JPS6219914B2 - - Google Patents

Info

Publication number
JPS6219914B2
JPS6219914B2 JP12742178A JP12742178A JPS6219914B2 JP S6219914 B2 JPS6219914 B2 JP S6219914B2 JP 12742178 A JP12742178 A JP 12742178A JP 12742178 A JP12742178 A JP 12742178A JP S6219914 B2 JPS6219914 B2 JP S6219914B2
Authority
JP
Japan
Prior art keywords
mercury
heavy metals
resin
wastewater
chelate resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12742178A
Other languages
Japanese (ja)
Other versions
JPS5554084A (en
Inventor
Masafumi Morya
Tomio Imachi
Makoto Takai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Myoshi Oil and Fat Co Ltd
Original Assignee
Myoshi Oil and Fat Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Myoshi Oil and Fat Co Ltd filed Critical Myoshi Oil and Fat Co Ltd
Priority to JP12742178A priority Critical patent/JPS5554084A/en
Publication of JPS5554084A publication Critical patent/JPS5554084A/en
Publication of JPS6219914B2 publication Critical patent/JPS6219914B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Sorption (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は複合重金属含有廃水、特に水銀を他の
重金属、たとえばカドミウム、鉛、亜鉛、銅、ニ
ツケル、アルミニウム、カルシウム、3価クロ
ム、鉄、銀などとともに含有している廃水を性能
の異なる二種類のキレート樹脂を使用し、水銀と
他の重金属とに分けて吸着除去し、かつ排水中の
水銀濃度を環境基準値以下になるように処理する
方法に関するものである。 現在排水中の重金属の基準として、排水基準と
環境基準があり、排水基準は、すべての排水がそ
の基準値を越えるものであつてはならないもので
あり、これに対して環境基準はそれ以上に厳しい
規制値であり、これを達成するのが望ましいとし
て設定されているが、昨今地方自治体等において
は、環境汚染の防止、住民の健康を守る上から、
排水基準に上乗せして環境基準に近い基準値を設
定してそれを排水基準として義務づけるケースが
出て来ており、廃水処理において環境基準をクリ
アーするべく技術の開発が望まれるようになつて
来ている。 現在、廃水中に重金属が含まれている場合、単
一金属のみで存在する例は少なく、ほとんど複数
の金属が混合した状態で存在する。これら複合の
重金属類を一般重金属吸着用キレート樹脂にて吸
着除去することも考えられるが、複合金属類の中
に水銀が含まれている場合、他の重金属ととも
に、水銀も現在の環境規準値である0.5ppb以下
まで吸着除去することは、非常にむずかしい。さ
らに、一般重金属吸着用キレート樹脂に水銀が吸
着した場合、その水銀を溶離回収することが困難
であるため、樹脂の重金属吸着量が再生するごと
に低下し、経済的でない。 このような点を考えて、水銀とその他の重金属
を別々に吸着分離する方法が報告されている((1)
特開昭52−124763、(2)特開昭52−124764)。上記
(1)、(2)は共にゴミ焼却炉洗煙廃水中の重金属を分
離除去する方法として、(1)は前処理後、官能基に
窒素を含むキレート樹脂で処理して重金属を吸着
せしめ、次いで官能基にイオウを含有するキレー
ト樹脂で処理して、水銀を吸着除去する方法であ
り、(2)は前処理後、官能基にイオウを含むキレー
ト樹脂で処理して水銀を吸着させたのち、官能基
に窒素を含むキレート樹脂で処理して、水銀以外
の重金属を吸着除去する方法である。(1)の方法は
先に官能基に窒素を含むキレート樹脂で処理する
ため、水銀を含む重金属が同時に吸着され、溶離
再生において水銀が混入することで、問題があ
る。 (1)、(2)共に排水基準のクリアーを目的としてい
るが、環境基準をクリアーしていない。また(1)、
(2)共に用いられるキレート樹脂は共通しており、
イオウを含む官能基として、チオ尿素誘導体、チ
オフエノール誘導体を挙げているが、これらの官
能基は交換容量が小さく、除去下限値が高い欠点
がある。また、窒素を含む官能基としてモノアミ
ン、ジアミン、ポリアミン等のアミン類、イミノ
ジ酢酸またはその誘導体、グリシンなどのアミノ
酸またはその誘導体を用いているが、これらはい
ずれも金属イオンに対する交換容量が小さく、か
つ再生における金属イオンの脱着がし難いため金
属の回収率が低いと云う欠点を有する。そこで、
我々は水銀の流出濃度を環境規準値以下にするこ
と、水銀のみを他の重金属から分別して吸着除去
し、回収すること、一般重金属吸着用キレート樹
脂を有効に使用すること、などを検討した結果、
すぐれた処理方法を発明した。 本発明における、性能の異なる二種類のキレー
ト樹脂とは、水銀を選択的に吸着する水銀吸着用
キレート樹脂と、水銀以外の重金属を吸着する一
般重金属吸着用キレート樹脂である。水銀吸着用
キレート樹脂とは、スチレン−ジビニルベンゼン
共重合体系、フエノール系、エポキシ系、アクリ
ルエステル系、塩化ビニール系などの樹脂母体に
ジチオカルバミン酸基を官能基として有するもの
である。 また、水銀以外の重金属を吸着する一般重金属
吸着用キレート樹脂とは、スチレン−ジビニルベ
ンゼン共重合体系、フエノール系、エポキシ系、
塩化ビニール系などの樹脂母体に、官能基として
イミノプロピオン酸塩基およびもしくは、イミノ
ジプロピオン酸塩基(塩基の金属としては、ナト
リウム、カリウム、カルシウム、マグネシウム等
の金属)を有するものである。 本発明は、水銀を含む複合重金属含有廃水を、
まず水銀吸着用キレート樹脂と接触させ、水銀の
みを選択的に吸着除去する。接触方法としては、
容器内で廃水にキレート樹脂を添加し、撹拌混合
処理するバツチ法および樹脂塔に樹脂を充填し廃
水を下向流または上向流にて通液するカラム法な
ど考えられるが、これらの方法に限定されるもの
ではない。本発明は、二種類のキレート樹脂を連
続使用するため、カラム法による処理方法が好ま
しいと思われる。カラム法で廃水を処理する場
合、上向流、下向流どちらでもよいが、通水速度
は2〜50l/hr・l−樹脂の範囲内で行ない、好
ましくは5〜10l/hr・l−樹脂の範囲内で行な
う。しかしながら、通水速度は上記の範囲に限定
されるものではない。 水銀吸着用キレート樹脂で処理した廃水中に
は、まだ他の重金属が含まれているため、その処
理水を一般重金属吸着用キレート樹脂と接触さ
せ、水銀以外の重金属を吸着除去する。 その接触方法は、水銀吸着用キレート樹脂と同
様であるが、カラム法が好ましい。 また、通水速度も水銀吸着用キレート樹脂と同
様である。 キレート樹脂の能力が飽和に達した場合、水銀
吸着用キレート樹脂は、焙焼法などにより処分さ
れ、水銀を回収・再利用することができる。ま
た、水銀以外の重金属を吸着した一般重金属吸着
用キレート樹脂は、鉱酸などにより吸着した重金
属を溶離・回収後、アルカリにて処理して酸型キ
レート樹脂からもとの樹脂形態に再生することが
できる。 本発明によれば、廃水中の水銀および他の重金
属を環境規準値以下まで吸着除去できるうえ、さ
らに廃水中から水銀を選択的に回収し、再利用で
きること、水銀吸着用キレート樹脂は、二次公害
のおそれなく処分できること、水銀以外の他の重
金属も溶離回収できること、一般重金属吸着用キ
レート樹脂も再生使用可能であることなど数々の
利点を有しており、経済的であるとともに、省資
源化にも役立つものである。 以下実施例によつて詳細に説明する。 実施例 1 廃水中の各種重金属イオン濃度が表−1に示す
ような実際廃水に近い廃水(A)を調製し、PHを6に
調整した。
