JPS62198383A - Bioreactor element and its production - Google Patents

Bioreactor element and its production

Info

Publication number
JPS62198383A
JPS62198383A JP4064686A JP4064686A JPS62198383A JP S62198383 A JPS62198383 A JP S62198383A JP 4064686 A JP4064686 A JP 4064686A JP 4064686 A JP4064686 A JP 4064686A JP S62198383 A JPS62198383 A JP S62198383A
Authority
JP
Japan
Prior art keywords
microorganism
layer
pores
liquid
bioreactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4064686A
Other languages
Japanese (ja)
Other versions
JPH072107B2 (en
Inventor
Katsuya Asai
克也 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP61040646A priority Critical patent/JPH072107B2/en
Publication of JPS62198383A publication Critical patent/JPS62198383A/en
Publication of JPH072107B2 publication Critical patent/JPH072107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:The microorganism immobilization layer in which microorganism containing enzymes are immobilized in many pores and can pass through liquid and the microorganism separation layer which can selectively pass through only the liquid in the microorganism suspension are integrated to increase productivity of bioreactions. CONSTITUTION:The objective bioreactor element is integrally composed of the microorganism immobilization layer E1 in which a microorganism such as a bacterium M containing enzymes such as glucamylase are immobilized in its fine pores and the pores can pass through liquid, and of the microorganism separation layer E2 which can selectively pass through only the liquid in the microorganism suspension. In the biochemical reactions by means of the elements, the reaction mixture is allowed to pass through in the arrow direction from the layer E1 to the layer E2, while the microorganism M effects the biochemical reactions to produce the reaction mixture containing the objective compound. The mixture already passed through the layer E2 and is free from the cell bodies of the microorganism. Accordingly, the process with the bioreactor elements according to the present invention is in no need of the step of microorganism separation to increase the production efficiency of the objective product.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生化学反応に使用される酵素を含む微生物を
固定化してなるバイオリアクターエレメントおよびその
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a bioreactor element in which microorganisms containing enzymes used in biochemical reactions are immobilized, and a method for producing the same.

〔従来技術〕[Prior art]

この種のバイオリアクターエレメントを用いた生化学反
応は有機合成、食品工業、分析化学等広い分野で利用さ
れており、またバイオリアクターエレメントを構成する
エレメント基体に酵素を含む微生物(以下これを単に微
生物ということがある)を固定化する手段としては各種
の方法が知られている。
Biochemical reactions using this type of bioreactor element are used in a wide range of fields such as organic synthesis, food industry, and analytical chemistry. Various methods are known as a means of immobilizing (sometimes).

各種の固定化手段の1つとしてエレメント基体に微生物
を物理的に吸着させる物理吸着法があるが、かかる方法
においては微生物とエレメント基体の相互作用が弱いた
め反応中機生物がエレメント基体から遊離し易いという
難点がある。また、他の固定化手段として、水に不溶性
のビーズ状。
One of the various immobilization methods is the physical adsorption method in which microorganisms are physically adsorbed onto the element substrate, but in such methods, the interaction between the microorganisms and the element substrate is weak, so the microorganisms may be released from the element substrate during the reaction. The problem is that it is easy. Other immobilization means include water-insoluble beads.

ペレット状の各種のエレメント基体に微生物を共有結合
させる共有結合法、グルタルアルデヒド。
Glutaraldehyde is a covalent bonding method that covalently bonds microorganisms to various element substrates in the form of pellets.

ビスジアゾベンジジン等2個以上の官能基を持つ架橋剤
を用いてエレメント基体に微生物を架橋する架橋法、イ
オン結合によりエレメント基体に微生物を結合するイオ
ン結合法等があるが、これらの方法においては固定化に
よって微生物の性質が変化しその活性低下が大きいとい
う難点がある。
There are cross-linking methods in which microorganisms are cross-linked to the element substrate using a cross-linking agent having two or more functional groups such as bisdiazobenzidine, and ionic bonding methods in which microorganisms are bonded to the element substrate through ionic bonding. The problem is that immobilization changes the properties of the microorganisms and significantly reduces their activity.

さらにまた、他の固定手段として、寒天、カラギーナン
等の高分子のゲル格子の中に微生物を包み込むか半透膜
性の・高分子皮膜で微生物を被覆する包括法等があるが
、かかる方法におい′ては包括調整時微生物の活性が低
下する難点があり、またゲル表面においてのみ活性を示
すにすぎないため単位菌体童当たりの活性が低いという
一難点がある。
Furthermore, other immobilization methods include an entrapment method in which microorganisms are wrapped in a polymeric gel lattice such as agar or carrageenan, or covered with a semipermeable polymer film; However, there is a problem that the activity of microorganisms decreases during comprehensive adjustment, and another problem is that the activity per unit microorganism is low because it shows activity only on the gel surface.

本出願人はこれらの問題に対処すべく、特願昭58−1
50322号(特開昭60−43382号)出願にて上
記した包括法の難点、を解消するためのバイオリアクタ
ーエレメントを提案しており、また昭和60年12月6
日付特許出願(発明の名称:バイオリアクターエレメン
トおよびその製造法)にて上記した物理吸着法の難点を
解消するためのバイオリアクターエレメントを提案して
いる。しかして、これらのバイオリアクターエレメント
においてはエレメント基体としていずれもセラミックハ
ニカム構造体を採用し、かかる構造体の特性を有効に利
用して微生物の固定の増強と微生物に対する反応液の接
触の増大を図るものである。
In order to deal with these problems, the present applicant has filed a patent application filed in
In the application No. 50322 (Japanese Unexamined Patent Publication No. 60-43382), we proposed a bioreactor element to solve the problems of the comprehensive method mentioned above.
A bioreactor element for solving the above-mentioned difficulties of the physical adsorption method is proposed in a patent application dated 2009 (title of the invention: Bioreactor element and method for producing the same). Therefore, in all of these bioreactor elements, a ceramic honeycomb structure is adopted as the element base, and the characteristics of such a structure are effectively used to enhance the immobilization of microorganisms and increase the contact of the reaction liquid with the microorganisms. It is something.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、これらのバイオリアクターエレメントにおい
ては、反応液が同エレメントを構成するハニカム構造体
の隔壁に沿って流入し生成液として流出するため、同構
造体の隔壁の壁面にて増殖した微生物や同隔壁内かられ
ずかに脱離した微生物が生成液中に懸濁状態で混在する
ので、その後の微生物分離工程は不可欠のものである。
By the way, in these bioreactor elements, the reaction liquid flows in along the partition walls of the honeycomb structure that constitutes the element and flows out as a product liquid, so that microorganisms that have grown on the walls of the partition walls of the structure and the partition walls Since the microorganisms that have been slightly detached from the inside are mixed in the product solution in a suspended state, a subsequent microorganism separation step is essential.

また、これらのバイオリアクターエレメントにおいても
、反応液を固定化微生物の多くのものに短時間に効率よ
く接触させることができず、反応効率の点て改良する余
地がある。
Furthermore, even in these bioreactor elements, it is not possible to bring the reaction solution into contact with many of the immobilized microorganisms efficiently in a short period of time, and there is room for improvement in terms of reaction efficiency.

