to 8-3, heating is performed for a short time, and then heating is stopped and cooling is performed to room temperature. Curves A and B in Fig. 5 respectively represent the outer cylinder 3'' at this time.
These are the temperature time curves of the outer and inner surfaces of . Looking at the inner surface temperature B of the outer cylinder 3'', the cooling water 5 in the annular gap is not forced to flow, so there is no natural convection cooling, and since the annular gap is narrow, boiling cooling occurs at point B1. If heating is continued further, film boiling will occur at 82 points. 1. The temperature rise on the inner surface will become steeper.On the other hand, curves C and D are the one-hour temperature curves on the outer and inner surfaces of the outer sleeve, respectively. As a result, the distance between the coil 8-2 and the outer cylinder 3' is increased, and the coil arrangement is such that the temperature rise on the side of the outer cylinder 3' is suppressed to a low level.As a result, the outer surface temperature of the outer cylinder 3' is reduced. The height of the 3" outer cylinder is also lower.

第6図は本実施例による上記加熱処理の熱応力シミーレ
ージラン解析結果を例示したものである。同図に示した
温度および温度差は加熱時間の最後の時点におけるもの
であシ、また残留応力は加熱後常温に戻ったときの残留
応力である。横軸は溶接部4の中心を原点とした円筒長
手方向距離を表わす。同図において、Tiは外筒3の内
面の温度、Tmは外筒3の板厚的平均温度、ΔTは外筒
3の内外面温度差を示しておシ、またσtは外筒3の内
面の長手方向残留応力、σθは外筒3の内面の円周方向
残留応力を示している。残留応力の正値は引張残留応力
を、負値は圧縮残留応力を意味する。
FIG. 6 illustrates the thermal stress shimmy run analysis results of the above heat treatment according to this example. The temperature and temperature difference shown in the figure are those at the end of the heating time, and the residual stress is the residual stress when the temperature returns to room temperature after heating. The horizontal axis represents the distance in the longitudinal direction of the cylinder with the center of the welded portion 4 as the origin. In the figure, Ti is the temperature of the inner surface of the outer cylinder 3, Tm is the average temperature in terms of the plate thickness of the outer cylinder 3, ΔT is the temperature difference between the inner and outer surfaces of the outer cylinder 3, and σt is the inner surface of the outer cylinder 3. represents the residual stress in the longitudinal direction, and σθ represents the residual stress in the circumferential direction on the inner surface of the outer cylinder 3. A positive value of residual stress means tensile residual stress, and a negative value means compressive residual stress.

第6図のσ7.σθのグラフから明らかなように、本実
施例による前記熱処理後の外筒3の内面の残留応力は、
長手方向残留応力σ6および円周方向残留応力σθのい
ずれも圧縮応力になっておシ、所期の残留応力改善の目
的が達せられていることがわかる。これについて下記に
解脱する。
σ7 in Figure 6. As is clear from the graph of σθ, the residual stress on the inner surface of the outer cylinder 3 after the heat treatment according to this example is:
It can be seen that both the longitudinal residual stress σ6 and the circumferential residual stress σθ are compressive stresses, and that the intended purpose of residual stress improvement has been achieved. This will be addressed below.

外筒3の内外面温度のみで外筒3の内面に残留圧縮応力
を発生させるに必要な最小限の該温度差ΔTm1nは次
式で表わされる。
The minimum temperature difference ΔTm1n required to generate residual compressive stress on the inner surface of the outer cylinder 3 using only the temperature of the inner and outer surfaces of the outer cylinder 3 is expressed by the following equation.

ここで、αは外筒3の線膨張係数、Eはヤング率、σア
は降応力であシ、これにステンレス鋼の場合の数値を当
てはめるとΔTm1n4250℃となる。しかるに第6
図のΔTの分布においては、ΔTが上記ΔTm1nの値
を超えているのは溶接部4の右側の外筒の部分および内
筒と外筒との分岐部2の部分のみであシ、その間におけ
るΔTはΔTm1nの値に達していない谷間をなしてい
る。一方、板厚平均温度Tmは外筒内面を冷却水の膜沸
騰が起きるまで加熱して高温にしたことが効いて二重円
筒部分では21分布より高温側でかつ、Δでと類似の二
つのピークを有する分布となっておシ、ピークの位置お
よびその間の谷間の長さもΔTのそれとほとんど同じで
ある。
Here, α is the coefficient of linear expansion of the outer cylinder 3, E is the Young's modulus, and σa is the stress drop. Applying the values for stainless steel to these, it becomes ΔTm1n4250°C. However, the 6th
In the distribution of ΔT in the figure, ΔT exceeds the value of ΔTm1n above only in the part of the outer cylinder on the right side of the welded part 4 and in the part of the branch part 2 between the inner cylinder and the outer cylinder, and in between. ΔT forms a valley where it does not reach the value of ΔTm1n. On the other hand, the plate thickness average temperature Tm is on the higher temperature side than the 21 distribution in the double cylinder part due to the fact that the inner surface of the outer cylinder is heated to a high temperature until film boiling of the cooling water occurs. The distribution has a peak, and the position of the peak and the length of the valley between them are almost the same as that of ΔT.

