JPS62198731A - Method and device for sampling - Google Patents

Method and device for sampling

Info

Publication number
JPS62198731A
JPS62198731A JP61041297A JP4129786A JPS62198731A JP S62198731 A JPS62198731 A JP S62198731A JP 61041297 A JP61041297 A JP 61041297A JP 4129786 A JP4129786 A JP 4129786A JP S62198731 A JPS62198731 A JP S62198731A
Authority
JP
Japan
Prior art keywords
carrier liquid
liquid
hydrophilic membrane
contact
specific component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61041297A
Other languages
Japanese (ja)
Inventor
Yoichi Ishikawa
陽一 石川
Mitsunori Kaneko
金子 光範
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawa Seisakusho Ltd
Original Assignee
Ishikawa Seisakusho Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawa Seisakusho Ltd filed Critical Ishikawa Seisakusho Ltd
Priority to JP61041297A priority Critical patent/JPS62198731A/en
Publication of JPS62198731A publication Critical patent/JPS62198731A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To prevent a hydrophilic film from being clogged and to enable the hydrophilic film to be used for a long period by bringing sample liquid into contact with one surface of the hydrophilic film and carrier liquid into contact with the other surface. CONSTITUTION:When the carrier liquid is sent from an intake pipe 3 to an enzyme electrode 16 by pressure, it is discharged from an outlet pipe 4 through the pipe 3, the longitudinal hole 12 of a sampling part 1, a flow passage 8 contacting the hydrophilic film 9, a mixer 13, the longitudinal hole 21 of an electrode cell 2, a measurement chamber 22, and the lateral hole 23 of the cell 2. The carrier liquid is fed and stopped periodically and repeatedly through this path, a specific material in the sample liquid which penetrates the film 9 during stop periods is diffused in the carrier liquid, mixed in the mixing chamber 13 during pressure feed periods, and sent to the measurement chamber 22. At the same time, part of the carrier liquid is formed out of the film 9 to the sample liquid side to back-wash the film 9, which is therefore prevented from being clogged and usable for a long period.

Description

【発明の詳細な説明】 発明の背景 不発明は蛋白や固形物を含んだ被検液や測定装置の測定
濃度範囲を越え友高濃度の特定成分一度を連続的にまた
は回分的に測定するためのサンプリング方法及び装置に
係る。
[Detailed Description of the Invention] Background of the Invention The invention is for the purpose of continuously or batchwise measuring a specific component at a high concentration beyond the measurement concentration range of a test liquid containing proteins or solids or a measuring device. pertains to sampling methods and devices.

従来の技術 血液、培養液や食品のような被検液中の特定成分濃度を
測定する場合測定前に被検液中の蛋白や固形分を除去す
る必要があることが多い。
BACKGROUND ART When measuring the concentration of a specific component in a test liquid such as blood, culture solution, or food, it is often necessary to remove proteins and solids from the test liquid before measurement.

そのため前処理として遠心分陥、f過、透析等の手法が
用いられている。これらの前処理は一般的に回分的な測
定に用いられているが処理後の試料を測定に供する沈め
に何らかの手段で測定装置まで移動または帽送する必要
があり、これが操作の煩雑さ一?測定のおくれの原因と
なっている。これらの操作を自動的に行なおうとすると
装置が複雑にならざるをえなかった◎さらに遅硬測定を
行なう場合これらの前処理を連続的に行なうことは数々
の制約を受ける。
Therefore, methods such as centrifugal separation, f-filtration, and dialysis are used as pretreatment. These pretreatments are generally used for batch measurements, but it is necessary to transport or transport the treated sample to the measuring device by some means before it can be submerged for measurement, which adds to the complexity of the operation. This causes a delay in measurement. If we tried to perform these operations automatically, the equipment would have to become complicated. Furthermore, when performing slow hardness measurements, there are a number of restrictions on continuously performing these pretreatments.

例えは遠心分111it−:+i続的に行なうには大雪
の被検液が必要であg、e過や透析ではf材や透析膜の
目づまりを生ずる。目づまりを防ぐには周期的な逆洗機
構が有効であるがこれを装置化すると一般的には複雑な
ものとなる。
For example, if centrifugation is carried out continuously, a large amount of sample liquid is required, and in e-filtration or dialysis, clogging of the material and the dialysis membrane occurs. A periodic backwashing mechanism is effective in preventing clogging, but it is generally complicated when implemented as a device.

