JPH03232323A - On-satellite radio power equipment - Google Patents

On-satellite radio power equipment

Info

Publication number
JPH03232323A
JPH03232323A JP2710090A JP2710090A JPH03232323A JP H03232323 A JPH03232323 A JP H03232323A JP 2710090 A JP2710090 A JP 2710090A JP 2710090 A JP2710090 A JP 2710090A JP H03232323 A JPH03232323 A JP H03232323A
Authority
JP
Japan
Prior art keywords
wireless power
satellite
gain
amplifier
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2710090A
Other languages
Japanese (ja)
Inventor
Yutaka Kawaguchi
豊 川口
Tetsuo Yamamoto
哲生 山本
Takashi Uehara
上原 隆司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2710090A priority Critical patent/JPH03232323A/en
Publication of JPH03232323A publication Critical patent/JPH03232323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radio Relay Systems (AREA)

Abstract

PURPOSE:To keep the output power of a radio power equipment mounting on an artificial satellite to an irreducible minimum and to extremely miniaturize this equipment in comparison with the conventional equipment by respectively changing the equivalent isotropic radiation power(EIRP) of radio waves at every area by corresponding to rainfall condition at every area. CONSTITUTION:The radio wave received by a reception antenna 1 passes through a frequency converter 2 of a receiver, is subjected to hexapartition by a distributor 3 and guided to six variable gain amplifiers (8-1)-(8-6). Each variable gain amplifier 8 is composed of a variable attenuator 9 and an amplifier 10 whose gain is fixed, and according to gain information composed of a reception level, etc., corresponding to the rainfall condition at every area, the attenuation amount of the variable attenuator 9 is changed. Corresponding to such a change in the amplified gain, the EIRP of the radio waves to the radiated from a transmission antenna 5 to the respective areas is respectively changed. The gain information is respectively transmitted to the amplifiers (8-1)-(8-6) separately from a signal to be repeated, and by using this information, the power supply voltage, etc., of each amplifier 8 is controlled so a to executed the optimum amplifying operation corresponding to respective inputs.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、放送衛星、通信衛星などの人工衛星に搭載し
て地上の複数地域に向は電波を放射する衛星搭載無線電
力装置に関し、特に、地上の降雨状況に応じ、無線電力
を効率よく放射し得るようにしたものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a satellite-mounted wireless power device that is mounted on an artificial satellite such as a broadcasting satellite or a communication satellite and radiates radio waves to multiple areas on the ground. This system is designed to efficiently radiate wireless power according to the rainfall conditions on the ground.

(発明の概要) 放送・通信用人工衛星のサービス領域を複数地域に区分
し、搭載無線電力増幅器の出力と送信アンテナ利得との
積からなる等価等方放射電力(EIRP)を、各サービ
ス地域の降雨による伝搬損失増大の状況に応じ、各地域
毎の電力増幅器出力を予備の高出力増幅器に切替え、も
しくは、可変利得を増大させるなどして増大させること
により、変化させ得るようにしたものであり、その結果
、搭載無線電力装置の小型化が可能となる。
(Summary of the invention) The service area of a broadcasting/communications satellite is divided into multiple areas, and the equivalent isotropic radiated power (EIRP), which is the product of the output of the onboard wireless power amplifier and the transmitting antenna gain, is calculated for each service area. In response to increased propagation loss due to rain, the power amplifier output for each region can be changed by switching to a backup high-output amplifier or increasing the variable gain. As a result, it becomes possible to downsize the on-board wireless power device.