このようなTmの分布は模式的には第7図(、)のよう
に表わすことができ、同図中の二重斜線で示した部分が
ピーク部分に相当する。このTmの分布のみによる外筒
3内面の応力は第7図(b)のようになシ、Tm分布の
谷間では引張応力、ピーク部分では圧縮応力となる。し
かして、上述のようにTmの分布のピーク部分ではΔT
がΔTm1nを充分超えているから、結果としてその部
分でも引張応力となる。このようにTm分布による応力
と21分布による応力との重畳した結果の外筒内面応力
は全領域において引張応力となシ、これが降伏点を超え
ることによシ、冷却後の外筒内面の残留応力は全て圧縮
応力となるのである。
Such Tm distribution can be schematically represented as shown in FIG. 7 (,), and the double diagonal lined portion in the figure corresponds to the peak portion. The stress on the inner surface of the outer cylinder 3 due only to this Tm distribution becomes tensile stress at the valleys of the Tm distribution, and compressive stress at the peak portion, as shown in FIG. 7(b). Therefore, as mentioned above, at the peak part of the Tm distribution, ΔT
Since ΔTm1n sufficiently exceeds ΔTm1n, as a result, that portion also becomes tensile stress. In this way, the stress on the inner surface of the outer cylinder resulting from the superimposition of the stress due to the Tm distribution and the stress due to the 21 distribution becomes tensile stress in the entire region. All stress becomes compressive stress.

要するにΔTの不足分をTm分布の作用で補うことによ
って、加熱時におけるΔTによる外筒内面の引張応力と
Tm分布によるそれとの重畳した引張応力が降伏点を超
えるようにすることによシ、冷却後には全ての領域で外
筒の内面の残留応力を圧縮応力にすることができるので
ある。
In short, by compensating for the shortfall in ΔT by the effect of Tm distribution, the tensile stress on the inner surface of the outer cylinder due to ΔT during heating and the tensile stress superimposed with that due to Tm distribution exceeds the yield point. Later, residual stress on the inner surface of the outer cylinder can be made into compressive stress in all regions.

第8図は別の実施例として第1図において溶接部4の右
方にTm eΔTのピークが一つだけ生じるように第1
図の8−1.8−2のコイルのみで大入熱、短時間の加
熱をした場合のTI 、ΔT + ’rm 1σ6.σ
θ(これらの意味は前記の実施例と同様での内面温度T
iは、Tmを大きくするために膜沸騰冷却となっても敢
えて加熱したために200℃を越えている。そのために
ΔTは逆に小さ目になっている。外筒3”でのΔTが小
さいためにこの部分の圧縮残留応力がやや小さくなって
いる。しかし、外筒3′の内面ではσ6.σθともにT
mのピーク分布の効果によυ、十分大きな残留圧縮応力
になっている。
FIG. 8 shows another example in which the first peak is set so that only one peak of Tm
TI, ΔT + 'rm 1σ6. when large heat input and short time heating are performed only with coil 8-1.8-2 in the figure. σ
θ (these meanings are the same as in the previous example)
i exceeds 200° C. even though film boiling cooling is used to increase Tm. Therefore, ΔT is on the contrary smaller. Because ΔT is small in the outer cylinder 3'', the compressive residual stress in this part is somewhat small.However, on the inner surface of the outer cylinder 3', both σ6 and σθ are T.
Due to the effect of the peak distribution of m, υ becomes a sufficiently large residual compressive stress.

以上の実施例は二重円筒の場合について述べたが、通常
の一重円筒管であっても内部に冷却水を強制的に流動さ
せることができない場合には、短時間加熱による内外面
温度差と板厚平均温度の分布を組み合せる本発明の方法
によシ残留応力を改善することができる。
The above embodiments have been described for the case of a double cylinder, but even if it is a normal single cylinder pipe, if cooling water cannot be forced to flow inside, the temperature difference between the inner and outer surfaces due to short-term heating may be reduced. Residual stress can be improved by the method of the present invention that combines the distribution of plate thickness average temperature.