また測定4M直の測定濃度範囲が低い場合希釈操作が必
要でめる。例えば血液1食品や培養液中のブドウ硝を測
定する場合過酸化水素電極ま腋 次は#素1t4iiの検出部に固定化#索−を密潰し九
構造の酵素1極が用いられるが、この電極で連続的に測
定できるブドウ81濃度は200 ppm以下で1)り
、被検液は一般的にこの濃度の10倍以上あるので槽々
の希釈機構が工夫されている。
Also, if the measurement concentration range of 4M direct measurement is low, dilution operation may be necessary. For example, when measuring grape nitrate in blood 1 food or culture solution, an enzyme 1 electrode with a 9-structure is used, with the hydrogen peroxide electrode or the armpit being tightly crushed with the #element 1t4ii immobilized on the detection part. The concentration of Grape 81 that can be continuously measured with an electrode is 200 ppm or less (1), and the test liquid generally has a concentration more than 10 times this concentration, so a dilution mechanism for each tank has been devised.

例えば血糊の回分測定器では希釈液を一定量測定容器に
採り、ここに血清1i−数ミクロンリッター注入して固
定化酸素編上での過酸化水素の生成速度や酸素の減少速
度を測定する方法が一般的に用いられているか、この方
法で連続測定をすることは難かしい。血糖の連続分析法
として透析液を分析する方法があるが、透析膜が目づt
すをおこす九め透析量が安定せずその九め信頼性の高い
測定か難かしい。
For example, in a batch measuring device for blood glue, a fixed amount of diluted liquid is taken into a measuring container, and 1i-several microliters of serum is injected into it to measure the production rate of hydrogen peroxide and the rate of decrease of oxygen on the immobilized oxygen layer. is commonly used, and it is difficult to perform continuous measurements using this method. There is a method to analyze dialysate as a continuous blood sugar analysis method, but the dialysis membrane is not visible.
The ninth problem is that the dialysis volume is unstable, making it difficult to measure it reliably.

発明の開示 本発明はこれらの欠点を克服し、血液、培養液や食品の
ような蛋白や固形物が入り7を被検液から特定成分をサ
ンプリングする方法と装置全提案するもので被検液に溶
解している特定成分全透過しうる親水性膜の被検液との
接触面の反対面に接して形成した流路にキャリア液を周
期的に速度を変えて送液することt−特徴とする。
DISCLOSURE OF THE INVENTION The present invention overcomes these drawbacks and proposes a complete method and apparatus for sampling specific components from test fluids containing proteins and solids such as blood, culture fluid, and food. A carrier liquid is sent to a flow path formed on the opposite side of the surface in contact with the test liquid of a hydrophilic membrane that can completely permeate specific components dissolved in the liquid, while periodically changing the speed. shall be.

即ち1本発明は被検液中に##L”Cいる特定成分を選
択的にキンプリングする方法であって。
That is, one aspect of the present invention is a method for selectively kimpling a specific component ##L''C in a test liquid.

その特定成分を透過しうる親水性膜の片面を該被検液に
接触さゼ、一方該親水性編の他の面を流動しているキャ
リヤ液に接触させ、よって騙時定成分は被検液より該親
水性膜を透過して該キャリヤ液中に移動し、前記キャリ
ヤ液を周期的に速度を変えて送液することを%徴とする
サンプリング方法t−提供し、さらに所望の特定成分が
溶解している被検液と接触すべき親水性膜と%被検液接
触面と反対側の親水性膜面に接触して形成され次キャリ
ヤ液が流通する流路と、流路にキャリヤ8!を圧送する
ポンプと、ポンプによるキャリヤ液圧送速度を自動又は
手動にて周期的に変える制御装置イすることを特徴とす
るサンプリング装置をも提供する。
One side of the hydrophilic membrane, which is permeable to the specific component, is brought into contact with the test liquid, while the other side of the hydrophilic membrane is brought into contact with the flowing carrier liquid, so that the time-limiting component passes through the test liquid. A sampling method is provided in which a sample is transferred from a liquid through the hydrophilic membrane into the carrier liquid, and the carrier liquid is fed at a rate that is changed periodically, and furthermore, a desired specific component is A hydrophilic membrane that is to be in contact with the test liquid in which a 8! The present invention also provides a sampling device comprising a pump for pumping a carrier liquid under pressure, and a control device for periodically changing the speed at which the carrier liquid is pumped by the pump, either automatically or manually.