従って、本発明の目的は、生成液中に微生物が混在する
ことがなくて微生物の分離工程を省略でき、かつ反応液
が極めて多くの固定化微生物にしかも短時間に効果的に
接触し得て反応効率の高いパイオリチクターエレメント
およびその製造法を提供するにある。
Therefore, an object of the present invention is to eliminate the need for microorganism separation steps because no microorganisms are mixed in the product solution, and to enable the reaction solution to effectively contact a large number of immobilized microorganisms in a short period of time. An object of the present invention is to provide a bioreactive element with high reaction efficiency and a method for producing the same.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はかかる目的を達成すべく、その第1の発明は、
多数の細孔内に酵素を含む微生物が固定され液体透過能
を有する微生物固定化層と、微生物懸濁液中の液体のみ
を透過する選択的透過能を有する微生物分離層とを一体
的に備えてなるバイオリアクターエレメントにある。
In order to achieve this object, the first invention of the present invention is as follows:
It is integrally equipped with a microorganism immobilization layer that has microorganisms containing enzymes immobilized in a large number of pores and has a liquid permeability, and a microorganism separation layer that has a selective permeability that allows only the liquid in the microorganism suspension to permeate. It is located in the bioreactor element.

また、本発明の第2の発明は一酵素を含む微生物を栄養
素を含む水溶液に懸濁させてなる微生物懸濁液中に、同
微生物を固定化し得る細孔を有しかつ液体透過能を有す
る第1層と前記懸濁液中の液体のみを透過する選択的透
過能を有する第2層とを一体的に備えたエレメント基体
を浸漬し、減圧脱気により前記第1F!の細孔内の気体
を前記懸濁液と置換し、しかる後前記第1層の細孔内の
微生物を培養、増殖して同細孔内に固定化させることを
特徴とする微生物固定化層と微生物分離層を一体的に備
えてなるバイオリアクターエレメントの製造法にある。
Further, the second invention of the present invention has pores capable of immobilizing microorganisms in a microorganism suspension obtained by suspending microorganisms containing an enzyme in an aqueous solution containing nutrients, and has liquid permeability. An element substrate integrally provided with a first layer and a second layer having a selective permeability that allows only the liquid in the suspension to pass therethrough is immersed, and the first F! A microorganism immobilization layer characterized in that the gas in the pores of the first layer is replaced with the suspension, and then the microorganisms in the pores of the first layer are cultured, multiplied, and immobilized in the pores. and a microbial separation layer.

しかして、本発明において、エレメント基体とは微生物
を固定化する以前のバイオリアクター壬しメント構成部
材を意味し、かかるエレメント基体は第1図に示すよう
に、微生物Mが固定化されて微生物固定化層となる第1
7’!Elとそれ自体で微生物分離層となる第27’!
E2とを一体的に具備している。
Accordingly, in the present invention, the element substrate means a bioreactor component component before immobilizing microorganisms, and as shown in FIG. The first layer becomes
7'! No. 27' which becomes a microbial separation layer with El and itself!
It is integrally equipped with E2.

エレメント基体はアルミナ、シリカ。The element base is alumina and silica.

シリカ−アルミナ、ジルコニア、多孔質ガラス。Silica-alumina, zirconia, porous glass.

カーボン等通常セラミックの構成材料である無機質材料
からなるもので、板状、パイプ状、ハニカム状等反応容
器との関連で適宜の形状に形成される。エレメント基体
の第1層ε1は微生物固定化層になることから、微生物
Mを固定するための多数の細孔E3を備えていることが
肝要であり、かつ微生物固定化層には反応液を透過して
反応を生じさせることから、液体透過能を有することが
肝要である。また、多数の細孔E3の平均孔径は固定化
すべき微生物Mの大きさに関連し、同微生物Mの大きさ
と同等乃至40倍であることが好ましい、孔径が微生物
Mの大きさより小さいと微生物Mが侵入し難く、また孔
径が40倍を越えると細孔E3内にて培養されて増殖し
た微生物が脱離し易い。なお、多数の細孔E3はその全
てが液体透過能を有する必要はないが、多くのものは液
体透過能を有することが必要である。従って、細孔E3
の多くのものは第1JL!Elの両面に開口する連通孔
であり、残りの一部のものは第1FjE1g)いずれか
一方の面にのみ開口する非連通孔であってもよい。本発
明において、空隙率とは第1層ε1における連通孔、非
連通孔の全てを含む細孔E3の空隙に基づく割合で、同
空隙率は微生物Mの固定化量に大きく関係し30%〜8
0%、好ましくは40%〜70%である。空隙率が30
%に満たない場合は微生物の固定化量が不足しかつ80
%を越えると固定化層としての強度上の問題が生じる。
It is made of an inorganic material such as carbon, which is usually a constituent material of ceramics, and is formed into an appropriate shape in relation to the reaction vessel, such as a plate shape, a pipe shape, or a honeycomb shape. Since the first layer ε1 of the element substrate becomes a microorganism immobilization layer, it is important that it has a large number of pores E3 for immobilizing microorganisms M, and the reaction liquid is not allowed to pass through the microorganism immobilization layer. It is important that the material has liquid permeability because it causes a reaction. In addition, the average pore diameter of the large number of pores E3 is related to the size of the microorganism M to be immobilized, and is preferably equal to or 40 times the size of the microorganism M. If the pore diameter is smaller than the size of the microorganism M, the microorganism If the pore size exceeds 40 times, microorganisms that have been cultured and proliferated within the pores E3 are likely to be easily detached from the pores. Note that all of the large number of pores E3 do not need to have liquid permeability, but many of them need to have liquid permeability. Therefore, pore E3
Most of the things are the 1st JL! It is a communicating hole that opens on both sides of El, and the remaining part may be a non-communicating hole that opens only on either side of the first FjE1g). In the present invention, the porosity is a ratio based on the pores of the pores E3 including all communicating pores and non-communicating pores in the first layer ε1, and the porosity is largely related to the amount of immobilized microorganisms M, and is from 30% to 8
0%, preferably 40% to 70%. Porosity is 30
If it is less than 80%, the amount of immobilized microorganisms is insufficient and
If it exceeds %, problems will arise regarding the strength of the immobilized layer.