(従来の技術) 従来の1:の種の人工衛星においては、地球向は無線送
出信号の受信地域の降雨による受信電力低下を補償する
ために、各サービス領域毎のE[RPに一律のマージン
を含めて搭載無線電力装置の設計を行なっていたので、
全域晴天時の所要電力から見て極めて大型の電力装置と
なった。そのマージンの設定に当っては、従来も、各地
域毎に異なる降雨量に応じて各地域毎に異なる値のマー
ジンを設定する、という考えはあったが、マージンの設
定値が固定されており、刻々の降雨状況に応して変化さ
せるようには考えられていななつたために、結局、各地
域毎の受信電力低下の最大値を補償し得る大きい値のマ
ージンを設定せざるを得ず、大型無線電力値!搭載の必
要性には余り変わりがなかった。
(Prior art) In conventional artificial satellites of the type 1:, a uniform margin is applied to E[RP for each service area in order to compensate for a drop in reception power due to rainfall in the reception area of the radio transmission signal towards the earth. I was designing the on-board wireless power device, including
This is an extremely large power device considering the amount of power required when the entire area is sunny. When setting the margin, the idea was to set a different value for each region depending on the amount of rainfall that varies in each region, but the margin setting value is fixed. , it was not designed to change according to the rainfall situation from moment to moment, so in the end, we had no choice but to set a large margin that could compensate for the maximum decrease in received power in each region. Large wireless power value! There was no significant change in the need for installation.

(発明が解決しようとする課題) すなわち、従来のマージン−律設定においては、高い周
波数領域の電波に対しては降雨による減衰が特に顕著で
あるために極めて大きい値のマージンか必要であり、衛
星搭載無線電力装置が極めて大型となった。例えば、2
2GHz帯の電波に対しては、年間最悪月に約9dBの
降雨減衰が時間率1%で発生するが、この降雨゛減衰に
対しても晴天時に比して遜色のない受信信号品質を確保
するには晴天時の約8倍すなわち9dBの送出電力が必
要となる。したがって、衛星搭載無線電力装置は、晴天
時に必要な電力の約8倍の電力を発生させ得るものでな
ければならず、極めて大型となり、衛星搭載自体が不可
能となる場合もあり得た。
(Problem to be Solved by the Invention) In other words, in the conventional margin-law setting, since the attenuation due to rain is particularly significant for radio waves in the high frequency range, an extremely large margin is required. The onboard wireless power device has become extremely large. For example, 2
For radio waves in the 2 GHz band, rain attenuation of approximately 9 dB occurs at a rate of 1% in the worst month of the year, but even with this rain attenuation, received signal quality comparable to that on sunny days is ensured. Approximately 8 times the power output under clear weather conditions, or 9 dB, is required for this purpose. Therefore, the satellite-mounted wireless power device must be capable of generating about eight times the power required on a clear day, making it extremely large and potentially making it impossible to mount it on the satellite itself.

しかも、かかる大電力装置を搭載した場合には、晴天時
にも所要電力の約8倍の無vI電力を常時送出すること
になり、消費電力の無駄となるのみならず、他の地上通
信・放送ノステムに妨害を与える可能性もあった。
Moreover, when such a high-power device is installed, non-VI power, which is about 8 times the required power, will be constantly sent out even on sunny days, which not only wastes power consumption but also reduces the power consumption of other terrestrial communications and broadcasting devices. There was also the possibility of interfering with Nostem.

(課題を解決するための手段) 本発明の目的は、上述した従来の課題を解決し、降雨減
衰に対しても晴天時に比して遜色のない受信信号品質を
必要最小限度の無線電力送出によって確保し得る衛星搭
載無線電力装置を提供することにある。
(Means for Solving the Problems) An object of the present invention is to solve the above-mentioned conventional problems, and to achieve received signal quality comparable to that in clear weather even when attenuated by rain, by transmitting wireless power to the minimum necessary level. An object of the present invention is to provide a satellite-mounted wireless power device that can be secured.

