JPS62199130A - Satellite communication system - Google Patents

Satellite communication system

Info

Publication number
JPS62199130A
JPS62199130A JP4212386A JP4212386A JPS62199130A JP S62199130 A JPS62199130 A JP S62199130A JP 4212386 A JP4212386 A JP 4212386A JP 4212386 A JP4212386 A JP 4212386A JP S62199130 A JPS62199130 A JP S62199130A
Authority
JP
Japan
Prior art keywords
satellite
same
transmission power
earth station
communication system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4212386A
Other languages
Japanese (ja)
Other versions
JPH0547135B2 (en
Inventor
Satoru Ono
悟 大野
Yasuhisa Shimada
嶋田 恭▲しょう▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4212386A priority Critical patent/JPS62199130A/en
Publication of JPS62199130A publication Critical patent/JPS62199130A/en
Publication of JPH0547135B2 publication Critical patent/JPH0547135B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To realize the communication service of the same inoperation rate by setting each transmission power from satellites so as to cancel the deviation of the margin based on rainfall attenuation thereby using an earth station of the same scale nationally. CONSTITUTION:A transmission power per channel in spot beams 1-6 from a communication satellite 7 is set respectively to P1-P6 and earth stations 1c-6c in the service area of each spot beam are provided with the same diame ter of antenna. The transmission power beams P1-P6 are set to offset the deviation among the spot beams in the line margin of down-like. The said setting is realized by using an attenuator to change the gain of a satellite repeater connected to each spot beam. As a result, the equipment of the earth station side is made all the same in scale and the equipments are operated in the inoperation rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は衛星通信方式に関し1%にマルチビームアンテ
ナを搭載した静止通信衛星を介して地球局間で通信を行
う衛星通信方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a satellite communication system, and relates to a satellite communication system in which communication is carried out between earth stations via a geostationary communication satellite equipped with a multi-beam antenna on 1%.

〔従来の技術〕[Conventional technology]

従来から国内を対象として衛星通信方式を構成する一つ
の有効な方法として、静止衛星にマルチビームアンテナ
を搭載して衛星の等価等方放射電力(EI几P)を高め
、地球局を小形に構成しようとする構想が示されている
Conventionally, one effective method for configuring a satellite communication system for domestic use is to mount a multi-beam antenna on a geostationary satellite to increase the satellite's equivalent isotropic radiated power (EI 几P) and to make the earth station smaller. A plan to do so is presented.

準ミリ波帯(Ka、Kuバンド)の周波数を用いて衛星
通信方式上構築する場合には、降雨による電波の減衰(
降雨減衰)が回線計画上の重要な要素となる。一般に、
このような準ミリ波帯を用いた衛星通信方式の信頼度は
、降雨減衰によって回線が不通となる年間の時間率(不
稼働率)で表現される。この不稼働率は回線の使用目的
によって必要な値が決定されるが、通常0.05%程度
を確保することが必要である。
When establishing a satellite communication system using quasi-millimeter wave band (Ka, Ku band) frequencies, radio wave attenuation due to rain (
rain attenuation) is an important factor in line planning. in general,
The reliability of satellite communication systems using such quasi-millimeter wave bands is expressed as the annual percentage of time that lines are disconnected due to rain attenuation (outage rate). The necessary value of this unavailability rate is determined depending on the purpose of use of the line, but it is usually necessary to secure a value of about 0.05%.

準ミリ波帯を用いた衛星通信方式の計画に必要な降雨減
衰は1国内各地につき10年間の降雨データに基づいて
必要な推定値が求められるようになっており(研究実用
化報告2日本電信電話公社電気通信研究所、第28巻、
第8号、1667〜1676頁参照)、通常この推定値
を用いて回線設計が行われている。第1表は全国主要1
2都市における10年間平均の時間率0.05%に相当
するKuバンドのダウンリンク周波数(115GHz)
における降雨減衰量り、9.そのときの受信雑音温度の
増加量ΔN、上記からダウンリンクに要求される回線余
裕度M、D(= 1.、、+ΔN)及び最大の降雨減衰
を示す高知を基準(Oda)とした回線余裕度M、、の
偏差と、アップリンク周波数(14,5GHz)におけ
る降雨減衰量L10(これがアップリンク要要求される
回線余裕度となる)及びその偏差t−dB単位で表示し
たものである。これらの値は衛星の軌道上位置を東経1
50度、地球局受信装置の雑音温度200にと仮定して
上記の文献を用いて算出した。
The rainfall attenuation required for planning a satellite communication system using the sub-millimeter wave band is now estimated based on 10 years of rainfall data for each region of the country (Research Practical Report 2 Nippon Telegraph) Telephone Corporation Telecommunications Research Institute, Volume 28,
No. 8, pp. 1667-1676), circuit design is usually performed using this estimated value. Table 1 shows major 1 nationwide
Ku-band downlink frequency (115 GHz) corresponding to a 10-year average time rate of 0.05% in the two cities
Rainfall attenuation measurement in 9. The amount of increase ΔN in reception noise temperature at that time, the line margins M and D (= 1., +ΔN) required for downlink from the above, and the line margin with Kochi as the reference (Oda) showing the maximum rain attenuation. , the rainfall attenuation amount L10 at the uplink frequency (14.5 GHz) (this is the line margin required for uplink), and the deviation thereof in units of t-dB. These values determine the orbital position of the satellite at 1 east longitude.
Calculations were made using the above literature assuming that the noise temperature of the earth station receiving device was 50 degrees Celsius and 200 degrees Celsius.