また、エレメント基体の第2J’!E2はそれ自体で微
生物分離層であり、微生物固定化層を透過した生成液中
にg濁する微生物Mを分離すべく機能させることから、
その細孔E4は微生物Mの大きさより小さく 0.01
μ以上の平均孔径でかつ液体透過能を備えていることが
好ましい。より好ましくは、細孔E4の孔径は微生物M
の大きさの0.5倍〜0.1倍の大きさである。孔径が
0.01μ未満となると、微生物分離層における流通抵
抗が大きくなり、反応液の供給圧力を大きくする必要が
ある。また、第2層ε2(微生物分離N)の厚さは0.
01μ〜toooμであり、好ましくは0.1μ〜10
0μである。第2層ε2の厚さが0.01μ未満の場合
には同層における細孔E4の孔径の調整が難しく、かつ
1000μを越えると同層における生成液の透過時の圧
°力損失が大きくなる。本発明に係るバイオリアクター
エレメントの各層は、かかるエレメント基体の各層El
、E2の構造的特徴をそのまま備えている。
Also, the second J'! of the element base! E2 itself is a microorganism separation layer, and it functions to separate microorganisms M that become cloudy in the product liquid that has passed through the microorganism immobilization layer.
The pore E4 is smaller than the size of the microorganism M by 0.01
It is preferable to have an average pore diameter of μ or more and liquid permeability. More preferably, the pore size of the pore E4 is such that the microorganism M
The size is 0.5 to 0.1 times that of . When the pore size is less than 0.01μ, the flow resistance in the microorganism separation layer becomes large, and it is necessary to increase the supply pressure of the reaction liquid. Further, the thickness of the second layer ε2 (microorganism separation N) is 0.
01μ to toooμ, preferably 0.1μ to 10μ
It is 0μ. If the thickness of the second layer ε2 is less than 0.01μ, it is difficult to adjust the diameter of the pores E4 in the same layer, and if it exceeds 1000μ, the pressure loss during permeation of the product liquid in the same layer becomes large. . Each layer of the bioreactor element according to the present invention is formed by each layer El of the element substrate.
, it has the same structural features as E2.

かかるエレメント基体において、第1r&!Elは通常
のセラミック多孔質体の形成条件と同様の条件にて形成
しかつ焼成、熱処理して得られ、また第2屡ε2は第1
層Elの一側面、内周面または外周面、内壁面または外
壁面等にゾル−ゲル法によるゲル膜の付着、゛微粉末の
高圧圧着、多孔質ガラスの付着等の手段にて形成される
。なお、各層El、ε2における細孔E3 、 E4の
平均孔径、空隙率等は用いる材料の組成、同材料の粉砕
等機械的処理条件、熱処理条件、焼成条件その他分相処
理条件等を適宜選択することにより所望の値に調整し得
る。
In such an element base, the first r&! El is obtained by forming, firing and heat-treating under the same conditions as those for forming ordinary ceramic porous bodies, and the second part ε2 is the first part.
It is formed on one side of the layer El, on the inner or outer circumferential surface, on the inner wall surface or on the outer wall surface, etc. by means such as adhering a gel film by the sol-gel method, high-pressure bonding of fine powder, or adhesion of porous glass. . Note that the average pore diameter, porosity, etc. of pores E3 and E4 in each layer El and ε2 are determined as appropriate based on the composition of the material used, mechanical treatment conditions such as pulverization of the material, heat treatment conditions, firing conditions, and other phase separation treatment conditions. This allows adjustment to a desired value.

本発明において、固定化に用いる微生物Mは特に限定さ
れないが例えば細菌類、放射菌類、カビ類、酵母菌類等
があり、また酵素としてはグルコアミラーゼ、アミノア
シダーゼ、グルコースイソメラーゼ、β−ガラクトシダ
ニゼ、セルラーゼ。
In the present invention, the microorganisms M used for immobilization are not particularly limited, but include, for example, bacteria, actinobacteria, molds, yeasts, etc. Enzymes include glucoamylase, aminoacidase, glucose isomerase, β-galactosidanise, and cellulase. .

インベルターゼ、ア又パラギナーゼ、アスパルターゼ、
カタラーゼ、プロテアーゼ、リパーゼ、リシンデカルボ
キシラーゼ、ヘキソキナーゼ、トリプトファンシンター
ゼ、グリセロールデヒドロゲナーゼ等が挙げられる。な
お、上記した各微生物の大きさは細菌ス1が0.1μ〜
50μ(一般細菌0,5μ〜 lμ)、カビ類2μ〜1
0μ、酵母菌類5#〜10μである。本発明においては
、これらの酵素のいずれかを含む微生物Mを栄養素を含
む水溶液に懸濁させて微生物懸濁液を調整し、同懸濁液
に上記したエレメント基体を浸漬する。次いで、この状
態において減圧脱気によりエレメント基体の第1層E1
の細孔E3内の気体を微生物懸濁液と置換し、しかる後
第1層Elの細孔E3内の微生物Mを培養、増殖させて
同線孔E3内に固定化する。これにより、エレメント基
体の第1層E1は微生物固定化層となり、微生物固定化
層と第2層E2である微生物分離層とを一体的に備えた
バイオリアクターエレメントが得られる。
invertase, amataparaginase, aspartase,
Examples include catalase, protease, lipase, lysine decarboxylase, hexokinase, tryptophan synthase, glycerol dehydrogenase, and the like. In addition, the size of each of the above-mentioned microorganisms is 0.1μ to 1
50μ (general bacteria 0.5μ~1μ), fungi 2μ~1μ
0μ, yeast fungi 5# to 10μ. In the present invention, a microorganism M containing any of these enzymes is suspended in an aqueous solution containing nutrients to prepare a microorganism suspension, and the element substrate described above is immersed in the suspension. Next, in this state, the first layer E1 of the element base is removed by degassing under reduced pressure.
The gas in the pores E3 of the first layer El is replaced with a microorganism suspension, and then the microorganisms M in the pores E3 of the first layer El are cultured, grown, and immobilized in the same pores E3. Thereby, the first layer E1 of the element base becomes a microorganism immobilization layer, and a bioreactor element integrally provided with the microorganism immobilization layer and the second layer E2, which is a microorganism isolation layer, is obtained.

〔発明の作用・効果〕[Action/effect of the invention]

本発明に係るバイオリアクターエレメントを用いた生化
学反応においては、反応液を第1図の矢印で示すように
当該バイオリアクターエレメントの微生物固定化層側か
ら微生切分a層側へ透過し、この間に微生物Mによる生
化学反応を生じさせて目的物を含む生成液を得る。
In the biochemical reaction using the bioreactor element according to the present invention, the reaction solution is permeated from the microorganism immobilization layer side of the bioreactor element to the microorganism a layer side as shown by the arrow in FIG. During this time, a biochemical reaction is caused by the microorganism M to obtain a product liquid containing the target product.

しかして、かかる生成液はすでに微生物分離層を透過し
ているため遊離した微生物rVIを含まず、従って従来
のごとき微生物の分離工程は全く不要で目的の生成液の
生産効率を高め、かつ分離工程の省略により反応装置の
スペースを狭くし得るとともに装置のコストの低減を図
ることができる。
Since the product liquid has already passed through the microbial separation layer, it does not contain free microorganisms rVI, and therefore the conventional microbial separation process is completely unnecessary, increasing the production efficiency of the desired product liquid, and increasing the separation process. By omitting this, the space of the reactor can be narrowed and the cost of the device can be reduced.

また、反応液は微生物固定化層を透過させるものである
から、反応液が微生物固定化層に沿って流動する場合に
比し、極めて多くの固定化微生物に短時間に効率よく接
触させることができ、短時間における反応効率を著しく
向上させることができる。従って、当該バイオリアクタ
ーエレメントを従来のバイオリアクターエレメントと直
列的に併用し、成る程度生化学反応が生ひている反応液
を当該バイオリアクターエレメントに透過すれば、同反
応液はこの透過時点でいつきに反応が進行し、目的とす
る生成液の生産効率を一層高めることができる。
In addition, since the reaction solution permeates through the microorganism immobilization layer, it is possible to contact a much larger number of immobilized microorganisms in a shorter time and more efficiently than when the reaction solution flows along the microorganism immobilization layer. The reaction efficiency can be significantly improved in a short time. Therefore, if this bioreactor element is used in series with a conventional bioreactor element and a reaction liquid in which a biochemical reaction is occurring to some extent is permeated through the bioreactor element, the reaction liquid will be absorbed at the point of permeation. The reaction proceeds to further increase the production efficiency of the desired product liquid.