すなわち、本発明は、降雨か全サービス領域に亘って同
時に発生する確率は極めて小さいことに着目し、サービ
ス領域を複数地域に区分し、降雨発生地域に対してのみ
刻々のEIFIPを増大させることにより、総合の送出
可能電力が過大となるのを防止し、衛星搭載無線電力装
置を小型化して、しかも、各地域毎に適正な無線電力を
放射し得るようにしたものである。
That is, the present invention focuses on the fact that the probability of rain occurring simultaneously across the entire service area is extremely small, and divides the service area into multiple regions and increases the EIFIP moment by moment only for the areas where rainfall occurs. This prevents the total transmittable power from becoming excessive, downsizes the satellite-mounted wireless power device, and makes it possible to radiate appropriate wireless power for each region.

すなわち、本発明衛星搭載無線電力装置は、複数の受信
地域に対して各地域毎の電波をそれぞれ放射する複数個
の無線電力増幅器を備えた衛星搭載無線電力装置におい
て、各地域毎の電波の等価等方放射電力を各地域毎の降
雨状況に応じてそれぞれ変化させることを特徴とするも
のである。
That is, the satellite-mounted wireless power device of the present invention is a satellite-mounted wireless power device that is equipped with a plurality of wireless power amplifiers that radiate radio waves for each region to a plurality of receiving regions. The feature is that the isotropically radiated power is varied depending on the rainfall situation in each region.

(作 用) したがって、本発明衛星搭載無線電力装置においては、
全サービス領域が晴天のときの所要規模を大幅に超えな
い規模の無線電力装置により、各地域毎の降雨減衰に対
して晴天時に比し遜色のない受信信号品質を確保するこ
とができる。
(Function) Therefore, in the satellite-mounted wireless power device of the present invention,
By using a wireless power device with a scale that does not significantly exceed the scale required when the entire service area is sunny, it is possible to ensure received signal quality that is comparable to that during clear weather, despite rain attenuation in each region.

(実施例) 以下に図面を参照して実施例につき本発明の詳細な説明
する。
(Example) The present invention will be described in detail below with reference to the drawings.

まず、本発明適用の好適例とする放送衛星のサービス領
域を6地域に区分した例を第1図に示す。
First, FIG. 1 shows an example in which the service area of a broadcasting satellite, which is a preferred example to which the present invention is applied, is divided into six regions.

図示の例では、日本列島を、北海道、東北、関東、関西
、中国/四国、凡用の6地域に区分し、その各地域向け
にそれぞれ電波ビームを放射するように放送衛星搭載の
無線電力装置を構成しているものとする。なお、かかる
複数電波ビームは、各地域毎に別個の番組を放送するマ
ルチビーム方式とすることができ、あるいは、各地域向
はビームを合成して単ビームとし、各地域に同一の番組
を放送する成形ビーム方式とすることもできる。
In the illustrated example, the Japanese archipelago is divided into six regions: Hokkaido, Tohoku, Kanto, Kansai, Chugoku/Shikoku, and Bonyo, and a wireless power device mounted on a broadcasting satellite is configured to emit radio wave beams to each region. It is assumed that it consists of Note that such multiple radio wave beams can be a multi-beam system that broadcasts separate programs for each region, or the beams for each region can be combined into a single beam and the same program can be broadcast to each region. It is also possible to use a shaped beam method.

本発明衛星搭載無線電力装置においては、かかる複数ビ
ームのうち、降雨地域向はビームについてのみEIRP
を増大させて降雨による受信電力の低下を補償する。し
かして、複数受信地域について降雨地域と晴天地域とを
判別するには、人工衛星からの地上向は放射電波の受信
レベルを各地域毎にモニタし、受信レベルが低下してい
る地域を降雨地域と判定する方法がある。第1図におい
て斜線を施した九州地域かその降雨地域の例であり、図
示の例では九州地域のみEIl’lPを増大させて降雨
による受信レベルの低下を補償することになる。
In the satellite-mounted wireless power device of the present invention, among the plurality of beams, only the beam toward the rainy area is subjected to EIRP.
is increased to compensate for the drop in received power due to rain. Therefore, in order to distinguish between rainy areas and sunny areas in multiple reception areas, the reception level of the radiated radio waves from the satellite towards the ground must be monitored in each area, and the areas where the reception level has decreased are identified as rainy areas. There is a way to determine this. This is an example of the Kyushu region shaded in FIG. 1 or its rainy region, and in the illustrated example, only the Kyushu region increases EIl'lP to compensate for a decrease in reception level due to rain.

