JPS6219810A - Optical multiplexer - Google Patents

Optical multiplexer

Info

Publication number
JPS6219810A
JPS6219810A JP15962285A JP15962285A JPS6219810A JP S6219810 A JPS6219810 A JP S6219810A JP 15962285 A JP15962285 A JP 15962285A JP 15962285 A JP15962285 A JP 15962285A JP S6219810 A JPS6219810 A JP S6219810A
Authority
JP
Japan
Prior art keywords
waveguide
optical
mode
light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15962285A
Other languages
Japanese (ja)
Inventor
Juichi Noda
野田 壽一
Katsunari Okamoto
勝就 岡本
Itaru Yokohama
横浜 至
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15962285A priority Critical patent/JPS6219810A/en
Publication of JPS6219810A publication Critical patent/JPS6219810A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/126Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind using polarisation effects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To provide an optical waveguide with a polarized wave separating function, to reduce loss and to improve safety by composing an optical multiplexer of an optical directional coupler formed of two waveguides on a substrate and a metallic film mounted on one waveguide. CONSTITUTION:The optical multiplexer consists of glass 21 as the substrate, optical waveguides 22 and 23, and Al metallic film 24, and input linear polarized light 25 which excites a TM mode to the waveguide 22 which do not has the film 24 and linear polarized light 26 which excites a TE mode to the waveguide which has the film 24. Therefore, when the film 24 is mounted to coupling length with 100% of the TE mode is obtained, the TE mode light in the waveguide is coupled with the waveguide by 100%, but the TM mode light in the waveguide 22 travels straight, so that the TE mode light and TM mode light are multiplexed together eventually. Thus, the optical waveguides are given the polarized wave separating function to realize the optical multiplexer which has small loss and high stability.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光合波器に関する。更に詳しくは偏波を利用し
た2波長の光を合波する光学的素子に関するものである
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical multiplexer. More specifically, it relates to an optical element that combines two wavelengths of light using polarization.

従来の技術 光ファイバの製造技術の進歩に伴って、その伝送損失が
大巾に低下した結果、従来の電気通信技術に代る光通信
技術をはじめとする様々な光ファイバの応用分野が開拓
され、一部では既に実用化されているものもみられる。
Conventional Technology As the manufacturing technology of optical fibers has progressed, their transmission loss has decreased significantly, and as a result, various application fields for optical fibers have been developed, including optical communication technology that replaces traditional telecommunications technology. , some of which have already been put into practical use.

光フアイバ通信システムについてその顕著な利点をみる
と、まず情報を殆ど無中継で長距離に亘り伝達できるこ
とを挙げることかできる。また、従来の通信システムと
比較して単位時間当たりに伝達し得る情報量が多く(数
桁堆大する)、更に画像情報を含む多種多様な情報が伝
達し得ることから将来の通信技術の中心的役割を演する
ものと考えられる。
Looking at the remarkable advantages of optical fiber communication systems, the first thing to mention is that information can be transmitted over long distances with almost no relays. In addition, compared to conventional communication systems, the amount of information that can be transmitted per unit time is large (several orders of magnitude larger), and a wide variety of information including image information can be transmitted, so it will become the center of future communication technology. It is thought that this role plays a role.

光フアイバシステム等各種の光フアイバ応用機器におい
ては発振器、受信器および伝送路としての光ファイバか
ら主として構成されるが、実際には従来の電子・電気回
路における各種電気回路部品と同様な変調、混合、復調
、増幅、分岐、合波などの各種結合並びに光情報の処理
を実施するための光学的素子が必要となる。
Various optical fiber application devices such as optical fiber systems mainly consist of optical fibers as oscillators, receivers, and transmission lines, but in reality, they are modulated and mixed in the same way as various electrical circuit components in conventional electronic and electrical circuits. , optical elements are required to perform various types of coupling such as demodulation, amplification, branching, and multiplexing, as well as processing optical information.