〔実施例および比較例〕[Examples and comparative examples]

(1)エレメント基体の作製 各隔壁が第1Nおよび第2層の2層構造からなる171
類のハニカム状エレメント基体al−a17を下記の方
法により作製するとともに、各隔壁がコージェライトか
らなる単層構造のハニカム状エレメント基体bl、b2
 (外径5cm、長さ30c+n、セル開口長1mm)
およびb3(外径6印、長さ10cyn、セル開口長1
mm)を従来公知の方法で作製した。
(1) Preparation of element substrate Each partition has a two-layer structure of the 1N layer and the 2nd layer 171
A similar honeycomb element substrate al-a17 was prepared by the following method, and honeycomb element substrates bl, b2 each having a single layer structure in which each partition wall was made of cordierite were prepared.
(Outer diameter 5cm, length 30c+n, cell opening length 1mm)
and b3 (outer diameter 6 marks, length 10 cyn, cell opening length 1
mm) was produced by a conventionally known method.

また、外周が第1Nで内周が第2層の内外2層構造から
なるバイブ状エレメント基体a18を下記の方法により
作製した。
In addition, a vibrator-like element base a18 having a two-layer structure, an inner and outer layer with a first layer on the outer periphery and a second layer on the inner periphery, was produced by the method described below.

(la)コージェライトからなる第1rfiの単層構造
のハニカム構造体(外径5cm、長さ15cm、セル開
口長1mm)を従来公知の方法で各種類作製し、各ハニ
カム構造体の所定の各貫通孔の上下両開口をテープ等を
貼着して閉鎖する。一方、平均粒径1μのα−アルミナ
粉末を湿式粉砕して担持スラリーとなし、同スラリー中
に上記各ハニカム構造体を浸漬して同スラリーを担持さ
せ、乾燥後500℃で約3時間焼成して第1Nと第2層
一体のハニカム状エレメント基体al−w a17を得
た。
(la) Various types of first rfi single-layer honeycomb structures made of cordierite (outer diameter 5 cm, length 15 cm, cell opening length 1 mm) were manufactured by a conventionally known method, and each honeycomb structure was Close both the upper and lower openings of the through hole by pasting tape or the like. On the other hand, α-alumina powder with an average particle size of 1 μm was wet-pulverized to obtain a supported slurry, each of the honeycomb structures described above was immersed in the slurry to support the slurry, and after drying, the slurry was fired at 500°C for about 3 hours. Thus, a honeycomb-like element base AL-WA17 in which the first N and second layers were integrated was obtained.

(lb)コージェライトからなる第1層の単層構造のバ
イブ構造体く外径12mm、内径6mm、長さ10cm
)を従来公知の方法で作製し、同構造体の外周面にテー
プ等編貼着して同外周面を被覆する。かかる構造体を上
記(Ia)項に示した担持スラリーと同様のスラリーに
浸漬して同スラリーを担持させ、乾燥後500℃で約3
時間焼成して、内周に第2層を一体的に備えたバイブ状
エレメント基体a18を得た。
(lb) First layer single-layer vibrator structure made of cordierite, outer diameter 12 mm, inner diameter 6 mm, length 10 cm
) is prepared by a conventionally known method, and the outer circumferential surface of the structure is covered by pasting it with a tape or the like on the outer circumference of the structure. Such a structure was immersed in a slurry similar to the supporting slurry shown in item (Ia) above to support the same slurry, and after drying, it was heated at 500°C for about 30 minutes.
By firing for a period of time, a vib-like element base a18 integrally provided with the second layer on the inner periphery was obtained.

(2)m生物の固定化 (2a)アルコール発酵酵母サツカロミセス・セルビシ
エ(大きさ約5μ)を培養液(酵母エキス0.15%、
 Nll+CI 0.25%、にユIIPO,0,55
%。
(2) Immobilization of m-organisms (2a) Alcohol-fermented yeast Satucharomyces cerevisiae (about 5μ in size) was added to a culture solution (yeast extract 0.15%,
Nll+CI 0.25%, Niyu IIPO, 0.55
%.

Mg5O+−711jL00.025%、 NaC,1
,O:1%、 CaCl、0.001%。
Mg5O+-711jL00.025%, NaC,1
, O: 1%, CaCl, 0.001%.

クエン酸0.3%パ・・全て重量%)にρ115.4で
10ケ/mノ懸濁させる。かかる酵母懸濁液にハニカム
状エレメント基体al〜al?、bl、b2を浸漬し、
アスピレータ−を用いて15分間真空脱脱気ながらエレ
メント基体alzal?、bl、b2の細孔内に懸濁液
を侵入させる。この場合、各エレメント基体a1〜a1
7においては第2Nにより包囲された長手方向の貫通孔
に懸濁液が流入しないように一方の開口端を閉塞した。
Suspend in 0.3% citric acid (all weight %) at ρ115.4 at a rate of 10 pieces/m. Honeycomb-like element substrates al~al? are added to the yeast suspension. , bl, b2 are immersed;
While vacuum degassing using an aspirator for 15 minutes, remove the element substrate. , bl, and b2. In this case, each element substrate a1 to a1
In No. 7, one open end was closed to prevent the suspension from flowing into the longitudinal through hole surrounded by the second N.

次いで、これらの各エレメント基体al−al?、bl
、b2を30℃の恒温槽中にセットし、細孔内に侵入し
た酵母を3日間1盪培養して酵母を増殖させた。これに
より、各エレメント基体al−a17.bl、b2には
酵母が・固定化され、各バイオリアクターエレメントA
t〜AI?、81.82となる。
Next, each of these element substrates al-al? ,bl
, b2 was set in a constant temperature bath at 30° C., and the yeast that had entered the pores was cultured once for 3 days to allow the yeast to proliferate. As a result, each element base al-a17. Yeast is immobilized on bl and b2, and each bioreactor element A
t~AI? , 81.82.

各バイオリアクターエレメントA1〜A17.Bl、8
2の構成を第1表に示す。
Each bioreactor element A1 to A17. Bl, 8
The configuration of No. 2 is shown in Table 1.

(2b)酢酸菌アセトバクターアセチ(大きさ約1μ)
を前培養培地C(if中グリコース10g。
(2b) Acetobacter acetiform bacteria (size approximately 1μ)
Preculture medium C (if 10 g of glycose.

ポリペプトンlOg、酵母エキス10g、エタノール2
0B、氷酢MlOg)にIOケ/III、e!g濁させ
る。この懸濁液にハニカム状エレメント基体b3を浸漬
するとともに、バイブ状エレメント基体alBをその内
孔内に懸濁液が流入しないように一方の開口端を閉塞し
て同9.濁液に浸漬し、この状態で30℃。
Polypeptone 10g, yeast extract 10g, ethanol 2
0B, ice vinegar MlOg) to IOke/III, e! g to make it cloudy. The honeycomb element base b3 is immersed in this suspension, and one open end of the vibrator element base alB is closed to prevent the suspension from flowing into the inner hole of the vibrator element base alB, as described in 9. Immerse it in the suspension and keep it at 30°C.

pH3,3で4日間静置して酢酸菌を静置培養する。The acetic acid bacteria are left to stand still for 4 days at pH 3.3.