以下余白 各数値の単位はいずれもd LI:ダウンリンク降雨減衰量 ΔN=上記降雨減衰量のときの雑音温度増加量M□:ダ
ウンリンク回線余裕度(Lm*+ΔN)L□ニアツブリ
ンク降雨減衰量 第2図は等ビーム幅の6スポツトビームを放射する通信
衛星の各スポットビームのサービスエリアを示す覆域図
であシ、北海道ビーム、東北ビーム、関東・中部ビーム
、関西・中四国ビーム。
The unit of each numerical value in the following margin is d LI: Downlink rain attenuation amount ΔN = Noise temperature increase amount when the above rain attenuation amount M □: Downlink line margin (Lm * + ΔN) L □ Near link rain attenuation amount Figure 2 is a coverage map showing the service area of each spot beam of a communications satellite that emits six spot beams with equal beam widths: Hokkaido beam, Tohoku beam, Kanto/Chubu beam, and Kansai/Chushikoku beam.

先回ビーム、沖縄ビームの6スポツトビームによシ日本
全土を覆うように設定されている。図中に示した12〜
6aの円は、それぞれ上記各ビームのチービスエリアを
表しておル、第1表に示した主要12都市はそれぞれい
ずれか一つのサービスエリアに属している。
The 6-spot beam of the previous beam, Okinawa Beam, is set to cover all of Japan. 12~ shown in the figure
The circles 6a each represent the Chibis area of each beam, and each of the 12 major cities shown in Table 1 belongs to one of the service areas.

第2表は第2図の各サービスエリアに対応する各スポッ
トビームごとに、ダウンリンク、アップリンクに要求さ
れる回線余裕度M1□M工の偏差(関西・中四国スポッ
トを基準としたdB表示)を第1表から求めて示したも
のであシ、ツービスエリア内に複数の都市が含まれる場
合には降雨減衰量の最大な都市の値を用いて表示したも
のであるサービスエリア内の対象となる全都市で必要な
回線信頼度が確保できるようにするため、通常システム
計画の段階ではこのような値が用いられる。
Table 2 shows the deviation (in dB based on Kansai and Chugoku-Shikoku spots) of the line margin required for downlink and uplink for each spot beam corresponding to each service area in Figure 2. ) is determined from Table 1 and is shown here. If the service area includes multiple cities, the value of the city with the largest amount of rainfall attenuation is used to display the target area within the service area. Such values are normally used at the system planning stage in order to ensure the necessary line reliability in all cities in the area.

衛星から送、出される通話路当ル送信電力が全スポット
ビームに対して同じであれば、各地球局で不稼働率0.
05%以上を確保するために必要な回趙余裕度は、第2
表から北海道ビームの地球局では関西・中四国ビームの
地球局に対してダウンリンクで&5dB、アップリンク
で9.5 dB少なくてよいことになる。
If the transmission power per channel transmitted from the satellite is the same for all spot beams, the downtime rate at each earth station is 0.
The degree of margin necessary to secure 0.5% or more is the second
From the table, the Hokkaido beam earth station requires +5 dB less in the downlink and 9.5 dB less in the uplink than the Kansai/Chushikoku beam earth station.