The present invention deals with wastewater containing complex heavy metals, especially wastewater containing mercury together with other heavy metals such as cadmium, lead, zinc, copper, nickel, aluminum, calcium, trivalent chromium, iron, silver, etc. The present invention relates to a method of separately adsorbing and removing mercury and other heavy metals using a chelate resin, and treating wastewater so that the mercury concentration is below environmental standard values. Currently, there are two standards for heavy metals in wastewater: wastewater standards and environmental standards. Drainage standards require that all wastewater must not exceed the standard value, whereas environmental standards require that all wastewater must not exceed the standard value. These are strict regulatory values, and it is desirable to achieve them, but in recent years, local governments have begun to implement measures to prevent environmental pollution and protect the health of residents.
There are cases in which standard values close to environmental standards are set in addition to wastewater standards and are made mandatory as wastewater standards, and there is a growing need for the development of technology to clear environmental standards in wastewater treatment. ing. Currently, when heavy metals are contained in wastewater, there are few cases in which only a single metal is present, and in most cases, a mixture of multiple metals is present. It may be possible to adsorb and remove these composite heavy metals using a general heavy metal adsorption chelate resin, but if mercury is included in the composite metals, mercury, along with other heavy metals, will be subject to current environmental standard values. It is extremely difficult to adsorb and remove substances below a certain level of 0.5 ppb. Furthermore, when mercury is adsorbed on a general heavy metal adsorption chelate resin, it is difficult to elute and recover the mercury, so the amount of heavy metals adsorbed by the resin decreases each time it is regenerated, making it uneconomical. Taking these points into consideration, a method for separately adsorbing and separating mercury and other heavy metals has been reported ((1)
JP 52-124763, (2) JP 52-124764). the above
Both (1) and (2) are methods for separating and removing heavy metals in garbage incinerator smoke washing wastewater. (1) is a method that, after pretreatment, is treated with a chelate resin containing nitrogen in the functional group to adsorb heavy metals. This method is then treated with a chelate resin containing sulfur in its functional groups to adsorb and remove mercury. In (2), after pretreatment, the resin is treated with a chelate resin containing sulfur in its functional groups to adsorb mercury. This is a method in which heavy metals other than mercury are adsorbed and removed by treatment with a chelate resin containing nitrogen in the functional group. Method (1) is problematic because it is first treated with a chelate resin containing nitrogen in its functional group, so heavy metals including mercury are adsorbed at the same time, and mercury is mixed in during elution and regeneration. Both (1) and (2) aim to meet wastewater standards, but they do not meet environmental standards. Also (1),
(2) The chelate resins used together are common,
Although thiourea derivatives and thiophenol derivatives are mentioned as functional groups containing sulfur, these functional groups have the disadvantage of having a small exchange capacity and a high lower limit of removal. In addition, amines such as monoamines, diamines, and polyamines, iminodiacetic acid or its derivatives, and amino acids such as glycine or its derivatives are used as nitrogen-containing functional groups, but these all have a small exchange capacity for metal ions and It has the disadvantage that metal recovery rate is low because it is difficult to desorb metal ions during regeneration. Therefore,