次いで、これらのエレメント基体a1B、b3を前培養
培地Cと同じ成分の前培養培地に移し、ここで各エレメ
ント基体a18.b3内の酢酸菌を30℃、 pl+3
.3で36時間浸1培養した。これにより、各エレメン
ト基体a18.b3に酢酸菌が固定化されたバイオリア
クターエレメント八18,83が作製される。各バイオ
リアクターエレメントAI8,133の構成を第2表に
示す。
These elemental substrates a1B, b3 are then transferred to a preculture medium with the same components as preculture medium C, where each element substrate a18. Acetobacter in b3 at 30℃, pl+3
.. 3 and cultured for 36 hours. As a result, each element base a18. Bioreactor elements 818 and 83 in which acetic acid bacteria are immobilized on b3 are produced. The composition of each bioreactor element AI8,133 is shown in Table 2.

(2c)上記酢酸菌を3重量%アルギン酸ソーダを用い
て従来法により3IIIII+径のビーズに包括固定化
し、ビーズ状のバイオリアクターエレメントB4を作製
した。
(2c) The above-mentioned acetic acid bacteria were comprehensively immobilized on beads with a diameter of 3III+ by a conventional method using 3% by weight of sodium alginate to produce a bead-shaped bioreactor element B4.

(3)反応装置 外側lm11.12をfB&、内筒1 を内ζ巳はハニ
カム状のバイオリアクターエレメントが上下2段に収納
されている。上段のエレメント13は各バイオリアクタ
ーエレメントA1〜A17の1つであり、また下段のエ
レメント14はバイオリアクターエレメントB2と同様
のものである。上段エレメント13は第2図〜第5図に
示すように、微生物固定化層13aの隔壁の所定の部位
に微生物分離層13bを備えていて、固定化層13aに
て包囲された多数の第1貫通孔13cが反応液の流通路
となり、かつ分離層13bにて包囲された多数の第2貫
通孔13dが生成液の流通路となっている。
(3) Honeycomb-shaped bioreactor elements are housed in upper and lower two stages, with fB& on the outside of the reactor and lm11.12 on the outside, and fB & on the inside of the inner cylinder 1. The upper element 13 is one of each bioreactor element A1-A17, and the lower element 14 is similar to bioreactor element B2. As shown in FIGS. 2 to 5, the upper element 13 is provided with a microorganism separation layer 13b at a predetermined portion of the partition wall of the microorganism immobilization layer 13a, and a large number of first microorganisms surrounded by the immobilization layer 13a. The through holes 13c serve as flow paths for the reaction liquid, and the numerous second through holes 13d surrounded by the separation layer 13b serve as flow paths for the product liquid.

かかる上段エレメント13においては、各第2貫通孔1
3dの下端が第4図に示す塗り潰し部のように密閉され
ているとともに、それらの上端が各第1貫通孔13cよ
りも上方へ所定長突出し、筒状蓋体15の底部を液密的
に貫通して同着体15内にて開口している。蓋体15は
その頂部の略中夫に生成液の排出導管15aを備えると
ともに、その両側に真空ポンプに接続される負圧導管1
5bおよび圧縮ポンプに接続される正圧導管15cを備
え、内筒11の上端との間に所定の間隙を保っている。
In this upper stage element 13, each second through hole 1
The lower ends of the cylindrical lid 15 are sealed as shown in FIG. It penetrates and opens in the attached body 15. The lid body 15 is equipped with a discharge conduit 15a for the produced liquid approximately in the center of its top, and has negative pressure conduits 1 connected to a vacuum pump on both sides thereof.
5b and a positive pressure conduit 15c connected to a compression pump, and a predetermined gap is maintained between the inner cylinder 11 and the upper end thereof.

内筒11および蓋体15はかかる状態にて外筒12内に
これと同心的に配置されており、外筒12の上端から蓋
体15が気密的に突出している。外筒12の底部には反
応液の供給管12aが接続されていて、同供給管12a
から供給された反応液は先づ下段ニレメン)14の各貫
通孔をそれらの隔壁に沿って流動し、この間第1段の反
応を生ずる。次いで、反応液は上段エレメント13の各
第1゛貫通孔13cから固定化J!! 13 aおよび
分離7@13bを透過して各第2貫通孔13dに流入し
、この間第2段の反応を生じて各第2貫通孔13d1を
経て排出導管15aから流出する。各第1貫通孔13c
に流入した反応液の一部および反応により生じたガス成
分は、内筒11と蓋体15間の間隙から両[11,12
間の環状通路Pに流出し、反応液の一部は下段ニレメン
)14の下端側へ還流する。なお、外*12は図示しな
い保温手段にて所望温度に保温される構成になっており
、後述の反応試験においては約30℃に保温された。
In this state, the inner cylinder 11 and the lid 15 are arranged concentrically within the outer cylinder 12, and the lid 15 protrudes from the upper end of the outer cylinder 12 in an airtight manner. A reaction liquid supply pipe 12a is connected to the bottom of the outer cylinder 12.
The reaction liquid supplied from the first stage first flows through the through holes of the lower stage 14 along their partition walls, and during this time, the first stage reaction occurs. Next, the reaction solution is transferred from each first through hole 13c of the upper element 13 to the immobilized J! ! 13a and separation 7@13b, and flows into each second through hole 13d, during which a second stage reaction occurs, and flows out from the discharge conduit 15a through each second through hole 13d1. Each first through hole 13c
A part of the reaction liquid that has flowed into the chamber and gas components generated by the reaction are transferred from the gap between the inner cylinder 11 and the lid body 15 to both [11, 12
A part of the reaction liquid flows out to the annular passage P between the two, and a part of the reaction liquid flows back to the lower end side of the lower stage 14. Note that the outside *12 was kept at a desired temperature by a heat insulating means (not shown), and was kept at about 30° C. in the reaction test described below.