このような光学的素子の一つとして光合波器がある。従
来の光合波器の一例(反射膜型)を第2図に示した。第
2図かられかるように、偏波分離プリズム11と、該プ
リズムの三方向にT字型に、夫々レンズ12.13.1
4を介して取付けられた光ファイバ15.16.17と
、プリズム11の対角面上に設けられた偏波分離多層膜
18とで構成される。相互に直交関係で配置された光フ
ァイバ15.16は偏波保持光ファイバであり、17は
単一モード光ファイバで構成される。第2図に示したよ
うに偏波保持光ファイバ15を伝1般する一紙面に平行
に振動する直線偏波光は偏波分離多層膜18を通過して
、光ファイバ17に結合され、また偏波保持光ファイバ
16を伝搬し、紙面と垂直に振動する直線偏波光は偏波
分離多層膜18で反射して光ファイバ17に結合され、
結果的に2つの光が光ファイバ17で合波されることに
なる。
An optical multiplexer is one such optical element. An example of a conventional optical multiplexer (reflective film type) is shown in FIG. As can be seen from FIG. 2, there is a polarization separating prism 11, and lenses 12, 13, 1 are arranged in a T-shape in three directions of the prism, respectively.
It is composed of optical fibers 15, 16, and 17 attached through the prism 11, and a polarization separation multilayer film 18 provided on the diagonal surface of the prism 11. The optical fibers 15, 16 arranged in orthogonal relation to each other are polarization maintaining optical fibers, and 17 is constituted by a single mode optical fiber. As shown in FIG. 2, the linearly polarized light vibrating parallel to the plane of the paper that propagates through the polarization-maintaining optical fiber 15 passes through the polarization separation multilayer film 18, is coupled to the optical fiber 17, and is then polarized. The linearly polarized light propagating through the wave-maintaining optical fiber 16 and vibrating perpendicular to the plane of the paper is reflected by the polarization separation multilayer film 18 and coupled to the optical fiber 17.
As a result, the two lights are combined by the optical fiber 17.

この方法では、レンズ12.13.14を介して合波さ
れるので、その軸合せの難しさに加えて、震動等の外的
要因により軸ずれを生じるという欠点があった。
In this method, since the waves are combined through the lenses 12, 13, and 14, there is a drawback that in addition to the difficulty in aligning the axes, the axes may be misaligned due to external factors such as vibrations.

発明が解決しようとする問題点 以上述べたように、光ファイバの伝送損失低下に伴って
光フアイバ応用技術の発展は目ざましく、そのために光
変調、分岐、合波などといった各種結合並びに光情報処
理を実施するのに有用な各種光学的素子の開発゛、改善
が急務となっている。
Problems to be Solved by the Invention As mentioned above, the development of optical fiber application technology has been remarkable as the transmission loss of optical fibers has decreased. There is an urgent need to develop and improve various optical elements useful for carrying out this process.

このような光学的素子の1種である光合波器についても
、従来の製品にあってはレンズの使用を含むために上述
のような各種難点を有していた。
Conventional products such as optical multiplexers, which are one type of optical element, involve the use of lenses, and therefore have various drawbacks as described above.

そこで、このような難点を解決し得る新しい構成の光合
波器の開発が待たれており、本発明の目的もこのような
光合波器を提供することにある。
Therefore, the development of an optical multiplexer with a new configuration that can solve these difficulties has been awaited, and it is an object of the present invention to provide such an optical multiplexer.

即ち、本発明は光導波路に偏波分離機能を付与させるこ
とによって低損失、高安定な光合波器を実現することを
目的とするものである。
That is, an object of the present invention is to realize a low-loss, highly stable optical multiplexer by imparting a polarization separation function to an optical waveguide.

問題点を解決するための手段 本発明者等は、従来の光合波器の現状に鑑みて、レンズ
を使用することのない、従って面倒な軸合せ操作を排除
でき、外力の作用があっても軸ずれを生じることのない
光合波器を開発すべく種々検討した結果、光導波路上に
金属膜を装荷することによって該導波路の光吸収特性を
変化させると、TMモードの伝搬定数は大きく変化する
のに対し、TEモードの伝搬定数は大きな変化を示さな
いという性質を利用することが有利であることを見出し
、本発明を完成した。
Means for Solving the Problems In view of the current state of conventional optical multiplexers, the inventors of the present invention have developed a system that does not use lenses, can eliminate troublesome alignment operations, and can be used even under the influence of external forces. As a result of various studies aimed at developing an optical multiplexer that does not cause axis misalignment, we found that when the optical absorption characteristics of the optical waveguide are changed by loading a metal film on the optical waveguide, the propagation constant of the TM mode changes significantly. In contrast, the present invention was completed based on the discovery that it is advantageous to utilize the property that the propagation constant of the TE mode does not show large changes.

即ち、本発明の光合波器は、基板およびその上に形成さ
れた2本の導波路からなる光方向性結合器と、該導波路
の一方に装荷された金属膜とで構成されることを特徴と
する。
That is, the optical multiplexer of the present invention is composed of an optical directional coupler consisting of a substrate and two waveguides formed on the substrate, and a metal film loaded on one of the waveguides. Features.