第2表 M、。偏差1M1偏差の単位はdB アップリンクの降雨減衰に対しては、降雨時でも衛星の
受信電力が一定値となるように地球局の送信電力を降雨
時には増加させる送信電力制御が行われるが、ダウンリ
ンクの降雨減衰に対しては適当な制御手段がなく、一般
に地球局受信設備の性能に必要な余裕を持たせることK
よシ対処されている。第2表には、地球局低雑音増幅装
置の雑音温度を一定とし、アンテナ直径のみを変えてダ
ウンリンクの回線余裕度M工の偏差に対処した場合の同
じ不稼働率を確保するために必要なアンテナ直径比を、
最も降雨減衰の少ない北海道ビームの地球局の直径を1
として示しである。
Table 2 M. The unit of deviation 1M1 deviation is dB.To deal with uplink rain attenuation, transmission power control is performed to increase the earth station's transmission power during rain so that the received power of the satellite remains constant even during rain. There is no suitable control means for link rain attenuation, and it is generally necessary to provide the necessary margin for the performance of the earth station receiving equipment.
It's been well taken care of. Table 2 shows what is necessary to ensure the same unavailability rate when the noise temperature of the earth station low-noise amplifier is constant and only the antenna diameter is changed to deal with deviations in downlink line margin M. antenna diameter ratio,
The diameter of the Hokkaido beam earth station with the least rainfall attenuation is 1.
It is shown as follows.

第3図は6スポツトビームを用いた従来の衛星通信方式
のシステム構成の考え方を示すシステム概念図であシ、
通信衛星7aの各スポットビーム1〜6からはそれぞれ
等しい通話路当シ送信電力P0が送信され、各スポット
ビームに対応する地球局1b〜6bのアンテナは図に示
すような直径比で構成されている。例えば、関西・中四
国ビーム4に対応する地球局4b(高知)のアンテナ直
径は北海道ビーム1に対応する地球局1b(札幌)のア
ンテナ直径の37倍である。このように地球局アンテナ
の直径を変えることKよシ、全地域で同じ年間の不稼働
率0.05%を確保でさるように構成されている。
Figure 3 is a system conceptual diagram showing the concept of the system configuration of a conventional satellite communication system using six spot beams.
Each of the spot beams 1 to 6 of the communication satellite 7a transmits the same transmission power P0 per channel, and the antennas of the earth stations 1b to 6b corresponding to each spot beam are configured with a diameter ratio as shown in the figure. There is. For example, the antenna diameter of earth station 4b (Kochi) corresponding to Kansai/Chugoku-Shikoku beam 4 is 37 times the antenna diameter of earth station 1b (Sapporo) corresponding to Hokkaido beam 1. In this way, by changing the diameter of the earth station antenna, the system is configured to maintain the same annual downtime rate of 0.05% in all regions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の衛星通信方式では、年間の不稼働率を一
定とするためには地域に応じて地球局のアンテナ直径を
変えねばならず、同一規模の地球局を全国的に使用でき
ないという問題点がある。
In the conventional satellite communication system mentioned above, in order to maintain a constant annual downtime rate, the antenna diameter of the earth station must be changed depending on the region, and the problem is that the same size earth station cannot be used nationwide. There is.

逆に、同一規模の地球局を使用した場合には地域によっ
て不稼働率が異カリ、同一の信頼度を確保できないとい
う問題点がある。
Conversely, when earth stations of the same size are used, there is a problem that the downtime rate varies depending on the region and it is not possible to ensure the same level of reliability.

本発明の目的は、上述の問題点を除去し、全国どの地域
でも同一規模の地球局を用いて同一不稼働率の通信サー
ビスを受けることができる衛星通信方式を提供すること
である。
An object of the present invention is to provide a satellite communication system that eliminates the above-mentioned problems and allows communication services with the same downtime rate to be received in any region of the country using earth stations of the same scale.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の衛星通信方式は、複数のスポットビームラ放射
するマルチビームアンテナを搭載した静止軌道上の通信
衛星を介して地球局間で通信を行う衛星通信方式におい
て、年間の不稼働率?、あらかじめ定められた値以下と
するために必要なダウンリンクの回線余裕度の前記各ス
ポットビーム相互間における相違を相殺するよりに、前
記通信衛星が前記各スポットビームに送出する通話路当
シ送信電力を設定して構成されている。
The satellite communication system of the present invention is a satellite communication system in which communication is carried out between earth stations via a communication satellite in a geostationary orbit equipped with a multi-beam antenna that emits a plurality of spot beams. , rather than canceling out the difference in the downlink line margin between the respective spot beams, which is necessary to keep the downlink line margin below a predetermined value, the communication channel transmission transmitted by the communication satellite to each of the spot beams is The power is set and configured.

〔実施例〕〔Example〕

次に実施例に基づいて本発明の詳細な説明する。 Next, the present invention will be explained in detail based on examples.

