JPS6219697A - Heat exchanger - Google Patents
Heat exchangerInfo
- Publication number
- JPS6219697A JPS6219697A JP15589785A JP15589785A JPS6219697A JP S6219697 A JPS6219697 A JP S6219697A JP 15589785 A JP15589785 A JP 15589785A JP 15589785 A JP15589785 A JP 15589785A JP S6219697 A JPS6219697 A JP S6219697A
- Authority
- JP
- Japan
- Prior art keywords
- flow
- flowpath
- fluid
- primary
- flow path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、液体金属のような導電性流体どうしの熱変換
層に好適な熱交換器に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a heat exchanger suitable for a heat exchange layer between conductive fluids such as liquid metals.
液体金属たとえば液体ナトリウム用熱交換器は今まで多
種多様の型式が考案され実用されている。A wide variety of heat exchangers for liquid metals, such as liquid sodium, have been devised and put into practical use.
最も一般的な構造として知られているシェル・アンドチ
ューブ型熱交換器を第7図に示す。この構造は米国LM
EC委員会が発表しているリキッドメタル ハンドブッ
ク(ソジュームNakサプレメント) r Liqu
id Metals Handbook (Sodiu
mand Nak 3upplement )J196
7−6に記載されているものの一例である。また、この
熱交換器を高速炉(高速増殖炉)の−次系から二次系へ
熱を輸送するための中間熱交換器として用いた場合。Figure 7 shows a shell-and-tube heat exchanger, which is the most common structure known. This structure is US LM
Liquid Metal Handbook (Sojume Nak Supplement) published by the EC Committee r Liqu
id Metals Handbook (Sodiu
mand Nak 3upplement)J196
This is an example of what is described in 7-6. Also, when this heat exchanger is used as an intermediate heat exchanger for transporting heat from the secondary system to the secondary system of a fast reactor (fast breeder reactor).
第2図に示す冷却系統図も記載されている。A cooling system diagram shown in FIG. 2 is also included.
まずこの従来技術の構造及び機能について説明する。第
2図は高速炉の一次系、二次系および。First, the structure and function of this prior art will be explained. Figure 2 shows the primary system, secondary system, and fast reactor system.
蒸気系の冷却系を示したものである。高速炉の炉容器1
の内部に原子炉の炉心2があり、液体ナトリウム等の一
次冷却材3が充満している。炉容器1の底部に入口、上
部に出口ノズルがアシ、入口ノズル部には一次系ボンプ
4.出ロノズル部に中間熱交換器5を配管6で接続して
一次冷却系7を型成する。中間熱交換器5の二次側に二
次系ポンプ8お゛よび蒸気発生器9を配管10で接続し
て二次冷却系11を型成する。蒸気発生器9の二次側に
給水ポンプ12.および発電機13を直結した蒸気ター
ビン14を配管15で接続して蒸気系16を型成する。This shows a steam-based cooling system. Fast reactor reactor vessel 1
There is a reactor core 2 inside the reactor, which is filled with a primary coolant 3 such as liquid sodium. There is an inlet at the bottom of the furnace vessel 1, an outlet nozzle at the top, and a primary system pump 4 at the inlet nozzle. An intermediate heat exchanger 5 is connected to the outlet nozzle portion through a pipe 6 to form a primary cooling system 7. A secondary pump 8 and a steam generator 9 are connected to the secondary side of the intermediate heat exchanger 5 via piping 10 to form a secondary cooling system 11. A water supply pump 12 is installed on the secondary side of the steam generator 9. A steam turbine 14 to which a generator 13 is directly connected is connected via piping 15 to form a steam system 16.
炉心2で発熱した熱は−次系ボンプ4の駆動により冷却
材3を流動し、中間熱交換器5側に輸送される。二次系
11では二次系ポンプの駆動により中間熱交換器5の熱
を蒸気発生器9側に輸送する。輸送されて来た熱で蒸気
発生器9は給水ポンプ12からの水を過熱蒸気にし蒸気
タービン14へ送給し、そのタービンを駆動し。The heat generated in the reactor core 2 flows through the coolant 3 by driving the secondary pump 4 and is transported to the intermediate heat exchanger 5 side. In the secondary system 11, the heat of the intermediate heat exchanger 5 is transported to the steam generator 9 side by driving the secondary system pump. Using the transported heat, the steam generator 9 converts the water from the water supply pump 12 into superheated steam, supplies it to the steam turbine 14, and drives the turbine.