第9図は本発明の方法を適用して熱交換器の管板12と
胴体13の溶接部4の残留応力を改善する実施例を示す
。胴体13内には伝熱管14や仕切板15等の障害物が
あるために冷却水11による胴体3の内面の冷却効率を
充分大きくすることができないので、板厚方向の温度差
のみでは応力改善が難しい。そこで本実施例では、この
溶接部を挾んで板厚方向温度差ΔTの胴体長手方向分布
を台形状とし、且つ、板厚平均温度Tmが上記ΔTの台
形状分布の一端で溶接部4の右方にピークを有するよう
に誘導加熱コイル8−4.8−5を配して、短時間、大
入熱、急速加熱を行う。コイル8−4.8−5は連続し
た輝線環状コイ、ルであるがコイル8−5がコイル8−
4に比べて胴体13によシ近接して設置されているから
板厚平均温度Tmはコイル8−4で加熱される部分より
も高くできる。このTmの分布によって溶接部4には加
熱時に引張シの曲げ応力が発生することとなシ、ΔTに
よる引張シ応力と重畳して溶接部4は容易に引張降伏を
生じ、冷却後には応力は反転して残留圧縮応力が得られ
る。本実施例では管板12は高剛性であるため、溶接部
4に上記曲げ応力を発生させるのに有効に作用する。
FIG. 9 shows an embodiment in which the method of the present invention is applied to improve residual stress in a weld 4 between a tube sheet 12 and a body 13 of a heat exchanger. Because there are obstacles such as heat transfer tubes 14 and partition plates 15 inside the fuselage 13, it is not possible to sufficiently increase the cooling efficiency of the inner surface of the fuselage 3 by the cooling water 11, so it is not possible to improve stress by using only the temperature difference in the plate thickness direction. is difficult. Therefore, in this embodiment, the distribution in the longitudinal direction of the body of the temperature difference ΔT in the plate thickness direction is made trapezoidal across this welded part, and the plate thickness average temperature Tm is located on the right side of the welded part 4 at one end of the trapezoidal distribution of the above-mentioned ΔT. The induction heating coils 8-4 and 8-5 are arranged so as to have a peak in the opposite direction, and high heat input and rapid heating is performed for a short time. Coils 8-4 and 8-5 are continuous bright line annular coils, but coil 8-5 is similar to coil 8-5.
Since the coil 8-4 is installed closer to the body 13 than the coil 8-4, the plate thickness average temperature Tm can be higher than that of the portion heated by the coil 8-4. Due to the distribution of Tm, tensile bending stress is generated in the welded part 4 during heating, and the welded part 4 easily undergoes tensile yield due to the tensile stress due to ΔT, and after cooling, the stress is reduced. The residual compressive stress is obtained by inversion. In this embodiment, since the tube sheet 12 has high rigidity, it effectively acts to generate the above-mentioned bending stress in the welded portion 4.

以上述べた各実施例に見られるように、板厚内平均温度
の長手方向分布におけるピークを溶接部よシやや離れた
位置に生せしめることは、更に下記の利点をもたらす。
As can be seen in each of the embodiments described above, producing the peak in the longitudinal distribution of the average temperature within the plate at a position slightly distant from the weld zone further brings about the following advantages.

すなわち、5US304ステンレス鋼溶接部は高温にさ
らされると腐食感受性を増し、炭素鋼等では脆化する。
That is, 5US304 stainless steel welds become more susceptible to corrosion when exposed to high temperatures, and carbon steel and the like become brittle.

従って、溶接部は外表面といえどもなるべく高温にさら
されることは好ましくない。本発明によれば上記のピー
ク位置の故に溶接部が高温にさらされないので上記の恐
れはなくなる。
Therefore, even though the welded portion is the outer surface, it is not preferable that the welded portion be exposed to high temperatures. According to the present invention, the above-mentioned fear is eliminated because the welded portion is not exposed to high temperatures due to the above-mentioned peak position.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、加熱時に筒体の内面を強制流動流体で
冷却することが困難で自然対流冷却や沸騰冷却となるよ
うな筒体、例えば二重筒の外筒、或いは断面形状が変化
しいる筒体などの場合の如く、内外面温度差を残留応力
改善対象範囲に亘って充分に生せしめることができず、
そのため内外面温度差に基づく応力のみでは残留応力の
改善ができないような筒体に対しても、内外面温度差に
基づく応力と板厚内平均温度の長手方向分布に基づく応
力とを組合せることによって、内面残留応力を改善する
ことができ、しかも加熱中に加熱節−囲の変更等の複雑
な制御は不要であり、操作が単純化される。
According to the present invention, it is difficult to cool the inner surface of the cylinder with forced fluid during heating, and natural convection cooling or boiling cooling is required, such as a double-walled outer cylinder, or a cylinder whose cross-sectional shape changes. As in the case of a cylindrical body, it is not possible to create a sufficient temperature difference between the inside and outside surfaces over the range to be improved by residual stress.
Therefore, even for cylinders whose residual stress cannot be improved only by stress based on the temperature difference between the inner and outer surfaces, it is possible to combine the stress based on the temperature difference between the inner and outer surfaces with the stress based on the longitudinal distribution of the average temperature within the plate thickness. As a result, internal residual stress can be improved, and complicated control such as changing the heating section during heating is not required, simplifying the operation.