一方、外筒12の頂部外側には排気管12bが設けられ
ている。排気管12bは環状通路Pに連通していて、そ
の内端側にフロート16aと電磁弁16bが配設されて
いる。フロー)16aは電磁弁16bのソレノイド16
cと電filBd間に介装されたスイッチ16eを開閉
制御するもので、外筒12内の液面が所定高さ以上の場
合フロート16aは上動してスイッチ16eを間き、液
面が所定高さ未満の場合フロー)16aは下動してスイ
ッチ16eを閉じる。これにより、外筒12内にて生成
ガスが増大してそのガス圧にて液面が所定高さ未満に下
降するとスイッチ16eが閉じ、電磁弁16bのソレノ
イド16cに通電されて電磁弁16bが開く。この結果
、外筒12内の生成ガスが電磁弁16bを通して排出さ
れ、その後外筒12内の液面が上昇してスイッチ16e
が開き、ソレノイド16cへの通電が停止されて電磁弁
16bが閉じる。
On the other hand, an exhaust pipe 12b is provided outside the top of the outer cylinder 12. The exhaust pipe 12b communicates with the annular passage P, and a float 16a and a solenoid valve 16b are disposed at the inner end thereof. flow) 16a is the solenoid 16 of the solenoid valve 16b
It controls the opening and closing of a switch 16e interposed between C and electric field Bd.When the liquid level in the outer cylinder 12 is above a predetermined height, the float 16a moves upward and closes the switch 16e, causing the liquid level to reach a predetermined level. If the height is less than the height, the flow 16a moves downward and closes the switch 16e. As a result, when the generated gas increases in the outer cylinder 12 and the liquid level falls below a predetermined height due to the gas pressure, the switch 16e closes, the solenoid 16c of the solenoid valve 16b is energized, and the solenoid valve 16b opens. . As a result, the generated gas in the outer cylinder 12 is discharged through the solenoid valve 16b, and then the liquid level in the outer cylinder 12 rises and the switch 16e
opens, energization to the solenoid 16c is stopped, and the solenoid valve 16b closes.

(3b)第2反応装置20は第7図〜第9図に示すよう
に、上段エレメント23が本発明に係るバイオリアクタ
ーエレメントA1Bの集合体でありかつ下段エレメント
24がバイオリアクターエレメントB3であり、これら
の点で第1反応装置10と相違する。上段エレメント2
3はエレメントA18の多数本を円柱状に集合させてな
り、内筒21における下段エレメント24の上方の部位
に収納されてそれらの上端部が蓋体25の底部を液密的
に貫通し、それらの貫通孔23aが蓋体25の内部にて
開口している。かかる上段エレメント23においては各
ニレメン) A18間の間隙が反応液の流通路23bと
なっており、各流通路23bは内筒21の上端にて開口
し環状通路Pに連通している。
(3b) As shown in FIGS. 7 to 9, in the second reaction device 20, the upper element 23 is an assembly of bioreactor elements A1B according to the present invention, and the lower element 24 is a bioreactor element B3, It differs from the first reactor 10 in these points. Upper element 2
3 is made up of a large number of elements A18 assembled in a cylindrical shape, and is housed in a portion above the lower element 24 in the inner cylinder 21, and their upper ends penetrate the bottom of the lid body 25 in a liquid-tight manner. A through hole 23a opens inside the lid body 25. In the upper element 23, the gaps between the two elements A18 serve as flow passages 23b for the reaction liquid, and each flow passage 23b opens at the upper end of the inner cylinder 21 and communicates with the annular passage P.

なお、各貫通孔23aの下端は第9図に示す塗り潰し部
のように密封され、かつ外筒22は図示しない保温手段
にて所望温度に保温される構成となっている。
Note that the lower end of each through hole 23a is sealed as shown in the filled part shown in FIG. 9, and the outer cylinder 22 is kept at a desired temperature by a heat insulating means (not shown).

従って、かかる第2反応装置20においては、レメント
24の゛各貫通戦、をそれらの隔壁に沿って流動し、こ
の間第1段の反応を生ずる。次いで、反応液は上段エレ
メント23の各流通路23bから各エレメントA1Bの
外周の固定化J523cおよび内層の分@層23dを透
過して各貫通孔23aに流入し、この間第2段の反応を
生じて各貫通孔23aを経て排出導管25aから流出す
る。なお、かかる第2反応装置20においても排気管2
2bにフロー)26gおよび電磁弁26bを備えていて
、生成ガスの排気等については第1反応装置10と同様
になされる。また、その他の構成については第1反応装
置10と同様であって同装置IOと同様に機能するもの
であり、同装置10の構成部材に対応する部材について
は20番台の類似の符号を付してその説明を省略する。
Therefore, in such a second reactor 20, the "penetrations" of the elements 24 flow along their partition walls, during which time a first stage reaction occurs. Next, the reaction liquid flows from each flow path 23b of the upper stage element 23 through the immobilized J523c on the outer periphery of each element A1B and the inner layer 23d, and flows into each through hole 23a, during which time a second stage reaction occurs. and flows out from the discharge conduit 25a through each through hole 23a. Note that in this second reaction device 20 as well, the exhaust pipe 2
2b is equipped with a flow) 26g and a solenoid valve 26b, and the exhaust of generated gas and the like is performed in the same manner as in the first reactor 10. In addition, the other configurations are the same as the first reactor 10 and function in the same way as the first reactor IO, and members corresponding to those of the first reactor 10 are designated with similar numerals in the 20s. Therefore, the explanation will be omitted.

(4)反応試験 (4a)上段エレメント13として各バイオリアクター
エレメントA1〜A17を採用するとともに、下段エレ
メント14としてバイオリアクターニレメン)B2を採
用してなる第1反応装置10を用いて、pH5,4に調
製された20重量%のグリコース溶液を反応液とするエ
タノール生成反応試験を行った。
(4) Reaction test (4a) Using the first reaction apparatus 10 in which each of the bioreactor elements A1 to A17 is employed as the upper stage element 13 and the bioreactor element B2 is employed as the lower stage element 14, pH 5, An ethanol production reaction test was conducted using the 20% by weight glycose solution prepared in Example 4 as a reaction liquid.

本試験においては温度30℃、グリコース溶液の供給速
度を40rrTR/brとし、反応開始後定常状態にあ
る15日後における装置10の排出導管15aから排出
された反応生成液中のエタノール濃度および微生物(遊
離菌体)濃度を測定した。また、本試験においては、1
日に数回2秒1回間正圧導管15cを通して装置10内
に正圧を付与し、各エレメント^1−A17の分離層1
3bの上流側に詰った菌体を固是化層13a側へ流出さ
せた。得られた結果を第1表の試験番号1〜17の欄に
示す。これらの試験においては、負圧導管15bを通し
て蓋体 15内に負圧を供給して同蓋体15内を減圧し
ている。
In this test, the temperature was 30°C, the supply rate of the glycose solution was 40rrTR/br, and the ethanol concentration and microorganisms (free The bacterial cell concentration was measured. In addition, in this test, 1
Positive pressure is applied to the inside of the device 10 through the positive pressure conduit 15c for 2 seconds several times a day, and the separation layer 1 of each element ^1-A17 is
The bacterial cells clogged on the upstream side of layer 3b were allowed to flow out to the solidified layer 13a side. The results obtained are shown in the columns of test numbers 1 to 17 in Table 1. In these tests, negative pressure was supplied into the lid 15 through the negative pressure conduit 15b to reduce the pressure inside the lid 15.

なお、第1反応装置10において、上下両段エレメント
13.14に換えてこれらエレメント13.14のトー
タル長さと同長のバイオリアクターニレメン)’81.
.82をそれぞれ単独で採用し、当該装置を用いて上記
エタノール生成試験を行った。得られた結果を第1表の
試験番号18.19の欄に示す。
In addition, in the first reaction apparatus 10, instead of the upper and lower elements 13.14, a bioreactor element with the same length as the total length of these elements 13.14)'81.
.. No. 82 was employed individually, and the above-mentioned ethanol production test was conducted using the apparatus. The results obtained are shown in the column of test number 18.19 in Table 1.