発電機13を回転し1発電機13から電気を得るシステ
ムである。This is a system that rotates a generator 13 and obtains electricity from one generator 13.
このシステムにおいて、−次冷却系7は放射性冷却材が
循環するため安全性確保のため中間熱交換器5を介して
一旦二次冷却系11の非放射性冷却材に熱を移した後過
熱蒸気を得るものである。In this system, the secondary cooling system 7 circulates radioactive coolant, so to ensure safety, heat is first transferred to the non-radioactive coolant of the secondary cooling system 11 via the intermediate heat exchanger 5, and then superheated steam is transferred. It's something you get.
第3図はシェル・アンド・チューブ型中間熱交換器5の
具体的構造を示した一例である。FIG. 3 is an example showing a specific structure of the shell-and-tube type intermediate heat exchanger 5. As shown in FIG.
円筒状のシェル21の内部に複数本のチューブ状の伝熱
管22を上部管板23および下部管板24間に支えて管
束25を形成する。管束25はシェル21の内側に設け
た支持機構26で支えられ、上部管板23.および下部
管板24のそれぞれの部分に上部プレナム27および下
部プレナム28を形成する。管束25領域でシェル上部
に一次入ロノズル29を下部に一次出ロノズル30を設
け、下部プレナム部に二次入口ノズル31を上部プレナ
ム部に二次出口ノズル32を設ける。以上のように構成
された中間熱交換器5は、加熱流体33を外部のポンプ
によって一次入ロノズル39から導入し伝熱管22の外
周を通過し、−人出ロノズルから流出する。一方、被加
熱流体34を外部のポンプにより二次入口ノズル31か
ら導入し、下部プレナム28部で各伝熱管22へ分流し
、各伝熱管22の内部を流動し、上部プレナム部27で
合流し、二次入口ノズル32゛から流出する。したがっ
て、伝熱管束25部分では、加熱流体33と被加熱流体
34は伝熱壁を介して対向流となり、加熱流体33側か
ら被加熱流体34側に熱交換される。A plurality of tubular heat transfer tubes 22 are supported inside a cylindrical shell 21 between an upper tube sheet 23 and a lower tube sheet 24 to form a tube bundle 25. The tube bundle 25 is supported by a support mechanism 26 provided inside the shell 21 and is supported by an upper tube plate 23. An upper plenum 27 and a lower plenum 28 are formed in respective portions of the lower tube sheet 24. In the region of the tube bundle 25, a primary inlet nozzle 29 is provided in the upper part of the shell, a primary outlet nozzle 30 is provided in the lower part, a secondary inlet nozzle 31 is provided in the lower plenum part, and a secondary outlet nozzle 32 is provided in the upper plenum part. In the intermediate heat exchanger 5 configured as described above, the heating fluid 33 is introduced from the primary input nozzle 39 by an external pump, passes through the outer periphery of the heat transfer tube 22, and flows out from the secondary input nozzle. On the other hand, the fluid to be heated 34 is introduced from the secondary inlet nozzle 31 by an external pump, is divided into each heat exchanger tube 22 at the lower plenum 28, flows inside each heat exchanger tube 22, and joins at the upper plenum 27. , exits from the secondary inlet nozzle 32'. Therefore, in the heat transfer tube bundle 25 portion, the heating fluid 33 and the heated fluid 34 flow in opposite directions via the heat transfer wall, and heat is exchanged from the heating fluid 33 side to the heated fluid 34 side.