As a result of our studies, we have investigated ways to reduce the effluent concentration of mercury to below environmental standard values, to separate mercury from other heavy metals, remove it by adsorption, and recover it, and to effectively use chelate resins for general heavy metal adsorption. ,
Invented an excellent treatment method. In the present invention, the two types of chelate resins having different performances are a mercury adsorption chelate resin that selectively adsorbs mercury, and a general heavy metal adsorption chelate resin that adsorbs heavy metals other than mercury. The chelate resin for mercury adsorption has a dithiocarbamate group as a functional group in a resin matrix such as styrene-divinylbenzene copolymer, phenol, epoxy, acrylic ester, or vinyl chloride. In addition, general heavy metal adsorption chelate resins that adsorb heavy metals other than mercury include styrene-divinylbenzene copolymer systems, phenol systems, epoxy systems,
It has an iminopropionate base and/or an iminodipropionate base as a functional group (the metal of the base is a metal such as sodium, potassium, calcium, or magnesium) in a resin matrix such as vinyl chloride. The present invention enables wastewater containing complex heavy metals including mercury to be
First, it is brought into contact with a chelate resin for adsorbing mercury, and only mercury is selectively adsorbed and removed. As for the contact method,
Possible methods include the batch method, in which a chelate resin is added to wastewater in a container and mixed with stirring, and the column method, in which a resin tower is filled with resin and the wastewater is passed in a downward or upward flow. It is not limited. In the present invention, since two types of chelate resins are used continuously, a column method seems to be preferable. When treating wastewater by the column method, either upward flow or downward flow may be used, but the water flow rate is within the range of 2 to 50 l/hr.l-resin, preferably 5 to 10 l/hr.l- Do this within the range of the resin. However, the water flow rate is not limited to the above range. Since the wastewater treated with the chelate resin for adsorbing mercury still contains other heavy metals, the treated water is brought into contact with a general chelate resin for adsorbing heavy metals to adsorb and remove heavy metals other than mercury. The contact method is the same as that for the chelate resin for mercury adsorption, but a column method is preferred. Moreover, the water flow rate is also the same as that of the chelate resin for mercury adsorption. When the capacity of the chelate resin reaches saturation, the mercury adsorption chelate resin is disposed of by roasting or the like, and the mercury can be recovered and reused. In addition, for general heavy metal adsorption chelate resins that adsorb heavy metals other than mercury, the adsorbed heavy metals are eluted and recovered with mineral acids, etc., and then treated with alkali to regenerate the acid type chelate resin to its original resin form. I can do it. According to the present invention, mercury and other heavy metals in wastewater can be adsorbed and removed to below environmental standard values, and further, mercury can be selectively recovered and reused from wastewater. It has many advantages such as being able to dispose of it without fear of pollution, being able to elute and recover heavy metals other than mercury, and being able to reuse general heavy metal adsorption chelate resins, making it economical and resource-saving. It is also useful. This will be explained in detail below using examples. Example 1 Wastewater (A) was prepared in which the concentrations of various heavy metal ions in the wastewater were close to actual wastewater as shown in Table 1, and the pH was adjusted to 6.