本発明の光合波器は、例えば添付第1図に示すような構
成を有する。第1図から明らかな如く、該光合波器はガ
ラス、LiNbO3などで形成された基板21と、その
上に形成された2本の光導波路22.23とからなる光
方向性結合器Aと、一方の光導波路23に装荷された金
属膜24とで構成される。
The optical multiplexer of the present invention has a configuration as shown, for example, in FIG. 1 attached. As is clear from FIG. 1, the optical multiplexer includes an optical directional coupler A consisting of a substrate 21 made of glass, LiNbO3, etc., and two optical waveguides 22 and 23 formed thereon; It is composed of a metal film 24 loaded on one optical waveguide 23.

ここで、上記導波路は従来公知の各種方法により形成す
ることができ、例えば基板上に該基板よりも屈折率の高
い材料を各種エピタキシー法(気相、液相、分子ビーム
、有機金属CVD)あるいは真空蒸着、スパッタリング
などにより堆積し、フォトリソグラフィー法によるパタ
ーニングによって目的とする導波路パターンを得ること
ができる。また、勿論不純物イオン拡散、イオン交換な
どによる固相拡散で導波路形成することも可能である。
Here, the waveguide can be formed by various conventionally known methods. For example, a material having a refractive index higher than that of the substrate is formed on a substrate by various epitaxy methods (vapor phase, liquid phase, molecular beam, organometallic CVD). Alternatively, the desired waveguide pattern can be obtained by depositing by vacuum evaporation, sputtering, etc., and patterning by photolithography. Of course, it is also possible to form a waveguide by solid phase diffusion using impurity ion diffusion, ion exchange, or the like.

前記金属膜としてはAIを代表的なものとして例示でき
(ただし、これ以外のものを用いることもできる)、こ
れらは真空蒸着法、スパッタ法、イオンブレーティング
法等の各種方法に従って得ることができるが、真空蒸着
法で十分である。
As the metal film, AI can be cited as a typical example (however, other materials can also be used), and these can be obtained according to various methods such as vacuum evaporation, sputtering, and ion blating. However, vacuum evaporation is sufficient.

この金属膜は所定の形状、寸法で光方向性結合器の一方
の導波路上に装荷されるが、パターン化の方法としては
上記の導波路形成と同様に、フォトリソグラフィーに従
って実施でき、例えば所定のパターンを有するマスクを
介して金属を蒸着するか、あるいはリフトオフ法を利用
することによっても可能である。該金属膜の厚さは50
0Å以上であれば十分な効果を期待することができる。
This metal film is loaded onto one waveguide of the optical directional coupler in a predetermined shape and size, and the patterning method can be carried out using photolithography, for example, in the same manner as in the waveguide formation described above. This can also be done by vapor depositing metal through a mask having a pattern of , or by using a lift-off method. The thickness of the metal film is 50
If the thickness is 0 Å or more, a sufficient effect can be expected.

しかしながら、この下限は臨界的なものではなく、成膜
技術上の限界にすぎない。従って、均質なより薄い膜で
あれば500A以下であっても何等さしつかえない。以
上の条件を満たすものであれば金属膜が装荷された導波
路に対し、TEモードのみが100%結合するという要
件を有利に達成することができる。
However, this lower limit is not critical and is merely a limit in film formation technology. Therefore, if it is a homogeneous thinner film, there is no problem even if it is 500A or less. If the above conditions are satisfied, the requirement that only TE mode is 100% coupled to a waveguide loaded with a metal film can be advantageously achieved.

作用 かくして得られる本発明の光合波器はTEモードのみが
100%結合する条件下において、金属膜が装荷された
導波路にはその入射端からTEモード光を光ファイバよ
って直接導入し、一方金属膜の装荷されていない導波路
にはその入射端からTMモード光を同様に光ファイバに
より導入することにより、金属膜が装荷されていない導
波路の出射端からTEモード光とTMモード光とが合波
された出力光を取出すことができる。
Operation The thus obtained optical multiplexer of the present invention allows TE mode light to be directly introduced into the waveguide loaded with a metal film through the optical fiber from its input end under conditions in which only the TE mode is 100% coupled. By similarly introducing TM mode light into the waveguide not loaded with a film from its input end through an optical fiber, TE mode light and TM mode light are transmitted from the output end of the waveguide not loaded with a metal film. The combined output light can be extracted.