以上記述したように従来型の中間熱交換器を動作するた
めKは補機として一次および二次ポンプ4.8が必要に
なる。−次冷却系は放射性流体が流動するため一次系に
使われる機器のメンテナンスは非常に崖しい。したがっ
て機器の高い信頼性が要求される。特に−次、二次の両
機械式ポンプ4.8には回転部品があり、トラブル発・
生の最も高いボテンシャルを持っている機器である。で
きれば、このような機器を省略したシンプルなシステム
が望まれるが従来の中間熱交換器を用いる限シー次、二
次の両ポンプ4,8は必要になるう[発明の目的〕
本発明の目的は、−次あるいは二次流体の一方側のポン
プ駆動で両流体間の効率の良い熱交換が行える熱交換器
を提供することにある。As described above, in order to operate the conventional intermediate heat exchanger, K requires primary and secondary pumps 4.8 as auxiliary equipment. - Because radioactive fluid flows through the secondary cooling system, maintenance of the equipment used in the primary system is extremely difficult. Therefore, high reliability of the equipment is required. In particular, both the primary and secondary mechanical pumps 4.8 have rotating parts, which can cause trouble.
It is a device with the highest raw potential. If possible, a simple system omitting such equipment is desired, but both the primary and secondary pumps 4 and 8 using a conventional intermediate heat exchanger are required. An object of the present invention is to provide a heat exchanger that can perform efficient heat exchange between the secondary or secondary fluid by driving a pump on one side of the secondary fluid.
本発明の基本的措成は、内筒と外筒との間に形成した環
状の空間を前記両筒側に折曲部分を有する波形状の導電
性の仕切板で一次流路と二次流路とに区画し、前記両流
路の一方の流路に流体駆動装置を設け、前記環状の空間
を磁束が横切る配置で磁界発生装置を備えた熱交換装置
であって、流体駆動装置にて一方の流路に導電性流体を
流動させると、他方の流路内に存在する導電性流体が他
の流体[動装置の力を受はプとも流動して1両流路の両
導電性流悴間で仕切板と介して熱交換を行うものである
。The basic structure of the present invention is that an annular space formed between an inner cylinder and an outer cylinder is connected to a primary flow path and a secondary flow path using a wave-shaped conductive partition plate having bent portions on both cylinder sides. A heat exchange device comprising: a fluid drive device provided in one of the two flow channels, and a magnetic field generating device arranged such that the magnetic flux crosses the annular space; When a conductive fluid is made to flow in one channel, the conductive fluid present in the other channel flows against the force of the other fluid [moving device], and both conductive fluids in one channel flow. Heat exchange is performed in the room through a partition plate.
以下、添付図面を参照して、本発明の実施例を詳細に説
明する。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
第1図は本発明の一実施例を具体的構造に示したもので
1円筒形の外fi40の中心部に円管の内筒41を同心
状に設は内外筒の間に第4図の如く幅りの環状流路42
を形成する。外筒40の外周に円筒状の磁石43を軸方
向に数段膜は内筒41の内部には棒状の鉄心44を設け
、これらで磁界発生装置を形成する。第1図に示す実施
例では軸方向に3段の磁気回路を例に記述した。、3J
伏流路42部分のB−B断面tlX4図に示す。即ち1
MI状流路42内には、波形状の仕切板45を入れであ
る。この仕切板45は導電性材料から作られており、内
筒41と外筒40側とに折曲部を有する波形状となって
いる。折曲部は、外筒40ないしは内筒41に取り付け
である。FIG. 1 shows a specific structure of an embodiment of the present invention, in which a cylindrical inner cylinder 41 is concentrically arranged at the center of a cylindrical outer fi 40, and is shown in FIG. 4 between the inner and outer cylinders. Annular flow path 42 as wide as
form. A cylindrical magnet 43 is arranged on the outer periphery of the outer cylinder 40 in several stages in the axial direction, and a rod-shaped iron core 44 is provided inside the inner cylinder 41 to form a magnetic field generating device. In the embodiment shown in FIG. 1, a three-stage magnetic circuit in the axial direction is described as an example. ,3J
The BB cross section of the underflow channel 42 portion is shown in the tlX4 diagram. That is, 1
A wave-shaped partition plate 45 is inserted into the MI-shaped channel 42 . The partition plate 45 is made of a conductive material and has a wave shape with bent portions on the inner cylinder 41 and outer cylinder 40 sides. The bent portion is attached to the outer cylinder 40 or the inner cylinder 41.