本発明の効果的な実mは、前記キャリヤ液を親水性膜に
接して形成されている細長の流路に送液し九〇、上流か
らキャリア液の圧送、停止をくり返し友9.ギヤリア液
の停止時間中上流及び下流の流路を閉じて親水性膜に接
するキャリア液を静止させこの中に被検液中の特定成分
を拡散さセることにより【達成できる。例えばキャリア
液の送液停止を周期的に行なうとキャリア液が停止して
いる間に親水性膜を透過して被検液中の特定物′JII
がキャリア液中に浸透し送液したときゃ定′#l7Ji
t−含んだfLwI中のキャリア液が押し出される。こ
れt−測定#tlに供給すると特定物i*rRt−測定
することができる。キャリア液t−流路に圧送すると親
水性膜面からキャリア液の一部が押し出されMを逆洗す
ることになるので膜に目づまりが生ぜず、長期的に膜が
使用できる。誤はチューブ状に形成しチューブを流路と
してもよい。特定w4質がキャリア液中に透析される童
は流路に面する親水性膜の面積に比例するので、測定装
置の測定濃度範囲にあわせて平膜状にするかチューブ状
にするか選択するとよい。
An effective embodiment of the present invention is to send the carrier liquid to a long and narrow channel formed in contact with a hydrophilic membrane, and repeat pressure feeding and stopping of the carrier liquid from upstream. This can be achieved by closing the upstream and downstream flow channels during the Gearia liquid stop time to keep the carrier liquid in contact with the hydrophilic membrane stationary and allowing the specific components in the test liquid to diffuse into the carrier liquid. For example, if the feeding of the carrier liquid is stopped periodically, specific substances in the test liquid may pass through the hydrophilic membrane while the carrier liquid is stopped.
When it penetrates into the carrier liquid and sends the liquid, it becomes constant.
The carrier liquid in the t-containing fLwI is forced out. If this is supplied to t-measurement #tl, a specific object i*rRt- can be measured. When the carrier liquid is pumped into the T-channel, a part of the carrier liquid is pushed out from the hydrophilic membrane surface and backwashes M, so the membrane is not clogged and can be used for a long time. Alternatively, it may be formed into a tube shape and the tube may be used as a flow path. Since the area of a specific W4 substance being dialyzed into a carrier liquid is proportional to the area of the hydrophilic membrane facing the flow path, it is best to choose between a flat membrane shape and a tube shape depending on the measurement concentration range of the measuring device. good.

実施例 次に本発明を図面に表わし九実施例に従ってr’、Pa
に説明する。
Examples Next, the present invention is illustrated in the drawings, and according to nine examples, r', Pa
Explain.

先ず第1〜4図に表わした実施例において。First, in the embodiment shown in FIGS. 1-4.