【表】 水銀吸着用キレート樹脂として、フエノール系
樹脂を母体とし、ジチオカルバミン酸基を官能基
として有するキレート樹脂を、また水銀以外の金
属を吸着する一般重金属吸着用キレート樹脂とし
て、エポキシ樹脂を母体とするイミノプロピオン
酸塩基を官能基として有するキレート樹脂を各々
30mlを2本のカラム(内径25mmφ)に充填した。
2本のカラムを水銀吸着用キレート樹脂の充填し
たカラムを上とし、他方を下にして連結し、下向
流にて通水速度5l/hr−l−Resinで廃水(A)を通
液した。上のカラム、および下のカラムから流出
した溶液中の重金属イオン濃度を原子吸光法によ
り測定した。各々キレート樹脂の流出液中の重金
属イオン濃度と通液量との関係を、各々図−1お
よび図−2に示す。 実施例 2 実施例1と同じ2種のキレート樹脂を各々30
ml、2本の連結したカラムに充填した後、表−2
に示すような組成と性状を持つた廃水(B)(実際の
工場廃水)を通水速度5l/hr−l−Resinにて、
下向流により通液した。
[Table] As a chelate resin for adsorbing mercury, a chelate resin with a phenolic resin as the base material and having a dithiocarbamate group as a functional group is used.As a chelate resin for adsorbing general heavy metals that adsorbs metals other than mercury, an epoxy resin as the base material is used. Each chelate resin has an iminopropionate group as a functional group.
30ml was packed into two columns (inner diameter 25mmφ).
Two columns were connected with the column filled with chelate resin for mercury adsorption at the top and the other column at the bottom, and wastewater (A) was passed through it in a downward flow at a water flow rate of 5 l/hr-1-Resin. . The heavy metal ion concentrations in the solutions flowing out from the upper column and the lower column were measured by atomic absorption spectrometry. The relationship between the heavy metal ion concentration in the effluent of each chelate resin and the amount of liquid passed through is shown in Figures 1 and 2, respectively. Example 2 The same two types of chelate resins as in Example 1 were used at 30% each.
ml, after filling into two connected columns, Table-2
Wastewater (B) (actual factory wastewater) with the composition and properties shown in Figure 2 is passed through at a water flow rate of 5l/hr-l-Resin.
The liquid was passed by downward flow.