つぎに、衛星搭載無線電力装置の好適例とする中継器に
本発明を通用して、複数地域向は放射電波のE[lPを
個別に制御可能にした構成例を第2図に示す。図示の構
成例においては、例えば地上の放送局からの電波を受信
アンテナ1により受けて、受信機の周波数変換器2を介
し、分配器3に導き、それぞれ晴天時の所要ETRPを
送出するように構成して複数受信地域毎に設けた低出力
増幅器6−1乃至6−6に分配するとともに、降雨地域
の受信レベル低下を補償し得るように、少なくとも1台
の高出力増幅器7にも、要すれば図示のようにオンオフ
・スイフチを介して分配し、かかる複数増幅器の出力を
切替器4を介し、例えばマルチホーンに構成した送信ア
ンテナ5から各受信地域向けに放射するように溝成し、
複数台の低出力増幅6−1乃至6−6のうち、受信地域
の降雨発生によりEIRP増大の必要が生じた低出力増
幅器6を高出力増幅器7に切替えてEIRPを増大させ
る。なお、かかる増幅器の切替えは、例えば前述した地
上受信レベル判定の結果に応して制御され、降雨地域が
生ずると、高出力増幅器7が起動され、降雨地域に対応
した低出力増幅器6と切替えられ、切替えられた低出力
増幅器6は動作を停止する。
Next, FIG. 2 shows a configuration example in which the present invention is applied to a repeater which is a preferred example of a satellite-mounted wireless power device, so that E[lP of radiated radio waves for multiple regions can be individually controlled. In the illustrated configuration example, for example, radio waves from a terrestrial broadcasting station are received by a receiving antenna 1, guided to a distributor 3 via a frequency converter 2 of a receiver, and the required ETRP for clear weather is transmitted. In addition to distributing it to low-power amplifiers 6-1 to 6-6 provided in each of a plurality of reception areas, at least one high-power amplifier 7 is also equipped with a Then, as shown in the figure, the outputs of the plurality of amplifiers are distributed via an on-off switch, and the outputs of the plurality of amplifiers are transmitted via a switch 4 to a transmitting antenna 5 configured as a multi-horn, for example, so as to be radiated to each receiving area.
Among the plurality of low output amplifiers 6-1 to 6-6, the low output amplifier 6 whose EIRP needs to be increased due to rainfall in the receiving area is switched to the high output amplifier 7 to increase the EIRP. The switching of the amplifiers is controlled, for example, according to the result of the above-mentioned terrestrial reception level determination, and when a rainy area occurs, the high output amplifier 7 is activated and switched to the low output amplifier 6 corresponding to the rainy area. , the switched low power amplifier 6 stops operating.

また、送信アンテナ5のマルチホーンは受信地域にそれ
ぞれ対応させて構成する。
Further, the multi-horns of the transmitting antenna 5 are configured to correspond to respective receiving areas.

