JPS62196498A - Operating method for hydrogen storage tank - Google Patents
Operating method for hydrogen storage tankInfo
- Publication number
- JPS62196498A JPS62196498A JP61037130A JP3713086A JPS62196498A JP S62196498 A JPS62196498 A JP S62196498A JP 61037130 A JP61037130 A JP 61037130A JP 3713086 A JP3713086 A JP 3713086A JP S62196498 A JPS62196498 A JP S62196498A
- Authority
- JP
- Japan
- Prior art keywords
- tank
- hydrogen
- hydrogen storage
- storage tank
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000001257 hydrogen Substances 0.000 title claims abstract description 66
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 66
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 238000011017 operating method Methods 0.000 title claims 2
- 239000000956 alloy Substances 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 15
- 238000005984 hydrogenation reaction Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 abstract description 34
- 230000001105 regulatory effect Effects 0.000 abstract description 11
- 150000004678 hydrides Chemical class 0.000 abstract description 4
- 230000001276 controlling effect Effects 0.000 abstract description 2
- 238000007796 conventional method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- 229910052987 metal hydride Inorganic materials 0.000 description 5
- 150000004681 metal hydrides Chemical class 0.000 description 5
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910002593 Fe-Ti Inorganic materials 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- YZCKVEUIGOORGS-NJFSPNSNSA-N Tritium Chemical compound [3H] YZCKVEUIGOORGS-NJFSPNSNSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C11/00—Use of gas-solvents or gas-sorbents in vessels
- F17C11/005—Use of gas-solvents or gas-sorbents in vessels for hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/32—Hydrogen storage
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
不発明は水素貯蔵合金により水素の取出し、又に吸蔵を
行わせる水素貯蔵槽の操業方法Vこ関するものである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The invention relates to a method of operating a hydrogen storage tank in which hydrogen is extracted or stored using a hydrogen storage alloy.
(従来の技術)
従来の水素貯蔵合金、例えばFe−Ti 、 Lc−N
i等等向内蔵た水素貯蔵槽は、その出口に圧力計及び流
量計が設置されて、該槽内の状態を計測しつX操業して
いるが、一般にか\る槽内状態の計測は、その水素貯蔵
合金の特性との連連で本質的に困難である。(Prior Art) Conventional hydrogen storage alloys, such as Fe-Ti, Lc-N
A hydrogen storage tank with built-in isometrically oriented I, etc. is operated with a pressure gauge and a flow meter installed at its outlet to measure the condition inside the tank, but in general, the measurement of the condition inside the tank is , which is inherently difficult in conjunction with the properties of hydrogen storage alloys.
たとえば、水素貯蔵合金Mは、(1)式に示すような反
応式により、ある温度と圧力のもとで反応して、金属水
素化物MH2k形成し、反応熱Qを放出する。For example, the hydrogen storage alloy M reacts under a certain temperature and pressure according to the reaction equation shown in equation (1), forms a metal hydride MH2k, and releases the heat of reaction Q.
M+H2−一→ MH2+Q ・・・・・・・(1
)そしてこの反応の平衡解離圧Pと、金属水素化物中の
水素含有量H/M との間には、第4図に示すような
関係がある。この金属水素化物は、温度を上げたり、圧
力を下けたシすれば、(1)式に示す逆反応が光生じて
、吸熱し々から水素を放出する。M+H2-1 → MH2+Q ・・・・・・・・・(1
) There is a relationship as shown in FIG. 4 between the equilibrium dissociation pressure P of this reaction and the hydrogen content H/M in the metal hydride. When the temperature of this metal hydride is raised or the pressure is lowered, the reverse reaction shown in equation (1) occurs, and hydrogen is released while absorbing heat.
このように反応熱と水素の挙動には、極めて密接な関係
がある。In this way, there is an extremely close relationship between the heat of reaction and the behavior of hydrogen.
いま第4図において、A−B間は水素の金属内への固溶
領域であって、α相と呼ばれ、金属の結晶構造が変ら々
いので、水素が溶解している。ギプス(Gibbs )
の相律として(2)式%式%(2)
f:ある系の自由度、C:独立成分の数、P:相の数
7適用すれば、c−2(金属と水素でc−2)、P=2
(α相と気体水素で2)、従って自由度は、=2となり
、平衡解離圧力は、温度j填成(水素含有量)によって
変化する。In FIG. 4, the area between A and B is a solid solution region of hydrogen in the metal, which is called the α phase, and since the crystal structure of the metal does not change, hydrogen is dissolved therein. Gibbs
As the phase law of (2) formula % formula % (2) f: degree of freedom of a certain system, C: number of independent components, P: number of phases 7 If applied, c-2 (metal and hydrogen c-2 ), P=2
(2 for α phase and gaseous hydrogen), therefore, the degree of freedom is =2, and the equilibrium dissociation pressure changes depending on the temperature j filling (hydrogen content).