このようにして、環状流路42は仕切板45により一次
流路46と二次流路47とに区画される。In this way, the annular flow path 42 is divided into a primary flow path 46 and a secondary flow path 47 by the partition plate 45 .
この−次流路47の上端開口は、上板48により、第5
図の如くふさがれて上部プレナム部50と仕切られてい
る。二次流路47の上端開口は上部プレナム部50に開
口している。この為に、導電性液体である一次流体61
(液体す) IJウム)が−火入ロノズル55から外筒
40と一体のジャケット54を通って一次流路47にの
み流入し、上部プレナム部50へ混入しない。The upper end opening of this secondary flow path 47 is opened by the upper plate 48.
As shown in the figure, it is closed and separated from the upper plenum section 50. The upper end opening of the secondary flow path 47 opens into the upper plenum portion 50 . For this purpose, a primary fluid 61 which is a conductive liquid is used.
(Liquid) flows from the firing nozzle 55 through the jacket 54 integrated with the outer cylinder 40 only into the primary flow path 47, and does not mix into the upper plenum portion 50.
又、−次流路47の下端開口は第6図の如く底板49で
ふさがれて下部プレナム部52と仕切られている。この
為、二次流路46の上端開口が下部プレナム部52へ開
口して通じている。よって、−次流体61のみが外筒4
0の下端と一体のジャケット56を通って一次流体出ロ
ノズル57から流出し得るっ
二次入口ノズル53から二次ポンプ8などによる外力に
よって液体す) IJウムである二次流体58を流入し
下部プレナム部52で各二次流路46へ分流し各二次流
路46を上昇流59となり、各分流は上部プレナム部5
0で合流し、二次出口ノズル51から流出する。この上
昇流59の過程で電磁フローカップラ機能が作動し、自
動的に一次流路47内に存在する液体ナトリウムの一次
流体61に流動力を与え一次流体61を下降流60とし
、結果的に一次流体61を一次入ロノズル55から流入
し、下降流60部で二次流体58との熱交換を得て一次
出ロノズルから流出する電磁フローカップラ型熱交換器
が成立する。Further, the lower end opening of the secondary flow path 47 is closed with a bottom plate 49 as shown in FIG. 6, and is partitioned from the lower plenum portion 52. Therefore, the upper end opening of the secondary flow path 46 opens and communicates with the lower plenum portion 52. Therefore, only the -th fluid 61 flows into the outer cylinder 4.
The secondary fluid 58, which is IJ fluid, flows in from the secondary inlet nozzle 53 through an external force such as the secondary pump 8. The flow is divided into each secondary flow path 46 in the plenum part 52, and each secondary flow path 46 becomes an upward flow 59, and each divided flow is divided into the upper plenum part 5.
0 and flows out from the secondary outlet nozzle 51. In the process of this upward flow 59, the electromagnetic flow coupler function is activated and automatically applies a flow force to the liquid sodium primary fluid 61 existing in the primary flow path 47, causing the primary fluid 61 to become a downward flow 60, and as a result, the primary An electromagnetic flow coupler type heat exchanger is established in which the fluid 61 flows in from the primary inlet nozzle 55, exchanges heat with the secondary fluid 58 in 60 parts of the downward flow, and then flows out from the primary outlet nozzle.
さらに、その動作原理を第7図〜第9図を参照にしなが
ら詳細に説明する。第7図は、電磁フローカップラの基
礎的動作原理を図示したもので、共通な磁場(B)内で
直角な垂直方向から力(F)を与えると、磁場(B)と
力(F)とに直角な方向に電流(I)が誘起される。こ
の現象はフレミングの右手の法則によるゼネレータ部で
ある。電流(I)を受けた磁場(B)内の導体には、電
流(I)と磁場(B)とに直角な垂直方向に力(P)が
発生する。この現象が7レミングの左手の法則による電
動部である。Furthermore, the principle of operation thereof will be explained in detail with reference to FIGS. 7 to 9. Figure 7 illustrates the basic operating principle of an electromagnetic flow coupler. When a force (F) is applied from a perpendicular direction within a common magnetic field (B), the magnetic field (B) and force (F) A current (I) is induced in the direction perpendicular to . This phenomenon is a generator part of Fleming's right-hand rule. A force (P) is generated in a conductor in a magnetic field (B) that receives a current (I) in a direction perpendicular to the current (I) and the magnetic field (B). This phenomenon is a motorized part based on the 7 lemmings' left hand rule.