つぎに、本発明を通用し、複数地域向は放射電波のE[
RPを実質的可変利得増幅器の使用により個別に制御可
能にした衛星搭載中継器の他の構成例を第3図に示す0
図示の構成例においては、受信アンテナ1により受けた
電波を受信機の周波数変換器2を介して分配器3により
6分割し、6個の可変利得増幅器8=1乃至8−6に導
く。これらの可変利得増幅器8はそれぞれ可変減衰器9
および固定利得の増幅器10からなっており、例えば前
述したような各地域毎の降雨状況に応した受信レベルな
とからなる利得情報に従って可変減衰器9の減衰量が変
化し、かかる増幅利得の変化に応して送信アンテナ5か
ら各地域向けに放射する電波のEIRPがそれぞれ変化
する。なお、利得情報は、中継すべき信号とは別に増幅
器8−1乃至8−6にそれぞれ伝達され、各増幅器8は
、この利得情報を用いてそれぞれの入力に応じた最適の
増幅動作を行なうように電源電圧などを調整される。か
かる調整機能により、例えば増幅器10に進行波管を用
いた場合にも、その電力効率を極力低下させないように
することもできる。
Next, according to the present invention, for multiple regions, E[
Another configuration example of a satellite-mounted repeater in which the RP can be individually controlled by using a substantially variable gain amplifier is shown in Fig. 3.
In the illustrated configuration example, a radio wave received by a receiving antenna 1 is divided into six parts by a distributor 3 via a frequency converter 2 of the receiver, and is guided to six variable gain amplifiers 8=1 to 8-6. Each of these variable gain amplifiers 8 has a variable attenuator 9.
and a fixed gain amplifier 10, and the amount of attenuation of the variable attenuator 9 changes in accordance with gain information consisting of, for example, the reception level corresponding to the rainfall situation of each region as described above, and such amplification gain changes. The EIRP of the radio waves radiated from the transmitting antenna 5 to each region changes accordingly. Note that the gain information is transmitted to the amplifiers 8-1 to 8-6 separately from the signal to be relayed, and each amplifier 8 uses this gain information to perform the optimal amplification operation according to its input. The power supply voltage etc. are adjusted accordingly. With such an adjustment function, even when a traveling wave tube is used for the amplifier 10, for example, it is possible to prevent the power efficiency from decreasing as much as possible.

(発明の効果) 以上の説明から明らかなように、本発明によれば、人工
衛星搭載の無線電力装置を必要最小限度の出力のものに
して、従来に比し格段に小型化することができる。
(Effects of the Invention) As is clear from the above description, according to the present invention, a wireless power device mounted on an artificial satellite can be made to have the minimum necessary output, and can be significantly miniaturized compared to the conventional method. .

例えば、4チヤネルの電波を放射する放送衛星において
、サービス領域を6分割し、それぞれの受信地域に対し
て晴天時の送信電力25Wで、降雨時に1よりdBの受
信電力低下を補償するようにした場合を想定すると、従
来のETRP固定にした構成では、総合の送信電力が2
5Wx4(チャネル)×6(地域) x 8 (9aB
) = 4,800Wとなる。しかして、例えば放送衛
星搭載無vAt力装置の発生電力は、通例、送信電力の
3倍強程度とするので、上述の場合には、約15,0O
OWの電力を発生させることになり、かかる大電力を発
生させ得る無線電力装置は、従来の人工衛星製作技術に
よっては実現が困難である。
For example, in a broadcasting satellite that emits 4 channels of radio waves, the service area is divided into 6 areas, and each receiving area is set to have a transmitting power of 25 W on sunny days, which compensates for a 1 dB drop in received power during rainy weather. Assuming that, in the conventional fixed ETRP configuration, the total transmission power is 2.
5W x 4 (channel) x 6 (region) x 8 (9aB
) = 4,800W. For example, the power generated by a non-VAT device mounted on a broadcasting satellite is usually about three times the transmission power, so in the above case, the power generated is approximately 15,000
This generates OW power, and it is difficult to realize a wireless power device that can generate such a large amount of power using conventional satellite manufacturing technology.