(4b)上段エレメント23としてバイオリアクターエ
レメント A18を多数集合させてなるエレメントを採
用するとともに、下段エレメント24としてバイオリア
クターエレメント83を採用してなる第2反応装置20
を用いて、酢酸発酵試験を行った。本試験においては、
(2b)項に示した前培養培地Cの組成と同じ組成の反
応液を温度30℃、ρh3.3゜供給速度50m、i’
/hrとし、かつ反応液の供給の際同時に空気を250
mノ/minの速度で供給した。反応開始から15日後
の定常状態にある排出導管25aから排出された反応生
成液中の酢酸濃度および微生物(遊離菌体)濃度を測定
した。得られた結果を第2表の試験番号20の欄に示す
(4b) A second reaction device 20 in which an element formed by collecting a large number of bioreactor elements A18 is used as the upper stage element 23, and a bioreactor element 83 is employed as the lower stage element 24.
An acetic acid fermentation test was conducted using In this test,
A reaction solution having the same composition as the preculture medium C shown in section (2b) was prepared at a temperature of 30°C, ρh of 3.3°, and a supply rate of 50 m, i'
/hr, and at the same time when supplying the reaction solution, air was supplied at 250 hr.
It was fed at a rate of m/min. Fifteen days after the start of the reaction, the acetic acid concentration and the microorganism (free bacterial cell) concentration in the reaction product liquid discharged from the discharge conduit 25a in a steady state were measured. The obtained results are shown in the column of test number 20 in Table 2.

なお、第2反応装置20において、上下両段エレメント
23.24に換えてビーズ状のバイオリアクターエレメ
ントB4を採用し、同エレメントB4を両段エレメント
23.24に相当する量内筒21内に充填して上記酢酸
発酵試験を行った。得られた結果を第2表の試験番号2
1の欄に示す。
In addition, in the second reaction device 20, a bead-shaped bioreactor element B4 is adopted in place of the upper and lower stage elements 23.24, and the same element B4 is filled into the inner cylinder 21 in an amount equivalent to the both stage elements 23.24. The above acetic acid fermentation test was conducted. The obtained results are shown as test number 2 in Table 2.
Shown in column 1.

上記画表に示す孔径の測定は公知の水銀圧大法により行
っている。
The pore diameters shown in the chart above are measured by the known mercury pressure method.

以下余白 第2表 (5)考察 第1表に示す試験番号1〜12の試験結果と試験番号1
8.19の試験結果とを比較すると、前者においてはエ
タノール生成量が多く、従って反応効率が高いとともに
遊1菌体が皆無である。このことは、前者において使用
した本発明に係るエレメントAl〜A12が寄与してい
ることを示している。また、試験番号13〜17を参照
すると、本発明に係るエレメントにおいては固定化層の
孔径、空隙率等が反応効率に大きく影響し、かつ分離層
の孔径が遊離菌体の分離効率に大きく影響していること
がニレメイトと従来のパイ、オリアクダーエレメントと
を直列的に併用した意義は、これら両エレメントの長さ
の比率を変えた試験結果(試験番号1,11゜12.1
9等)から明らかであり、本反応試験に関しては両エレ
メントの長さを15cmにした場合にエタノール生成量
が最も高い。
Table 2 below (5) Discussion Test results of test numbers 1 to 12 shown in Table 1 and test number 1
Comparison with the test results of 8.19 shows that in the former case, the amount of ethanol produced was large, and therefore the reaction efficiency was high, and there was no single bacterial cell. This indicates that the elements Al to A12 according to the present invention used in the former contribute. Furthermore, referring to test numbers 13 to 17, in the element according to the present invention, the pore diameter, porosity, etc. of the immobilization layer greatly affect the reaction efficiency, and the pore diameter of the separation layer greatly affects the separation efficiency of free bacterial cells. The significance of using Elmate and conventional Pi and Oriakdar elements in series is that the test results (Test No. 1, 11°, 12.1
9 etc.), and in this reaction test, the amount of ethanol produced is the highest when the length of both elements is 15 cm.

一方、第2表の試験結果を参照すれば、本発明に係るエ
レメントA18は従来の包括法に基づくビーズ状ニレメ
ン)84に比し反応効率に優れ、かつほぼ完全な遊S菌
体の分離能を有していることがわかる。
On the other hand, referring to the test results in Table 2, the element A18 according to the present invention has superior reaction efficiency compared to the bead-shaped Nilemene 84 based on the conventional entrapment method, and has almost complete ability to isolate S. It can be seen that it has

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るエレメントを超拡大した模型的部
分断面図、第2図は同エレメントを採用した第1反応装
置の一部を切欠いた概略斜視図、第3図は第2図の矢印
■−■方向の断面図、第4図は第2図の矢印IV−IV
方向の断面図、第5図は第3図の矢印V部分の拡大図、
第6図は電磁弁の電気回路、第7図は本発明に係るエレ
メントを採用した第2反応装置の一部を切欠いた概略斜
視図、第8図は第7図の矢印■−■方向の断面図、第9
図は第7図の矢印IX−IX方向の断面図である。 符号の説明 10.2.0・・・反応装置、11.21・・・内筒、
12.22・・・外筒、13.23・・・上段エレメン
ト、13a、23c・・φ固定化層、13b、23d・
・・分離層、14.24・・・下段エレメント、15.
25・・・蓋体、16a。 26a・・・フロート、16b、26b−−−電磁弁、
El・・・第1層、El・・・第2層、E3 、 E4
・・・細孔、M・・・微生物。
Fig. 1 is a super-enlarged schematic partial sectional view of an element according to the present invention, Fig. 2 is a partially cutaway schematic perspective view of a first reaction device employing the same element, and Fig. 3 is the same as Fig. 2. A cross-sectional view in the direction of arrow ■-■, Figure 4 is the arrow IV-IV in Figure 2.
5 is an enlarged view of the arrow V portion in FIG. 3,
Fig. 6 is an electrical circuit of a solenoid valve, Fig. 7 is a partially cutaway schematic perspective view of a second reaction device employing an element according to the present invention, and Fig. 8 is a diagram showing the direction of arrows ■-■ in Fig. 7. Cross section, No. 9
The figure is a sectional view taken along arrow IX-IX in FIG. 7. Explanation of symbols 10.2.0... Reactor, 11.21... Inner cylinder,
12.22...Outer cylinder, 13.23...Upper stage element, 13a, 23c...φ fixing layer, 13b, 23d...
... Separation layer, 14.24 ... Lower element, 15.
25... Lid body, 16a. 26a...Float, 16b, 26b---Solenoid valve,
El...first layer, El...second layer, E3, E4
...Pore, M...Microorganism.