したがって、共通磁場内に存在する導体の一方に二次ポ
ンプ8などの外力による力を与えることによっても一方
の導体に逆方向の二次力が誘起される電磁フローカップ
ラが成立する。Therefore, an electromagnetic flow coupler is established in which a secondary force in the opposite direction is induced in one conductor by applying an external force such as the secondary pump 8 to one of the conductors existing in the common magnetic field.
この磁気誘導関係を本発明の構造に対比して説明する。This magnetic induction relationship will be explained in comparison with the structure of the present invention.
第8図では便宜上外周磁石43の第8図の面に表われた
磁極を(N)とすれば中心鉄心44の磁極は(S)と仮
定する。したがって周囲から中心鉄心44に向って磁束
62が放射状に存在する1環状流路を仕切板45で複数
に分割し、−次流路46と二次流路47とを交互に配列
し、今、上昇流59(■印)の二次流体を二次ポツプ8
などによる外力で二次流路46内を流動すると、環状流
路内の二次流路46部分で流速に比例した電流を発生し
、各電流が合成して環状流路と同軸のループ電流63が
形成される。二次流路46七隣接した一次流路47内に
存在する液体す) IJウムなどの導電性流体は磁束6
2内においてこのループ電流63を受けて、二次流体と
逆方向の下降流6゜(■印)の流動力を発生する。各−
次流路47で発生した流動力が合成され一次流体61の
全体ポンプ力となる。In FIG. 8, for convenience, it is assumed that the magnetic pole of the outer circumferential magnet 43 appearing on the surface of FIG. 8 is (N), and the magnetic pole of the central iron core 44 is (S). Therefore, one annular flow path in which the magnetic flux 62 exists radially from the periphery toward the central core 44 is divided into a plurality of parts by the partition plate 45, and the -order flow path 46 and the secondary flow path 47 are arranged alternately. The secondary fluid of the upward flow 59 (■ mark) is transferred to the secondary pop 8
When flowing through the secondary flow path 46 due to an external force such as that caused by an external force, a current proportional to the flow velocity is generated in the secondary flow path 46 portion within the annular flow path, and each current is combined to form a loop current 63 coaxial with the annular flow path. is formed. A conductive fluid such as IJum has a magnetic flux of 6.
2 receives this loop current 63 to generate a downward flow force of 6° (indicated by ■) in the opposite direction to that of the secondary fluid. Each −
The fluid forces generated in the secondary flow path 47 are combined and become the overall pumping force of the primary fluid 61.
第9図は1本発明の軸方向断面における磁気回路と電流
回路の関係を図示したものである。実施例では軸方向に
3段の磁石46を設けた例で記述しているが1図示する
ように磁極の方向をN−8゜S−N、N−8と配列する
ことによって各磁束方向が合成される。したがって、軸
方向の磁束分布は磁極の部分で互に逆極性の最大磁束密
度を示す。FIG. 9 illustrates the relationship between the magnetic circuit and the current circuit in an axial cross section of the present invention. In the embodiment, an example is described in which three stages of magnets 46 are provided in the axial direction, but by arranging the magnetic pole directions as N-8°S-N and N-8 as shown in Figure 1, each magnetic flux direction can be changed. be synthesized. Therefore, the magnetic flux distribution in the axial direction exhibits maximum magnetic flux densities of opposite polarity at the magnetic pole portions.