電■セル2、キャリア液入ロバイブ5、出口バイブ4、
及び電極ガイド5は一体に形成されておりサンプリング
部1と袋ナンド6によってシリ;ンゴム板7t−介して
固定されているOサンプリング部1の先端にはキャリア
液の流れる流路8が形成されており、親水性41A9が
Q リング10、ワラツヤ−11にはさまれて固定され
球状の先端部分にVB層している。ここに酵素電極2作 16t−さし込みワッシャー七嘘を介して袋ナツトL1
で電極16t−固定する。電極16は過酸化水素゛成極
の検出部に固定化#素膜18゛を密清しナイロンネット
19i介しCoりング20で固定しである。この電極に
キャリア液入ロバイブ5からキャリア液を圧送するとパ
イプ5.サンプリング部中の縦孔12、親水性膜9と接
する流路8.混合器15.&IE他セルの縦孔21゜測
定室22電傷セル横孔23を通って出口バイブ4から排
出される。
Electric cell 2, carrier liquid filled vibrator 5, outlet vibrator 4,
The electrode guide 5 is integrally formed with the sampling part 1 and the bag pad 6, and a channel 8 through which the carrier liquid flows is formed at the tip of the O sampling part 1, which is fixed via a silicone rubber plate 7t. The hydrophilic 41A9 is sandwiched and fixed between the Q ring 10 and the Wara gloss 11, and a VB layer is formed on the spherical tip. Here are two enzyme electrodes, 16t, and a bag nut L1 through the washer and seven lie.
to fix the electrode 16t. The electrode 16 is constructed by fixing an immobilized #element film 18 on a detection part for hydrogen peroxide polarization and fixing it with a coring ring 20 through a nylon net 19i. When the carrier liquid is pumped to this electrode from the carrier liquid-filled tube 5, the pipe 5. Vertical hole 12 in the sampling section, flow path 8 in contact with hydrophilic membrane 9. Mixer 15. &IE is discharged from the outlet vibrator 4 through the vertical hole 21° of the other cell, the measurement chamber 22, and the horizontal hole 23 of the electric wound cell.

この径路中混合d口13はグラスウール14及びガラス
ピーズ15で形成されている。この径路にキャリア液と
して一部7のバッファ液を圧送、停止を周期的に繰り返
すと停止期間中に親水性膜9を透過した被検液中の特定
物質例えばグルコースがキャリア液中に拡散し圧送期間
中に混合器15で混合されて測定室22に送られ、同時
にキャリア液の一部が親木性膜9から被検液側に押し出
されて親水性膜が逆洗される。
The mixing port 13 in this path is formed of glass wool 14 and glass beads 15. When a part of the buffer solution 7 is pumped as a carrier liquid into this path and stopped periodically, a specific substance in the test liquid, such as glucose, which has passed through the hydrophilic membrane 9 during the stop period, diffuses into the carrier liquid and is pumped. During this period, the carrier liquid is mixed in the mixer 15 and sent to the measurement chamber 22, and at the same time, a part of the carrier liquid is pushed out from the wood-philic membrane 9 to the test liquid side, and the hydrophilic membrane is backwashed.

中ヤリア液の停止及び圧送期間は測定器に送られるキャ
リア液の特定物質濃度が#素電極の測定範四になるよう
遍轟に選択すればよい。
The period for stopping and pumping the medium carrier liquid may be selected uniformly so that the concentration of the specific substance in the carrier liquid sent to the measuring device falls within the measurement range of the #element electrode.

不電極を蒸気殺菌するには酵素電極16をとりのぞいて
本電極t−破検槽にとりつけ蒸気殺菌して酵素電極をさ
し込んでワッシャー241にはめ袋ナツト25でおさえ
ればよい。
To steam sterilize the non-electrode, remove the enzyme electrode 16, attach it to the main electrode T-failure test tank, steam sterilize it, insert the enzyme electrode, and hold it in the washer 241 with the bag nut 25.

w、5図は本発明の他の実施例t−示す。入口バイブ5
から送られたキャリヤ液は外筒26と内筒27の関1!
Jを通って先端に備えた濃の内側に達し混合器13t−
通過したのち酵素―他16の検出部に達しtaと円筒の
間1!Jt4つて出口バイブ4から排出される。この実
施例では出口バイブ、入ロバイブ以外殆んど旋盤加工で
形成できるので製作が容易なことが特徴である。本セン
サーにおいても送液速度を周期的に変えることによって
先の実施例と同様な効果を得ることができる。
Figure 5 shows another embodiment of the invention. Entrance vibe 5
The carrier liquid sent from the outer cylinder 26 and the inner cylinder 27 is the barrier 1!
It passes through J and reaches the inside of the thickener provided at the tip of the mixer 13t-
After passing through, the enzyme reaches the other 16 detection parts and 1 between ta and the cylinder! Jt4 is discharged from the exit vibrator 4. This embodiment is characterized in that it is easy to manufacture, since most of the parts other than the exit vibrator and the input vibrator can be formed by lathe processing. In this sensor as well, the same effect as in the previous embodiment can be obtained by periodically changing the liquid feeding rate.