Claims (7)

【特許請求の範囲】[Claims] (1)多数の細孔内に酵素を含む微生物が固定され液体
透過能を有する微生物固定化層と、微生物懸濁液中の液
体のみを透過する選択的透過能を有する微生物分離層と
を一体的に備えてなるバイオリアクターエレメント。
(1) A microorganism immobilization layer with liquid permeability in which microorganisms containing enzymes are immobilized in a large number of pores, and a microorganism separation layer with selective permeability that allows only the liquid in the microorganism suspension to pass through, are integrated. A bioreactor element prepared for the purpose.
(2)微生物固定化層と微生物分離層とが無機質材料に
て構成されている特許請求の範囲第1項に記載のバイオ
リアクターエレメント。
(2) The bioreactor element according to claim 1, wherein the microorganism immobilization layer and the microorganism separation layer are made of an inorganic material.
(3)微生物固定化層が微生物の大きさと同等乃至40
倍の平均孔径の多数の細孔を備えている特許請求の範囲
第1項または第2項に記載のバイオリアクターエレメン
ト。
(3) The microorganism immobilization layer is the same size as the microorganism or 40
A bioreactor element according to claim 1 or 2, comprising a large number of pores with twice the average pore diameter.
(4)微生物固定化層の空隙率が30%〜80%である
特許請求の範囲第1項、第2項、または第3項に記載の
バイオリアクターエレメント。
(4) The bioreactor element according to claim 1, 2, or 3, wherein the microorganism immobilization layer has a porosity of 30% to 80%.
(5)微生物分離層が微生物の大きさより小さく0.0
1μ以上の平均孔径の多数の細孔を備えている特許請求
の範囲第1項、第2項、第3項または第4項に記載のバ
イオリアクターエレメント。
(5) The microorganism separation layer is smaller than the microorganism size 0.0
The bioreactor element according to claim 1, 2, 3 or 4, comprising a large number of pores with an average pore diameter of 1 μ or more.
(6)微生物分離層の厚みが0.01μ〜1000μで
ある特許請求の範囲第1項、第2項、第3項、第4項ま
たは第5項に記載のバイオリアクターエレメント。
(6) The bioreactor element according to claim 1, 2, 3, 4, or 5, wherein the microorganism separation layer has a thickness of 0.01μ to 1000μ.
(7)酵素を含む微生物を栄養素を含む水溶液に懸濁さ
せてなる微生物懸濁液中に、同微生物を固定化し得る細
孔を有しかつ液体透過能を有する第1層と前記懸濁液中
の液体のみを透過する選択的透過能を有する第2層とを
一体的に備えたエレメント基体を浸漬し、減圧・脱気に
より前記第1層の細孔内の気体を前記懸濁液と置換し、
しかる後前記第1層の細孔内の微生物を培養、増殖して
同細孔内に固定化させることを特徴とする微生物固定化
層と微生物分離層を一体的に備えてなるバイオリアクタ
ーエレメントの製造法。
(7) In a microbial suspension obtained by suspending microorganisms containing enzymes in an aqueous solution containing nutrients, a first layer having pores capable of immobilizing the microorganisms and having liquid permeability, and the suspension; An element base integrally equipped with a second layer having a selective permeability that allows only the liquid inside to pass through is immersed, and the gas in the pores of the first layer is removed from the suspension by depressurization and degassing. replace,
Thereafter, the microorganisms in the pores of the first layer are cultured, multiplied, and immobilized in the pores. Manufacturing method.
JP61040646A 1986-02-26 1986-02-26 Bioreactor-element and method for producing the same Expired - Lifetime JPH072107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61040646A JPH072107B2 (en) 1986-02-26 1986-02-26 Bioreactor-element and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61040646A JPH072107B2 (en) 1986-02-26 1986-02-26 Bioreactor-element and method for producing the same

Publications (2)

Publication Number Publication Date
JPS62198383A true JPS62198383A (en) 1987-09-02
JPH072107B2 JPH072107B2 (en) 1995-01-18

Family

ID=12586320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61040646A Expired - Lifetime JPH072107B2 (en) 1986-02-26 1986-02-26 Bioreactor-element and method for producing the same

Country Status (1)

Country Link
JP (1) JPH072107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179505A (en) * 2011-02-28 2012-09-20 Kubota Corp Membrane element, membrane module and method of manufacturing membrane element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029475A (en) * 1983-07-28 1985-02-14 Nippon Steel Corp Continuous coloring method of stainless steel strip
JPS60168386A (en) * 1984-02-09 1985-08-31 Agency Of Ind Science & Technol Immobilization of enzyme
JPS60234585A (en) * 1984-05-08 1985-11-21 Shiro Nagai Method and apparatus for membrane-transmission fermentation or reaction
JPS60259179A (en) * 1984-06-05 1985-12-21 Teijin Ltd Cell culture tank and cell culture method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6029475A (en) * 1983-07-28 1985-02-14 Nippon Steel Corp Continuous coloring method of stainless steel strip
JPS60168386A (en) * 1984-02-09 1985-08-31 Agency Of Ind Science & Technol Immobilization of enzyme
JPS60234585A (en) * 1984-05-08 1985-11-21 Shiro Nagai Method and apparatus for membrane-transmission fermentation or reaction
JPS60259179A (en) * 1984-06-05 1985-12-21 Teijin Ltd Cell culture tank and cell culture method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012179505A (en) * 2011-02-28 2012-09-20 Kubota Corp Membrane element, membrane module and method of manufacturing membrane element

Also Published As

Publication number Publication date
JPH072107B2 (en) 1995-01-18

Similar Documents

Publication Publication Date Title
Luo et al. Biocatalytic membrane: Go far beyond enzyme immobilization
De Ory et al. Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti
Arica et al. Covalent immobilization of α-amylase onto pHEMA microspheres: preparation and application to fixed bed reactor
US4048018A (en) Method of carrying out enzyme catalyzed reactions
Nunez et al. Cell immobilization: Application to alcohol production
Chang et al. Membrane bioreactors: present and prospects
US4033817A (en) Pressure-driven enzyme-coupled membranes
CN100363482C (en) Method for immobilizing lipase using microstructure in hydrophilic/ hydrophobic composite membrane
US5071747A (en) Porous polymeric support containing biological cells in interconnected voids
Ulbricht et al. Polyacrylonitrile enzyme ultrafiltration membranes prepared by adsorption, cross-linking, and covalent binding
Bell et al. Catalytically Active Hollow Fiber Membranes with Enzyme‐Embedded Metal–Organic Framework Coating
Güleç et al. Immobilization of Aspergillus oryzae β-galactosidase on low-pressure plasma-modified cellulose acetate membrane using polyethyleneimine for production of galactooligosaccharide
JPS62171686A (en) Production of biological group composite
Oliveira et al. Enzyme immobilization on anodic aluminum oxide/polyethyleneimine or polyaniline composites
Tien et al. Immobilization of α-amylase on a zirconium dynamic membrane
Al-Hassan et al. Non-porous magnetic supports for cell immobilization
JPS61179354A (en) Fluid pervious fibrous matrix and its production
JPS62198383A (en) Bioreactor element and its production
Lozano et al. A dynamic membrane reactor with immobilized α-chymotrypsin for continuous kyotorphin synthesis in organic media
Li et al. Uniformity control and ultra‐micropore development of tubular carbon membrane for light gas separation
US3737323A (en) Continuous fermentation process for producing alcoholic beverages
Paolucci-Jeanjean et al. Biomolecule applications for membrane-based phase contacting systems: distribution, separation and reaction—a first state of the art
Selli et al. Enzymatic activity under tangential flow conditions of photochemically grafted membranes containing immobilized catalase
Dizge et al. Developments and Applications in Enzyme Activated Membrane Reactors
JPH02291264A (en) Membrane having immobilized enzyme