第1図は本発明の一実施例のシステム構成の考え方を示
すシステム概念図である。第1図において、通信衛星7
から各スポットビーム1〜6に送出される通話路当シ送
信電力は同一でなくPI〜P6に設定され、各スポット
ビームのサービスエリア内の地球局1c〜6cはすべて
同一直径のアンテナを備えて構成されている。各ビーム
の送信電力Pl〜P6 は第2表に示したダウンリンク
の回線余裕度M工の各スポットビーム間の偏差を相殺す
るように、P1=P4−&5da、P鵞=: P 4 
 6.8 dB* Ps ””4 3.5’B + P
s= P4 0.4dB 、 P@ : P4  g、
gdaに設定されている。この設定は、例えば各スポッ
トビームに接続される衛星中継器の利得を減衰器などで
変更することにより容易に実施することができる。
FIG. 1 is a conceptual system diagram showing the concept of the system configuration of an embodiment of the present invention. In Figure 1, communication satellite 7
The transmission power for each channel transmitted to each spot beam 1 to 6 is not the same, but is set to PI to P6, and the earth stations 1c to 6c within the service area of each spot beam are all equipped with antennas of the same diameter. It is configured. The transmission power Pl to P6 of each beam is set so as to cancel the deviation between each spot beam of the downlink line margin M shown in Table 2, P1=P4-&5da, P=: P4
6.8 dB* Ps ””4 3.5'B + P
s= P4 0.4dB, P@: P4 g,
It is set to gda. This setting can be easily implemented, for example, by changing the gain of a satellite repeater connected to each spot beam using an attenuator or the like.

以上の説明から明らかなように、衛星から各スポットビ
ームに送出される送信電力Pl−P、を同一とせず、降
雨減衰に基づく回線余裕度M工の偏差を相殺するように
設定することによシ、地球局側をすべて同一規模として
同じ不稼働率を確保することができる。このようなシス
テムを構成すれば、多数使用される地球局の設備を統一
規格で量産することができ、経済的なシステム構成が可
能となる。又、可搬局、移動局は全国どこに移動しても
同一不稼働率で運用できる利点がある。なお、アップリ
ングの降雨減衰に対しては、従来と同様に地球局送信電
力の制御を行う必要がある。
As is clear from the above explanation, the transmission power Pl-P sent from the satellite to each spot beam is not the same, but is set to offset the deviation of the line margin M based on rain attenuation. In addition, it is possible to ensure the same downtime rate by setting all the earth stations to the same scale. By configuring such a system, equipment for earth stations that are used in large numbers can be mass-produced according to unified standards, and an economical system configuration becomes possible. Furthermore, portable stations and mobile stations have the advantage of being able to operate with the same downtime rate no matter where they are moved across the country. Note that in order to prevent uplink rain attenuation, it is necessary to control the earth station transmission power as in the past.

以上、同一ビーム幅の6スポツトビームヲ放射するKu
バンドの衛星通信方式の場合について説明したが、本発
明の技術思想はビーム幅の異なるスポットビームを併用
する場合にも適用でき、又、Kuバンドでな(Kaバン
ドの場合にも適用できることは言うまでもない。
Above, Ku emits 6 spot beams with the same beam width.
Although the case of a satellite communication system in the Ku band has been described, the technical idea of the present invention can also be applied to the case where spot beams with different beam widths are used together, and it goes without saying that it can also be applied to the case of the Ka band. stomach.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明の衛星通信方式によ
れば、地球局の規格を全国同一として同一の不稼働率で
運用することができ、地球局設備の経済化が達成できる
上に、移動局、可搬局は全国いずれの地域に移動しても
同一の不稼働率で運用できるという効果がある。
As explained in detail above, according to the satellite communication system of the present invention, the earth station standards can be made the same throughout the country and can be operated with the same downtime rate, and the earth station equipment can be made more economical. Mobile stations and portable stations have the advantage of being able to operate with the same downtime rate no matter which region of the country they are moved to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のシステム構成を示すシステ
ム概念図、第2図は各スポットビームのサービスエリア
を示す覆滅図、第3図は従来のシステム構成例を示すシ
ステム概念図である。 1〜6・・・・・・スポットビーム、la〜6a・・・
・・・サービスエリア、1b〜5b、lc〜6C・・・
・・・地球局、7゜7a・・・・・・通信衛星。 代理人 弁理士  内 原   晋 率 ! @
Fig. 1 is a system conceptual diagram showing the system configuration of an embodiment of the present invention, Fig. 2 is an overlapping diagram showing the service area of each spot beam, and Fig. 3 is a system conceptual diagram showing an example of the conventional system configuration. . 1-6...Spot beam, la-6a...
...Service area, 1b to 5b, lc to 6C...
...Earth station, 7°7a...Communication satellite. Agent: Susumu Uchihara, patent attorney! @