送液速度は圧送停止を周期的にゆり返すのが簡便である
が圧送速度を変え7tり圧送、吸引を周期的に、礫す返
してもよい。この場合圧送量を吸引量より多くする必要
かある。
It is convenient to change the liquid feeding speed by periodically stopping the pumping, but it is also possible to change the pumping speed and periodically repeat the pumping and suction by changing the pumping speed. In this case, is it necessary to make the pumping amount larger than the suction amount?

第5図は本発明の5AM例のシステム図を示す。FIG. 5 shows a system diagram of a 5AM example of the present invention.

キャリア液36をペリスタポンプ→のポンプ57により
入口バイブ5から親水性膜9で形成したチューブ9に送
り出口バイブ4t−趨して測定器へ送り込む。出口バイ
ブrc m gし九出ロチューブ29をつぶして流路を
閉じるピンチバルブ28を設けて−Jdきペリスタポン
プ27が停止し九と同時にピンチバルブ28も閉じると
チューブ9の中のキャリア液は靜止し被検液にm解して
いる特定成分かキャリア液に拡散する0ここでピンチバ
ルブ28f:用いるのはこれがないと出ロチェープ29
の出口と被検液の液面の静水圧によりチューブ内外の液
の移動がおこり特定物質の拡散速度が安定しないためで
めろ0本実施例に示すように被検液にサンプリング装置
だけをとりつけ下流に測定装置!f1に設けてもよい。
The carrier liquid 36 is sent from the inlet vibrator 5 to the tube 9 formed of the hydrophilic membrane 9 by the peristaltic pump 57, and is fed into the measuring instrument via the outlet vibrator 4t. When the peristaltic pump 27 is stopped and the pinch valve 28 is closed at the same time, the carrier liquid in the tube 9 becomes still. A specific component dissolved in the test liquid or diffused into the carrier liquid is used here.
The movement of the liquid inside and outside the tube occurs due to the hydrostatic pressure between the outlet of the tube and the liquid surface of the test liquid, making the diffusion rate of the specific substance unstable.As shown in this example, only the sampling device is attached to the test liquid. Measuring device downstream! It may be provided at f1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の断面図である。 第2図は第1図のサンプリング部1の先端部図は本発明
を適用し九個の実施例装置の断11klft示す。を九
、746図は本発明方法の実施例をフローシステムで示
す。 図中 キャリヤ液流路8、親木性膜?、キャリヤ液入6
.ポンプ27である。
FIG. 1 is a sectional view of one embodiment of the present invention. FIG. 2 is a front end view of the sampling section 1 shown in FIG. 1, and shows a cross section of nine embodiments of the apparatus to which the present invention is applied. Figure 9, 746 shows an embodiment of the method of the present invention in a flow system. In the figure: Carrier liquid flow path 8, wood-philic membrane? , carrier liquid container 6
.. This is the pump 27.

Claims (1)

【特許請求の範囲】 1、被検液中に溶解している特定成分を選択的にサンプ
リングする方法であつて、その特定成分を透過しうる親
水性膜の片面を該被検液に接触させ、一方該親水性膜の
他の面を流動しているキャリヤ液に接触させ、よつて該
特定成分は被検液より該親水性膜を透過して該キャリヤ
液中に移動し、前記キャリヤ液を周期的に速度を変えて
送液することを特徴とするサンプリング方法。 2、上記流路に上流からキャリア液を圧送、停止をくり
返すことを特徴とする特許請求の範囲第1項記載のサン
プリング方法。 3、キャリア液の停止時間中上流及び下流の流路を閉じ
て親水性膜に接するキャリア液を静止させこの中に被検
液中の特定成分を拡散させることを特徴とする特許請求
の範囲第2項記載のサンプリング方法。 4、特定成分が溶解している被検液と接 触すべき親水性膜と、被検液接触面と反対側の親水性膜
面に接触して形成されたキャリヤ液が流通する流路と、
流路にキャリヤ液を圧送するポンプと、ポンプによるキ
ャリヤ液圧送速度を自動又は手動にて周期的に変える制
御装置を有することを特徴とするサンプリング装置。
[Claims] 1. A method for selectively sampling a specific component dissolved in a test liquid, which comprises bringing one side of a hydrophilic membrane that is permeable to the specific component into contact with the test liquid. , while the other side of the hydrophilic membrane is brought into contact with a flowing carrier liquid, so that the specific component passes through the hydrophilic membrane from the test liquid and moves into the carrier liquid, and A sampling method characterized by feeding the liquid at periodically different speeds. 2. The sampling method according to claim 1, wherein the carrier liquid is repeatedly fed under pressure into the flow path from upstream and stopped. 3. During the suspension time of the carrier liquid, the upstream and downstream channels are closed to keep the carrier liquid in contact with the hydrophilic membrane stationary and diffuse the specific component in the test liquid into the carrier liquid. Sampling method described in Section 2. 4. A hydrophilic membrane to be in contact with a test liquid in which a specific component is dissolved, and a channel through which a carrier liquid formed by contacting the hydrophilic membrane surface on the opposite side to the test liquid contact surface flows;
1. A sampling device comprising: a pump that pumps a carrier liquid into a flow path; and a control device that periodically changes automatically or manually the speed at which the carrier liquid is pumped by the pump.
JP61041297A 1986-02-26 1986-02-26 Method and device for sampling Pending JPS62198731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61041297A JPS62198731A (en) 1986-02-26 1986-02-26 Method and device for sampling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61041297A JPS62198731A (en) 1986-02-26 1986-02-26 Method and device for sampling