環状流路部に駆動流体を流動すると各磁極の部分で最大
となるループ電流63が発生する。ま念このループ電流
63は各磁束密度の最大点で互に逆方向の向に誘起する
ことになるが磁界62とループ電流63が共に逆向にな
ることから力の向きに与える相対的方向には変りはない
。したがって。When the driving fluid flows through the annular flow path portion, a loop current 63 is generated which becomes maximum at each magnetic pole portion. This loop current 63 is induced in opposite directions at the maximum point of each magnetic flux density, but since the magnetic field 62 and loop current 63 are both in opposite directions, the relative direction of the force is There is no difference. therefore.
電磁フローカッグラによるポンプ力は半径方向はもちろ
ん軸方向全体にわたって発生することになる。The pumping force due to the electromagnetic flow kagura is generated not only in the radial direction but also in the entire axial direction.
このようにして仕切板45による伝熱壁全面にわたって
伝熱作用が得られ、さらに合せて電磁フローカップラ作
用が有効に動作する電磁フローカップラ型熱交換器が成
立する。In this way, a heat transfer effect is obtained over the entire surface of the heat transfer wall by the partition plate 45, and an electromagnetic flow coupler type heat exchanger is established in which the electromagnetic flow coupler effect operates effectively.
本発明の一実施例によれば、環状流路型状にすることに
よって、電磁フローカップラの動作上必要条件である磁
界、電流そして流体の方向、また熱交換時の流体の流れ
方向と熱流方向、全てが合理的に合致するため、特別な
電極構造を必要としない電磁ポンプと熱交換器を一体に
することができる。According to one embodiment of the present invention, by forming the annular channel shape, the direction of magnetic field, current, and fluid, which are necessary conditions for the operation of the electromagnetic flow coupler, as well as the direction of fluid flow and heat flow during heat exchange, can be controlled. , all are reasonably matched, so the electromagnetic pump and heat exchanger can be integrated without requiring a special electrode structure.
又、仕切板が波形状で伝熱面積が広く、且つ連続波形状
であるので仕切板の内外筒に対する溶接等の工程も少な
く、熱変形量も少ない。Further, since the partition plate is wave-shaped and has a large heat transfer area and is continuous wave-shaped, there are fewer steps such as welding the inner and outer cylinders of the partition plate, and the amount of thermal deformation is also small.
μ上の如く、本発明によれば、伝熱壁面を介しての一次
と二次の両流体を流動させて熱交換させることを一次と
二次の両流体流路系内の一方のポンプを駆動することで
達成できるという効果が得られる。As described above, according to the present invention, one pump in both the primary and secondary fluid flow path system is used to cause both the primary and secondary fluids to flow through the heat transfer wall surface for heat exchange. The effect can be achieved by driving.
第1図は本発明の一実施例による熱交換器の縦断面図、
第2図は高速炉冷却系システムの流路系統図、第3図は
従来の熱交換器の概略構造の縦断面図、第4図はM1図
のB−B矢視断面図、第5図は第1図のA−A矢視断面
図、第6図は第1図のC−C矢視断面図、第7図は電磁
フローカップラの電流、磁束、力の各ベクトルの関係を
示した斜視図、第8図は本発明の一実施例における電流
。
磁束、力の各ベクトル表示図、第9図は本発明の一実施
例における電流路と磁気流路の説明図である。
8・・・二次系ポンプ、40・・・外筒、41・・・内
筒。
42・・・環状流路、43・・・磁石、44・・・鉄心
、45・・・仕切板、46・・・二次流路、47・・・
−電流路、48・・・上板、49・・・底板、50・・
・上部プレナム部。
51・・・二次出口ノズル、52・・・下部プレナム部
。
53・・・二次入口ノズル、54・・・上部ジャケット
。
55・・・−吹入ロノズル、56・・・下部ジャケット
。
57・・・−次出ロノズル、58・・・二次流体、59
・・・上昇流、60・−・下降流、61・・・−次流体
、62・・・磁束% 63・・・ループ電流。FIG. 1 is a longitudinal sectional view of a heat exchanger according to an embodiment of the present invention;
Figure 2 is a flow path system diagram of the fast reactor cooling system, Figure 3 is a vertical cross-sectional view of the schematic structure of a conventional heat exchanger, Figure 4 is a cross-sectional view taken along the arrow B-B of Figure M1, and Figure 5. is a cross-sectional view taken along the line A-A in Figure 1, Figure 6 is a cross-sectional view taken along the line C-C in Figure 1, and Figure 7 shows the relationship between the current, magnetic flux, and force vectors of the electromagnetic flow coupler. The perspective view and FIG. 8 show the current in one embodiment of the present invention. FIG. 9 is an explanatory diagram of a current path and a magnetic flow path in one embodiment of the present invention. 8...Secondary system pump, 40...Outer cylinder, 41...Inner cylinder. 42... Annular flow path, 43... Magnet, 44... Iron core, 45... Partition plate, 46... Secondary flow path, 47...