上記構造の如く、光導波路上に金属膜が装荷されるとT
Mモードは大きな損失を受けると同時に、伝搬定数も大
きく変化する。いま、この点を明らかにするために、光
方向性結合器Aの導波路22の出射端からPt”1.0
なる入力光を導入した場合、導波路22および23から
の出力光(夫々P1およびβ2とする)は以下の式で表
すことができる。
As in the above structure, when a metal film is loaded on the optical waveguide, T
The M mode suffers a large loss and at the same time its propagation constant changes significantly. Now, in order to clarify this point, Pt"1.0 from the output end of the waveguide 22 of the optical directional coupler A.
When the input light is introduced, the output lights from the waveguides 22 and 23 (denoted as P1 and β2, respectively) can be expressed by the following equation.

Pl=1−β2              (1)こ
こで、β1、β2は各導波路22.23の伝搬定数であ
り、Cは結合係数、L、は100%結合長、Lは結合長
である。そこで導波路22.23の損失係数をβ1、β
2としてPlおよびβ2の光強度をπL/2L。
Pl=1-β2 (1) Here, β1 and β2 are the propagation constants of each waveguide 22.23, C is the coupling coefficient, L is the 100% coupling length, and L is the coupling length. Therefore, the loss coefficients of waveguides 22 and 23 are β1 and β
2, the light intensity of Pl and β2 is πL/2L.

に対してプロットすると第3図に示すような関係となる
。この結果から理解されるように、(β1−β2)/C
が大きい場合には(αヨーα2)/Cの大きさに拘わら
ず、光結合を生じないことがわかる。
When plotted against , the relationship as shown in FIG. 3 is obtained. As understood from this result, (β1-β2)/C
It can be seen that when is large, no optical coupling occurs regardless of the magnitude of (αyawα2)/C.

従って、TEモードが100%となるような結合長(L
、)において、導波路23上に金属膜を装荷すると、T
Eモード光は導波路22にほぼ100%結合され、一方
TMモード光は直進するので、結果的にTEモード光と
TMモード光とが合波されることになる(後の実施例参
照)。
Therefore, the bond length (L
), when a metal film is loaded on the waveguide 23, T
Since the E mode light is almost 100% coupled to the waveguide 22, and the TM mode light travels straight, the TE mode light and the TM mode light are combined as a result (see later embodiments).

かくして、本発明の光合波器によればレンズを使用する
ことなしにTEモード光並びにTMモード光を伝搬する
光ファイバから直接光方向性結合器上の導波路に各光を
導入することによって合波を実現できるので、軸合せ等
の面倒がなく、外力の作用に対しても安定である。
Thus, according to the optical multiplexer of the present invention, TE mode light and TM mode light can be combined by directly introducing each light into the waveguide on the optical directional coupler from the optical fiber that propagates the light without using a lens. Since waves can be realized, there is no need for troublesome alignment, etc., and it is stable against the action of external forces.

本発明の光合波路は光の合波は勿論のこと、態様によっ
ては光フィルタとして使用することも可能である。
The optical multiplexing path of the present invention can be used not only for multiplexing light but also as an optical filter depending on the embodiment.

実施例 以下実施例により本発明を更に具体的に説明する。Example The present invention will be explained in more detail with reference to Examples below.

第1図は本発明の光合波器の好ましいl構成例で、基板
としてのガラス21と、光導波路22および23とAI
金属膜24で構成され、TMモードを励起する直線偏波
光25をAI膜のない導波路22に、TEモードを励起
する直線偏波光26をAI膜24を装荷した導波路23
に導入することにより、合波光27が得られる。
FIG. 1 shows a preferred configuration example of the optical multiplexer of the present invention, which includes a glass 21 as a substrate, optical waveguides 22 and 23, and an AI
The linearly polarized light 25 that excites the TM mode is placed in a waveguide 22 that is composed of a metal film 24 and does not have an AI film, and the linearly polarized light 26 that excites the TE mode is sent to a waveguide 23 that is loaded with an AI film 24.
The multiplexed light 27 can be obtained.

第4図には、屈折率n、=2.200の基板上にn9=
2、206なる屈折率を持つ導波路を設けその一方の上
にnt=1.48  J9.0のA1膜を装荷した時の
(β。
In FIG. 4, n9=
When a waveguide with a refractive index of 2.206 is provided and an A1 film of nt=1.48 J9.0 is loaded on one of the waveguides (β).