勿論、本発明は上記のような筒体の場合に限るものでは
なく、内面を強制冷却できる通常の筒体の場合にも適用
し得るものである。
Of course, the present invention is not limited to the case of a cylindrical body as described above, but can also be applied to a normal cylindrical body whose inner surface can be forcedly cooled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は原子炉圧力容器ノズルの二重筒部に本発明を適
用した実施例を示す一部断面とした図、第2図(a) 
、 (b)は筒体の板厚内平均温度の長手方向分布の例
およびそれによる内面の応力を夫々示す図、第3図(a
) 、 (b)は筐体板厚内平均温度の長手方向分布の
他の例およびそれによる内面の応力を夫夫示す図、第4
図(a) 、 (b)は筒体の内外面温度差の長手方向
分布の例およびそれによる内面の応力を夫々示す図、第
5図は本発明の実施例における時間と温度との関係を示
す図、第6図は同実施例における解析結果を示す図、第
7図(a) 、 (b)は同実施例における外筒板厚内
平均温度の長手方向分布およびそれによる内面の応力を
夫々示す模式図、第8図は本発明の他の実施例における
解析結果を示す図、第9図は熱交換器の胴体溶接部に本
発明を適用した実施例を示す図である。 1・・・内筒       2・・・分岐部3・・・外
筒       4,7・・・溶接部8・・・高周波誘
導加熱コイル 12・・・管板      13・・・胴体L工 第2図 第3図 第4図 時  間  を 第6図 〉容接郡4の中心からの長手力PJ距離(面O第7図
FIG. 1 is a partial cross-sectional view showing an embodiment in which the present invention is applied to a double cylinder part of a reactor pressure vessel nozzle, and FIG. 2(a)
, (b) is a diagram showing an example of the longitudinal distribution of the average temperature within the plate thickness of the cylinder and the stress on the inner surface due to it, and Figure 3 (a)
), (b) is a diagram showing another example of the longitudinal distribution of the average temperature within the thickness of the casing and the resulting stress on the inner surface.
Figures (a) and (b) are diagrams showing an example of the longitudinal distribution of the temperature difference between the inner and outer surfaces of the cylindrical body and the resulting stress on the inner surface, respectively. Figure 5 shows the relationship between time and temperature in an example of the present invention. Figure 6 shows the analysis results of the same example, and Figures 7 (a) and (b) show the longitudinal distribution of the average temperature within the thickness of the outer cylinder plate and the stress on the inner surface due to it in the same example. FIG. 8 is a diagram showing an analysis result of another embodiment of the present invention, and FIG. 9 is a diagram showing an embodiment in which the present invention is applied to a body welded portion of a heat exchanger. 1... Inner cylinder 2... Branch part 3... Outer cylinder 4, 7... Welding part 8... High frequency induction heating coil 12... Tube plate 13... Fuselage L construction Figure 2 Figure 3 Figure 4 Time Figure 6 Longitudinal force PJ distance from the center of contact group 4 (plane O Figure 7

Claims (1)