- Current path, 48...Top plate, 49...Bottom plate, 50...
・Upper plenum section. 51...Secondary outlet nozzle, 52...Lower plenum part. 53... Secondary inlet nozzle, 54... Upper jacket. 55...-Blow nozzle, 56... Lower jacket. 57...-Next output nozzle, 58...Secondary fluid, 59
...Upward flow, 60...Downward flow, 61...-Next fluid, 62...Magnetic flux% 63...Loop current.
Claims (1)
側に折曲部分を有する波形状の導電性の仕切板で一次流
路と二次流路とに区画し、前記両流路の一方の流路に流
体駆動装置を設け、前記環状の空間を磁束が横切る配置
で磁界発生装置を備えた熱交換装置。1. The annular space formed between the inner cylinder and the outer cylinder is divided into a primary flow path and a secondary flow path by a wave-shaped conductive partition plate having bent portions on both cylinder sides, and the A heat exchange device including a fluid drive device in one of the flow paths and a magnetic field generating device arranged such that magnetic flux crosses the annular space.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15589785A JPS6219697A (en) | 1985-07-17 | 1985-07-17 | Heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15589785A JPS6219697A (en) | 1985-07-17 | 1985-07-17 | Heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6219697A true JPS6219697A (en) | 1987-01-28 |
Family
ID=15615897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15589785A Pending JPS6219697A (en) | 1985-07-17 | 1985-07-17 | Heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6219697A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57146133A (en) * | 1981-03-04 | 1982-09-09 | Hitachi Ltd | Optical measuring instrument |
-
1985
- 1985-07-17 JP JP15589785A patent/JPS6219697A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57146133A (en) * | 1981-03-04 | 1982-09-09 | Hitachi Ltd | Optical measuring instrument |
JPS6219697B2 (en) * | 1981-03-04 | 1987-04-30 | Hitachi Ltd |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2528658B2 (en) | Pump / heat exchanger assembly | |
US4294658A (en) | Nuclear reactors | |
US4412785A (en) | Pumping apparatus | |
US4687418A (en) | Device for making a fluid having electrical conductivity flow | |
EP0316120B1 (en) | Heat transport system for sodium cooled reactor | |
JP2628166B2 (en) | Pump / heat exchanger assembly | |
EP0141158A1 (en) | Double tank type fast breeder reactor | |
JPS627996B2 (en) | ||
JPS6219697A (en) | Heat exchanger | |
JPH0146798B2 (en) | ||
EP0176705B1 (en) | Fast breeder reactor | |
GB2033644A (en) | Nuclear reactors | |
JP2948831B2 (en) | Fast breeder reactor | |
EP0257905B1 (en) | An improved pump assembly for a nuclear reactor | |
JP3523634B2 (en) | Steam generator with built-in intermediate heat exchanger | |
CN112798309A (en) | Steam generator test device and method simulating presence or absence of axial flow type preheater | |
JPH0729361Y2 (en) | Steam generator | |
JPS633292A (en) | Fast breeder reactor | |
JPS6249196A (en) | Electromagnetic flow coupler type heat exchanger | |
JP2539405B2 (en) | Liquid metal cooling heat exchanger | |
JPS61794A (en) | Cooling device for liquid-metal cooling type reactor | |
JPH0631820B2 (en) | Heat exchanger for fast breeder reactor | |
JPH0579156B2 (en) | ||
JPH0660722B2 (en) | Steam generator | |
JPH0795109B2 (en) | Reactor structure of fast breeder reactor |