−β6)/βbおよびα(損失係数)と導波路厚との関
係を示した(ただし、β4はA1膜を装荷した導波路の
伝1般定数であり、一方β5はAI膜を装荷してない導
波路の伝搬定数を示す)。図から明らかなように、TM
モードの損失は極めて大きいが、TEモードのそれは無
視できる程小さい。
- β6)/βb and α (loss coefficient) and the waveguide thickness (where β4 is the general propagation constant of the waveguide loaded with the A1 film, while β5 is the general constant of the waveguide loaded with the AI film). ). As is clear from the figure, TM
The loss of the mode is extremely large, but that of the TE mode is negligibly small.

したがって、第1図についてTEモードが100%とな
るような結合長において、へl金属膜24を装荷すると
、導波路23のTEモード光は導波路22にほぼ100
%結合されるのに対し、導波路22のTMモード光は直
進し、結果的にTEモード光とTMモード光が合波され
る。
Therefore, when the metal film 24 is loaded at a coupling length such that the TE mode is 100% in FIG.
In contrast, the TM mode light in the waveguide 22 travels straight, and as a result, the TE mode light and the TM mode light are combined.

また、第5図に本発明の光合波器A(第1図参照)に、
各偏波光25および26を夫々導波路22.23に導入
するための偏波光保持光ファイバ28.29を取付け、
一方導波路22の右端から出射する合波光27を伝(般
させるための出射光ファイバ30(単一モード光ファイ
バ)を取付けた状態を示した。これによって、従来の光
合波路と比較して、すべてバルク形を導波路とした点に
特徴を有し、レンズの使用を完全に排除できる。
In addition, FIG. 5 shows that the optical multiplexer A of the present invention (see FIG. 1) is
Attaching polarization-maintaining optical fibers 28.29 for introducing each polarized light 25 and 26 into the waveguide 22.23, respectively,
On the other hand, a state in which an output optical fiber 30 (single mode optical fiber) for propagating the multiplexed light 27 outputted from the right end of the waveguide 22 is attached is shown. All of them are characterized by using bulk type waveguides, and the use of lenses can be completely eliminated.

発明の効果 以上詳しく説明したように、本発明の光合波器によれば
、基板とその上に設けられた2本の導波路とからなる光
方向結合器を用い、一方の導波路上に金属膜を装荷した
構成とすることにより、光ファイバとの軸合せがレンズ
を介することなしに実現できる。従って極めて使用が容
易であり、かつ接続ケ所が少ないので、震動等の外乱に
対して軸ずれが小さく小形化できる。
Effects of the Invention As explained in detail above, according to the optical multiplexer of the present invention, an optical directional coupler consisting of a substrate and two waveguides provided on the substrate is used, and a metal is placed on one of the waveguides. By using a membrane-loaded configuration, alignment with the optical fiber can be achieved without using a lens. Therefore, it is extremely easy to use, and since there are few connection points, it can be made compact with less axis deviation due to external disturbances such as vibrations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光合波器の好ましい構成例を示す図で
あり、 第2図は従来の光合波器の構成を説明するだめの図であ
り、 第3図は光方向性結合器の結合長と出方光強度との関係
をプロットしたグラフであり、第4図は導波路の一方の
上に金属膜を装荷した場合のTMモードおよびTEモー
ドの伝搬定数の変化並びに損失と、導波路の厚さとの関
係をプロットしたグラフであり、 第5図は本発明の光合波器に光ファイバを取付けた状態
を示す図である。 (主な参照番号) 11・・偏波分離プリズム、 12.13.14・・レンズ、 15.16.28.29・・偏波保持光ファイバ、17
.30・・出射光ファイバ、 18・・偏波分離多層膜、 21・・基板、 22.23・・導波路、24・・金属
膜、 25・・TMモード励起直線偏波光、 26・・TEモード励起直線偏波光、 27・・出射光
FIG. 1 is a diagram showing a preferred configuration example of the optical multiplexer of the present invention, FIG. 2 is a diagram for explaining the configuration of a conventional optical multiplexer, and FIG. 3 is a diagram of an optical directional coupler. This is a graph plotting the relationship between the coupling length and the output light intensity, and Figure 4 shows the changes in the propagation constants and losses of the TM mode and TE mode when a metal film is loaded on one side of the waveguide, and the loss in the waveguide. 5 is a graph plotting the relationship with the thickness of the wave path, and FIG. 5 is a diagram showing a state in which an optical fiber is attached to the optical multiplexer of the present invention. (Main reference numbers) 11...Polarization separation prism, 12.13.14...Lens, 15.16.28.29...Polarization maintaining optical fiber, 17
.. 30...Output optical fiber, 18...Polarization separation multilayer film, 21...Substrate, 22.23...Waveguide, 24...Metal film, 25...TM mode excitation linearly polarized light, 26...TE mode Excitation linearly polarized light, 27... Output light