【表】 水銀吸着用キレート樹脂および一般重金属吸着
用キレート樹脂のカラムの流出液を通液量1000、
2000、3000、4000、5000l/l−Resinの各々の時
点にて分取し、重金属イオン濃度を測定した結果
を表−3に示す。
[Table] Fluid flow rate of column effluent of chelate resin for mercury adsorption and chelate resin for general heavy metal adsorption: 1000,
Table 3 shows the results of fractionating 2000, 3000, 4000, and 5000 l/l-Resin and measuring the heavy metal ion concentration.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

図−1は実施例1における水銀吸着用キレート
樹脂を充填したカラムに0より15000l/l−
Resin迄通液した時の通液中の重金属イオン濃度
(ppm)を示し、図−2は一般重金属吸着用キレ
ート樹脂を充填したカラムに0〜2000l/l−
Resin通液した時の通液中の重金属イオン濃度
(ppm)を示す。
Figure 1 shows the column packed with chelate resin for mercury adsorption in Example 1 at a rate of 0 to 15,000 l/l.
Figure 2 shows the heavy metal ion concentration (ppm) in the liquid when it is passed through the resin.
The heavy metal ion concentration (ppm) in the resin is shown.

Claims (1)

【特許請求の範囲】[Claims] 1 水銀とカドミウム、鉛、亜鉛、銅、ニツケ
ル、アルミニウム、カルシウム、3価クロム、
鉄、銀などの群より選ばれたる一種以上の重金属
を含有する廃水から、ジチオカルバミン酸基を官
能基として有する水銀吸着キレート樹脂を用い
て、水銀を選択的に吸着除去し、次に水銀以外の
重金属をイミノプロピオン酸塩基および/もしく
はイミノジプロピオン酸塩基を官能基として有す
るキレート樹脂を用いて吸着除去することを特徴
とする複合重金属含有廃水の処理方法。
1 Mercury and cadmium, lead, zinc, copper, nickel, aluminum, calcium, trivalent chromium,
From wastewater containing one or more heavy metals selected from the group such as iron and silver, mercury is selectively adsorbed and removed using a mercury-adsorbing chelate resin having a dithiocarbamate group as a functional group. A method for treating wastewater containing complex heavy metals, which comprises adsorbing and removing heavy metals using a chelate resin having an iminopropionate base and/or an iminodipropionate base as a functional group.
JP12742178A 1978-10-18 1978-10-18 Treatment method of waste water containing combined heavy metal Granted JPS5554084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12742178A JPS5554084A (en) 1978-10-18 1978-10-18 Treatment method of waste water containing combined heavy metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12742178A JPS5554084A (en) 1978-10-18 1978-10-18 Treatment method of waste water containing combined heavy metal

Publications (2)

Publication Number Publication Date
JPS5554084A JPS5554084A (en) 1980-04-21
JPS6219914B2 true JPS6219914B2 (en) 1987-05-01

Family

ID=14959538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12742178A Granted JPS5554084A (en) 1978-10-18 1978-10-18 Treatment method of waste water containing combined heavy metal

Country Status (1)

Country Link
JP (1) JPS5554084A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259117U (en) * 1988-10-21 1990-04-27

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596565B2 (en) * 2004-05-28 2010-12-08 ミヨシ油脂株式会社 Heavy metal immobilization treatment composition and heavy metal immobilization treatment method
US7998441B2 (en) * 2007-09-20 2011-08-16 Cvrd Inco Limited Method for selective removal of cadmium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0259117U (en) * 1988-10-21 1990-04-27

Also Published As

Publication number Publication date
JPS5554084A (en) 1980-04-21

Similar Documents

Publication Publication Date Title
Low et al. Removal of metals from electroplating wastes using banana pith
Singh et al. Removal of fluoride from spent pot liner leachate using ion exchange
CN101343093B (en) Method for deeply purifying minim phosphor in water with composite resin
Larsen et al. The use of straw for removal of heavy metals from waste water
Greene et al. Algal sorbents for selective metal ion recovery
Chigondo et al. Removal of lead (II) and copper (II) ions from aqueous solution by baobab (Adononsia digitata) fruit shells biomass
CN104692579B (en) A kind of method of metallurgical off-gas acid-making waste water resource utilization advanced treatment
KR930005921A (en) How to remove heavy metals from waste streams
CN101306347A (en) Preparation method and renovation method of treatment tea for absorbing heavy metal ion in waste water
Haron et al. Sorption of fluoride ions from aqueous solutions by a yttrium‐loaded poly (hydroxamic acid) resin
CN108793323A (en) Synthesized environmental protection method handles basic cobaltous carbonate industrial wastewater Call Provision smithcraft
US4115260A (en) Selective removal of iron cyanide anions from fluids containing thiocyanates
Deorkar et al. An adsorption process for metal recovery from acid mine waste: The Berkeley Pit problem
JPS6219914B2 (en)
WO1994026378A1 (en) Elution of antimony from solid phases
JPH09225298A (en) Resin for adsorbing arsenic and method for recovering arsenic from solution containing arsenic
JPS5815193B2 (en) How to treat boron-containing water
CN115505166A (en) Thiourea modified resin-based nano material, preparation method and method for deeply removing selenate in water by using same
JP4353731B2 (en) Method for removing arsenic in solution
Mohan et al. Removal of Cu (II) by adsorption using casuarina equisetifolia bark
JP2001104807A (en) Method for recovering boron
US3682589A (en) Sorbate extraction of metallic values from aqueous leach solutions
JPH0336592B2 (en)
JEON Mercury ion removal using a packed-bed column with granular aminated chitosan
JP2005002414A (en) Method of recovering noble metal in solution