これに対し、本発明を通用して、例えば前述の例のよう
に九州地域とする降雨地域のみに対し、降雨による9d
Bの受信電力低下を補償するものとし、他の受信地域に
対しては送信電力の補償を行なわないものとすれば、総
合の送信電力は1 、300Wとなり、放送衛星の所要
発生電力は約4,000 Wで足りることになり、従来
の約15,0OOWに比して格段に低減され、無線電力
装置は著しく小型になり、かかる規模の衛星搭載無線電
力装置は従来の製作技術によっても実現可能である。
On the other hand, by applying the present invention, for example, as in the above-mentioned example, only the Kyushu region has 9 d of rain due to rainfall.
If we compensate for the decrease in reception power for B, but do not compensate for the transmission power for other reception areas, the total transmission power will be 1,300W, and the required power generated by the broadcasting satellite will be approximately 4 ,000 W is sufficient, which is significantly reduced compared to the conventional approximately 15,000 W, making the wireless power device significantly smaller, and a satellite-mounted wireless power device of this scale can be realized using conventional manufacturing technology. It is.

したがって、本発明によれば、連敗受信地域における降
雨のない地域に対して、従来のように余分の無線電力を
無駄に送信することもなく、地上の通信・放送システム
に対する混信妨害も著しく軽減される、という顕著な効
果が得られる。
Therefore, according to the present invention, there is no need to wastefully transmit extra wireless power to areas where there is no rainfall in consecutive losing reception areas as in the past, and interference with terrestrial communication and broadcasting systems is significantly reduced. A remarkable effect can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施の対象とする衛星放送サービス地域
複数区分の例を示す線図、 第2図は本発明衛星搭載無線電力装置の構成例を示すブ
ロック線図、 第3図は本発明衛星搭載無線電力装置の他の構成例を示
すブロック線図である。 1・・・受信アンテナ 2・・・周波数変換器 3・・・分配器 4・・・切替器 5・・・受信アンテナ 6−1〜6−6・・・低出力増幅器 7・・・高出力増幅器 8−1〜8−6・・・可変利得増幅器 9・・・可変減衰器 10・・・増幅器
FIG. 1 is a diagram showing an example of multiple divisions of satellite broadcasting service areas targeted for implementation of the present invention, FIG. 2 is a block diagram showing an example of the configuration of the satellite-mounted wireless power device of the present invention, and FIG. 3 is a diagram showing an example of the configuration of the satellite-mounted wireless power device of the present invention. FIG. 3 is a block diagram illustrating another configuration example of the satellite-mounted wireless power device. 1...Receiving antenna 2...Frequency converter 3...Distributor 4...Switcher 5...Receiving antenna 6-1 to 6-6...Low output amplifier 7...High output Amplifiers 8-1 to 8-6...Variable gain amplifier 9...Variable attenuator 10...Amplifier

Claims (1)

【特許請求の範囲】 1、複数の受信地域に対して各地域毎の電波をそれぞれ
放射する複数個の無線電力増幅器を備えた衛星搭載無線
電力装置において、 各地域毎の電波の等価等方放射電力を各地域毎の降雨状
況に応じてそれぞれ変化させることを特徴とする衛星搭
載無線電力装置。 2、前記複数個の無線電力増幅器の等価等方放射電力を
晴天時に対応させるとともに、晴天時に対応する値を超
えた等価等方放射電力の高出力無線電力増幅器を少なく
とも1個備え、各地域の降雨状況に応じ、当該地域に対
応する前記無線電力増幅器を前記高出力無線電力増幅器
に切替えることを特徴とする特許請求の範囲第1項記載
の衛星搭載無線電力装置。 3、前記複数個の無線電力増幅器の等価等方放射電力を
調整可能にして、各地域の降雨状況に応じ、それぞれ対
応する前記無線電力増幅器の等価等方放射電力を変化さ
せることを特徴とする特許請求の範囲第1項記載の衛星
搭載無線電力装置。
[Claims] 1. In a satellite-mounted wireless power device equipped with a plurality of wireless power amplifiers that radiate radio waves for each region to a plurality of reception regions, equivalent isotropic radiation of radio waves for each region is provided. A satellite-mounted wireless power device characterized by varying power depending on the rainfall situation in each region. 2. The equivalent isotropic radiated power of the plurality of wireless power amplifiers corresponds to a clear sky, and at least one high-output wireless power amplifier with an equivalent isotropic radiated power exceeding the value corresponding to a clear sky is provided, and 2. The satellite-mounted wireless power device according to claim 1, wherein the wireless power amplifier corresponding to the region is switched to the high-output wireless power amplifier depending on the rainfall situation. 3. The equivalent isotropic radiated power of the plurality of wireless power amplifiers is adjustable, and the equivalent isotropic radiated power of the corresponding wireless power amplifier is changed according to the rainfall situation in each region. A satellite-mounted wireless power device according to claim 1.
JP2710090A 1990-02-08 1990-02-08 On-satellite radio power equipment Pending JPH03232323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2710090A JPH03232323A (en) 1990-02-08 1990-02-08 On-satellite radio power equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2710090A JPH03232323A (en) 1990-02-08 1990-02-08 On-satellite radio power equipment