Publications (1)

Publication Number Publication Date
JPS62198731A true JPS62198731A (en) 1987-09-02

Family

ID=12604524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61041297A Pending JPS62198731A (en) 1986-02-26 1986-02-26 Method and device for sampling

Country Status (1)

Country Link
JP (1) JPS62198731A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885135A (en) * 1981-11-14 1983-05-21 Kimoto Denshi Kogyo Kk Method for measuring concentration of minute amount of material included in fluid
JPS59170742A (en) * 1983-02-17 1984-09-27 Mitsui Toatsu Chem Inc Continuous measuring device of trace material
JPS60125557A (en) * 1983-12-09 1985-07-04 Ishikawa Seisakusho:Kk Concentration detecting sensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5885135A (en) * 1981-11-14 1983-05-21 Kimoto Denshi Kogyo Kk Method for measuring concentration of minute amount of material included in fluid
JPS59170742A (en) * 1983-02-17 1984-09-27 Mitsui Toatsu Chem Inc Continuous measuring device of trace material
JPS60125557A (en) * 1983-12-09 1985-07-04 Ishikawa Seisakusho:Kk Concentration detecting sensor

Similar Documents

Publication Publication Date Title
US5695719A (en) Device for analyzing a fluid medium
US5773298A (en) Successive samples analysis method and analysis apparatus
JP4593451B2 (en) Microreactor system and liquid feeding method
US2899280A (en) Method of fluid analysis
US5672319A (en) Device for analyzing a fluid medium
US3698870A (en) Apparatus for pumping with viscosity control
US10213742B2 (en) Micro flow filtration system and flow filtration method
EP0468516B1 (en) Sample liquid dilution system for analytical measurements
US4955992A (en) Liquid degassing system
US3826615A (en) Fluid system for inclusion in a total automated fluid system of a sample analyzer
WO2005111629A1 (en) Microanalysis apparatus with constant pressure pump system
HU180210B (en) Method and device for continuous detecting concentration of an enzymatic substratum
US3658679A (en) System for determining the hydrogen ion concentration of flowing liquids
US3661010A (en) Fluid sample analyzing apparatus
GB852615A (en) Apparatus and method for biological assays
JPH0222911B2 (en)
JP3422092B2 (en) Liquid sample continuous measuring device and measuring method
JPS62198731A (en) Method and device for sampling
JP3353487B2 (en) Liquid sample continuous measurement device
JP2020079713A (en) Analyzer and concentrator used for analyzer
JP3582188B2 (en) Concentration measurement method
AU601061B2 (en) Liquid degassing system
DK146399B (en) PROCEDURE FOR ENZYMATIC DETERMINATION OF OXIDIZABLE OR REDUCABLE SUBSTANCES AND APPARATUS FOR IMPLEMENTING THE PROCEDURE
JPS60125557A (en) Concentration detecting sensor
JPS63132170A (en) Method for co-cleaning of pipeline of analysis instrument of the like