Claims (1)

【特許請求の範囲】[Claims] 複数のスポットビームを放射するマルチビームアンテナ
を搭載した静止軌道上の通信衛星を介して地球局間で通
信を行う衛星通信方式において、年間の不稼働率をあら
かじめ定められた値以下とするために必要なダウンリン
クの回線余裕度の前記各スポットビーム相互間における
相違を相殺するように、前記通信衛星が前記各スポット
ビームに送出する通話路当り送信電力を設定したことを
特徴とする衛星通信方式。
In order to keep the annual downtime rate below a predetermined value in a satellite communication system that communicates between earth stations via a communication satellite in geostationary orbit equipped with a multi-beam antenna that emits multiple spot beams. A satellite communication system characterized in that the transmission power per communication path transmitted by the communication satellite to each of the spot beams is set so as to offset the difference in required downlink line margin between the spot beams. .
JP4212386A 1986-02-26 1986-02-26 Satellite communication system Granted JPS62199130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4212386A JPS62199130A (en) 1986-02-26 1986-02-26 Satellite communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4212386A JPS62199130A (en) 1986-02-26 1986-02-26 Satellite communication system

Publications (2)

Publication Number Publication Date
JPS62199130A true JPS62199130A (en) 1987-09-02
JPH0547135B2 JPH0547135B2 (en) 1993-07-15

Family

ID=12627171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4212386A Granted JPS62199130A (en) 1986-02-26 1986-02-26 Satellite communication system

Country Status (1)

Country Link
JP (1) JPS62199130A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232323A (en) * 1990-02-08 1991-10-16 Nippon Hoso Kyokai <Nhk> On-satellite radio power equipment
JP2006246375A (en) * 2005-03-07 2006-09-14 Nippon Hoso Kyokai <Nhk> Rainfall attenuation analysis system, division-base attenuation amount analysis system, rainfall attenuation analysis method, and division-base attenuation amount analysis program

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150343A (en) * 1982-03-02 1983-09-07 Nippon Telegr & Teleph Corp <Ntt> Multi-beam satellite communication system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150343A (en) * 1982-03-02 1983-09-07 Nippon Telegr & Teleph Corp <Ntt> Multi-beam satellite communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03232323A (en) * 1990-02-08 1991-10-16 Nippon Hoso Kyokai <Nhk> On-satellite radio power equipment
JP2006246375A (en) * 2005-03-07 2006-09-14 Nippon Hoso Kyokai <Nhk> Rainfall attenuation analysis system, division-base attenuation amount analysis system, rainfall attenuation analysis method, and division-base attenuation amount analysis program

Also Published As

Publication number Publication date
JPH0547135B2 (en) 1993-07-15

Similar Documents

Publication Publication Date Title
CN107018514B (en) Spectrum sharing between aircraft-based air-to-ground communication systems and existing geostationary satellite services
US4689625A (en) Satellite communications system and method therefor
JP2650700B2 (en) Satellite communication method using frequency reuse
US4475246A (en) Simulcast same frequency repeater system
EP0442259A1 (en) Regenerative RF bi-directional amplifier system
US4688259A (en) Reconfigurable multiplexer
JPH09121184A (en) System for transmitting radio signal via geostationary communication satellite
JP2003249884A (en) Apparatus and method for implementing flexible hub- spoke satellite communication network
CN112152695A (en) Low-orbit satellite constellation measuring, operation and control system and method thereof
EP0112896B1 (en) System for compensating polarization errors
US7643827B1 (en) Satellite broadcast communication method and system
US7146131B2 (en) Antenna apparatus of relay system
JPS62199130A (en) Satellite communication system
US20030134594A1 (en) Downlink switching mechanism for a satellite
US6745005B1 (en) Method and apparatus for reducing signal interference in satellite broadcast systems employing terrestrial repeater stations
Kobayashi et al. Study on interference between non-GSO MSS gateway station and GSO FSS earth station under reverse band operation
Agnew et al. The AMSC mobile satellite system
RU2714301C1 (en) Method for retransmitting radio signals from a geostationary orbit
JP3053506B2 (en) Satellite communication system
Gokten et al. Preliminary design of TUSAT satellite communication payload
JPS59138133A (en) System for satellite communication eliminating disturbance of sun
Saeed et al. Very Small Aperture Terminals (VSATs) and Requirments
KR101834074B1 (en) Method and system for satellite communication based on repeater
BERTA et al. A commercial communications satellite system for Japan
JPS62199131A (en) Satellite communication system