Publications (1)

Publication Number Publication Date
JPH03232323A true JPH03232323A (en) 1991-10-16

Family

ID=12211667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2710090A Pending JPH03232323A (en) 1990-02-08 1990-02-08 On-satellite radio power equipment

Country Status (1)

Country Link
JP (1) JPH03232323A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076710A (en) * 2013-10-08 2015-04-20 日本放送協会 Device for determining rainfall attenuation compensation amount, satellite system, and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161940A (en) * 1983-03-07 1984-09-12 Nippon Telegr & Teleph Corp <Ntt> Control system of transmission power for satellite communication
JPS62199130A (en) * 1986-02-26 1987-09-02 Nec Corp Satellite communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161940A (en) * 1983-03-07 1984-09-12 Nippon Telegr & Teleph Corp <Ntt> Control system of transmission power for satellite communication
JPS62199130A (en) * 1986-02-26 1987-09-02 Nec Corp Satellite communication system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015076710A (en) * 2013-10-08 2015-04-20 日本放送協会 Device for determining rainfall attenuation compensation amount, satellite system, and method

Similar Documents

Publication Publication Date Title
US4689625A (en) Satellite communications system and method therefor
US6272679B1 (en) Dynamic interference optimization method for satellites transmitting multiple beams with common frequencies
US5187803A (en) Regenerative rf bi-directional amplifier system
EP1049269B1 (en) Satellite transmission system with adaptive transmission loss compensation
EP0901219B1 (en) Dynamic power allocation system and method for multi-beam satellite amplifiers
US20040092257A1 (en) Scalable satellite area coverage
KR970004432A (en) Low Earth Orbit Satellite Communication System for Closed Loop Power Control
WO1998009372A1 (en) Method of and apparatus for filtering intermodulation products in a radiocommunication system
RU98100194A (en) FEEDBACK POWER MANAGEMENT IN A COMMUNICATION SYSTEM THROUGH LOW ORBIT SATELLITES
US6642883B2 (en) Multi-beam antenna with interference cancellation network
CA2660617C (en) Broadband amplifying device
JP4624517B2 (en) Base station with active antenna
US7643827B1 (en) Satellite broadcast communication method and system
JP2000151493A (en) Improved satellite communication system for distributing rf power to multiplex feed of down link or beam
KR100433152B1 (en) Antenna apparatus of relay system
KR100363216B1 (en) Multi-path repeating method for wireless communiction system and apparatus thereof
JPH03232323A (en) On-satellite radio power equipment
JP2879836B2 (en) Transmission power control method for satellite communication and broadcasting
Kawaguchi et al. Application of phased-array antenna technology to the 21 GHz broadcasting satellite for rain-attenuation compensation
EP3242413B1 (en) Power system for a satellite
KR100539407B1 (en) RF relay station of Digital Multi-Media Broadcasting using 2.6 GHz frequency
JP2664570B2 (en) Antenna device
JPS59161940A (en) Control system of transmission power for satellite communication
KR100292713B1 (en) Apparatus for varying transmission-receive coverage in BTS using active antenna
KR200252512Y1 (en) Antenna apparatus of relay system