Claims (4)

【特許請求の範囲】[Claims] (1)基板およびその上に形成された2本の導波路から
なる光方向性結合器と、該導波路の一方の上に装荷され
た金属膜とで構成されることを特徴とする光合波器。
(1) Optical multiplexing comprising an optical directional coupler consisting of a substrate and two waveguides formed on the substrate, and a metal film loaded on one of the waveguides. vessel.
(2)TEモードのみが100%結合する条件下におい
て前記金属膜を装荷した導波路の入射端よりTEモード
光を導入し、一方金属膜が装荷されていない導波路端か
らTMモード光を導入し、金属膜が装荷されていない導
波路の他端部からTEモード光とTMモード光との合波
された出力光を取出すことを特徴とする特許請求の範囲
第1項記載の光合波器。
(2) Under conditions where only TE mode is 100% coupled, TE mode light is introduced from the input end of the waveguide loaded with the metal film, while TM mode light is introduced from the waveguide end not loaded with metal film. The optical multiplexer according to claim 1, wherein the optical multiplexer according to claim 1 is characterized in that the output light, which is a combination of the TE mode light and the TM mode light, is extracted from the other end of the waveguide which is not loaded with a metal film. .
(3)前記金属膜がアルミニウム膜であり、蒸着法によ
り形成されたものである特許請求の範囲第1項または第
2項記載の光合波器。
(3) The optical multiplexer according to claim 1 or 2, wherein the metal film is an aluminum film formed by a vapor deposition method.
(4)前記基板がガラスまたはLiNbO_3である特
許請求の範囲第3項記載の光合波路。
(4) The optical multiplexing waveguide according to claim 3, wherein the substrate is glass or LiNbO_3.
JP15962285A 1985-07-19 1985-07-19 Optical multiplexer Pending JPS6219810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15962285A JPS6219810A (en) 1985-07-19 1985-07-19 Optical multiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15962285A JPS6219810A (en) 1985-07-19 1985-07-19 Optical multiplexer

Publications (1)

Publication Number Publication Date
JPS6219810A true JPS6219810A (en) 1987-01-28

Family

ID=15697740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15962285A Pending JPS6219810A (en) 1985-07-19 1985-07-19 Optical multiplexer

Country Status (1)

Country Link
JP (1) JPS6219810A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634905A1 (en) * 1988-07-05 1990-02-02 Labo Electronique Physique INTEGRATED OPTOELECTRONIC SEMICONDUCTOR DEVICE INCLUDING TE / TM POLARIZATION SEPARATOR

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634905A1 (en) * 1988-07-05 1990-02-02 Labo Electronique Physique INTEGRATED OPTOELECTRONIC SEMICONDUCTOR DEVICE INCLUDING TE / TM POLARIZATION SEPARATOR

Similar Documents

Publication Publication Date Title
EP0938000B1 (en) Optical waveguide branch with reflector
CA2004998C (en) Integrated acousto-optic filters and switches
EP0817988B1 (en) Polarization-insensitive, electro-optic modulator
EP1560048B1 (en) Optical isolator utilizing a micro-resonator
US5774264A (en) Polarization independent optical isolator
JPH09211406A (en) Microphotonic polarization independent acousto-optical tunable filter and receiver
US20030113055A1 (en) Solid-state optical wavelength switches
EP0389172B1 (en) Adiabatic polarization manipulating device
US20060018585A1 (en) Ultra-thin polarization mode converters based on liquid crystal materials
EP0848278B1 (en) Optical circulator
US3990775A (en) Thin-film optical waveguide
JPH04191703A (en) Deflection independency optical part
JPS59208509A (en) Optical multiplexer for single mode
JPH05313109A (en) Waveguide type polarization controller
JPS6219810A (en) Optical multiplexer
JP3457711B2 (en) Fiber type optical isolator
JPH01287623A (en) Optical waveguide type semiconductor polarization beam splitter
JP3090292B2 (en) Non-reciprocal light circuit
JPH01222216A (en) Waveguide type polarization plane controller
JP2989982B2 (en) Fiber type optical isolator
JPH11119158A (en) Optical circulator array
JPH05107071A (en) Light-pumped waveguide type loop laser
JP2862630B2 (en) Waveguide type optical isolator
JPH1068910A (en) Optical nonreciprocal circuit
US5883991A (en) Optical waveguide circulator