【特許請求の範囲】 1、筒体の内面の残留引張応力を極めて小さい残留引張
応力または残留圧縮応力に改変するための筒体の残留応
力改善方法であって、筒体を外面側から短時間加熱する
ことによって筒体の内外面温度差の筒体長手方向分布お
よび筒体の板厚内平均温度の筒体長手方向分布を生ぜし
め、且つ該加熱は、上記前者の分布に起因する筒体内面
の引張応力と上記後者の分布に起因する筒体内面引張応
力との和が筒体内面の残留応力改善対象範囲に亘って降
伏点を超えるようになし、その後該加熱を停止すること
を特徴とする筒体の残留応力改善方法。 2、上記の両者の分布がほぼ同じ位置に夫々少くとも1
つのピークを有する特許請求の範囲第1項記載の筒体の
残留応力改善方法。 3、上記の前者の分布が台形状分布であり、この台形状
分布の一端部に上記の後者の分布がピークを有する特許
請求の範囲第1項記載の筒体の残留応力改善方法。 4、上記筒体が二重筒の外筒である特許請求の範囲第1
、第2又は第3項記載の筒体の残留応力改善方法。
[Scope of Claims] 1. A method for improving residual stress in a cylindrical body for changing residual tensile stress on the inner surface of the cylindrical body into extremely small residual tensile stress or residual compressive stress, the method comprising: Heating produces a longitudinal distribution of the temperature difference between the inner and outer surfaces of the cylinder and a longitudinal distribution of the average temperature within the thickness of the cylinder, and the heating causes the temperature difference inside the cylinder due to the former distribution. The heating is stopped after the sum of the tensile stress on the surface and the tensile stress on the inner surface of the cylinder due to the latter distribution exceeds the yield point over the range to be improved for residual stress on the inner surface of the cylinder. A method for improving residual stress in a cylindrical body. 2. Both of the above distributions have at least 1
A method for improving residual stress in a cylindrical body according to claim 1, which has two peaks. 3. The method for improving residual stress in a cylindrical body according to claim 1, wherein the former distribution is a trapezoidal distribution, and the latter distribution has a peak at one end of the trapezoidal distribution. 4. Claim 1, wherein the cylinder is a double cylinder outer cylinder.
, the method for improving residual stress in a cylindrical body according to item 2 or 3.
JP61040896A 1986-02-26 1986-02-26 Improvement of residual stress of cylindrical body Pending JPS62199722A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040896A JPS62199722A (en) 1986-02-26 1986-02-26 Improvement of residual stress of cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040896A JPS62199722A (en) 1986-02-26 1986-02-26 Improvement of residual stress of cylindrical body

Publications (1)

Publication Number Publication Date
JPS62199722A true JPS62199722A (en) 1987-09-03

Family

ID=12593272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040896A Pending JPS62199722A (en) 1986-02-26 1986-02-26 Improvement of residual stress of cylindrical body

Country Status (1)

Country Link
JP (1) JPS62199722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215829A (en) * 1990-01-24 1993-06-01 Hitachi, Ltd. Method for strengthening pressure resistance of a hollowed metallic structure and a pressure resistant structure made thereby
US7030944B2 (en) 1998-12-14 2006-04-18 Nec Lcd Technologies, Ltd. Liquid crystal display device with roughened surfaces to reduce moiré fringe effects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5215829A (en) * 1990-01-24 1993-06-01 Hitachi, Ltd. Method for strengthening pressure resistance of a hollowed metallic structure and a pressure resistant structure made thereby
US7030944B2 (en) 1998-12-14 2006-04-18 Nec Lcd Technologies, Ltd. Liquid crystal display device with roughened surfaces to reduce moiré fringe effects

Similar Documents

Publication Publication Date Title
US4229235A (en) Heat-treating method for pipes
JPS5950730B2 (en) How to improve residual stress in austenitic stainless steel pipes, etc.
JPS6124117B2 (en)
JPS59159294A (en) Improvement of residual stress by build-up welding on outside circumferential surface of pipe
JPS61170517A (en) Heat treatment of welded structure
JPS62199722A (en) Improvement of residual stress of cylindrical body
JPH045730B2 (en)
JPS5817807B2 (en) Heat treatment method for piping
US4772336A (en) Method of improving residual stress in circumferential weld zone
US4588869A (en) Method for relieving residual stresses by controlling weld heat input
JP2001003120A (en) Method for welding heat resistant steel and after-heat treatment thereof
JPH01154818A (en) Manufacture of duplex tube
JPH0699754B2 (en) Heat treatment method for metal tubes
JPS6018293A (en) Method for relieving residual stress of welded joint part
JPS59144529A (en) Manufacture of corrugated steel pipe
SE8403928D0 (en) HEAT TREATMENT PROCEDURE FOR A PIPE PIPE
JPS5852428A (en) Heat treatment for improving stress of shaft
JPS61104029A (en) Heat treatment of pipeline
JPH0464794A (en) Leak preventing structure for weld joint part of tube
JPH0230716A (en) Method for improving residual stress in circumferential weld zone
Narayanan et al. Structural design of a superheater for a central solar receiver
JPS60135526A (en) Heat treatment of weld zone of double pipe
JPS61186414A (en) Improvement of residual stress of steel plate or the like
JPS5857253B2 (en) How to line odd-shaped materials
JPS6328825A (en) Improvement of residual stress in metallic tube