次に、β〜C間では金属水素化物(β相)の形成が始ま
り、固溶体(α相)と共存するので、P=3(α相、β
相と気体水素で3)と々るがら、自由度f=2−3+2
=1となり、平衡解離圧は温度が一定々ら、水素含有量
によって変化しなくなり、第4図に示されるように一定
値と々す、水平部分(プラトーと称す)で表わされる。Next, metal hydride (β phase) begins to form between β and C and coexists with the solid solution (α phase), so P = 3 (α phase, β
phase and gaseous hydrogen 3) While flying, degrees of freedom f = 2-3 + 2
= 1, and the equilibrium dissociation pressure does not change depending on the hydrogen content when the temperature is constant, and is represented by a horizontal portion (referred to as a plateau) that remains at a constant value as shown in FIG.
なお、この曲線は温度によって変るが、この場合の曲線
は、読図の点線のようになる。Note that this curve changes depending on the temperature, but in this case the curve looks like the dotted line in the diagram.
一般に、この第4図において有効に水素の吸蔵・放出過
程を活用できるのは、プラトーと呼ばれる上記水平部分
である。従って有効に水素の吸蔵・放出反応を行なわせ
る領域が、含有する水素の量によって、圧力が変化しな
いことから、外部的には圧力を計測するのみでは槽内に
存在する水素の含有量を推定することは、本質的に困難
であり、従来は、槽の内部に歪測定器を設けて、膨張量
を測定する方法(特開昭58−95603号公報、以下
従来法という)、水素を吸収した粉体層中の残存水素量
を測定する方法が取られているが、この方法は実際に通
過した水素量は把握できても、今後の予測を行うことは
できない。Generally, in FIG. 4, the horizontal portion called the plateau is where the hydrogen storage and desorption process can be effectively utilized. Therefore, since the pressure in the area where hydrogen storage and release reactions occur effectively does not change depending on the amount of hydrogen contained, it is not possible to estimate the hydrogen content in the tank by simply measuring the pressure externally. It is essentially difficult to do so, and conventional methods include installing a strain measuring device inside the tank to measure the amount of expansion (Japanese Unexamined Patent Publication No. 58-95603, hereinafter referred to as the conventional method), and the method of absorbing hydrogen. A method has been used to measure the amount of hydrogen remaining in the powder layer, but although this method can determine the amount of hydrogen that has actually passed through, it cannot predict the future.
それは(1)式にて示される反応は、熱の吸収または放
出を伴う反応であるために、反応の発生により、水素化
物の温度が変化し、その温度変化が平衡解離圧を変え、
その結果として、また反応速度が変わるというように相
互に関連した複雑な反応系を形成するので、流量の積算
のみでは、この反応の推移を予測することはできないの
である。This is because the reaction represented by equation (1) is a reaction that involves the absorption or release of heat, so the temperature of the hydride changes due to the occurrence of the reaction, and this temperature change changes the equilibrium dissociation pressure.
As a result, a complex interrelated reaction system is formed in which the reaction rate changes, so the course of this reaction cannot be predicted only by integrating the flow rate.
(発明が解決しようとする問題点)
このように従来法では、ある状態から、水素を発生しつ
づけたら、槽内の温度がどう変化し、水素の発生がどう
なるかが判然としないために、操業の途中で水素が無く
なったり、槽内の温度が上がりすぎて、水素の発生速度
が必要よりも過大になって操業を中断するような事態が
度々あった。(Problems to be Solved by the Invention) In this way, in the conventional method, if hydrogen continues to be generated from a certain state, it is unclear how the temperature inside the tank will change and how hydrogen will be generated. There were many cases where the hydrogen ran out during the operation, or the temperature inside the tank rose too much, causing the hydrogen generation rate to become faster than necessary, resulting in the operation being interrupted.
(問題点を解決するだめの手段)
本発明はか\る問題点を解決し、効率的な水素の取出し
、又は吸蔵を行なうことを目的とするもので、その為に
、金属水素化物の反応及び熱伝達と、反応熱の関係を後
述する予想式により求めて操業するものであり、更にこ
の水素反応速度が最大となるよう槽内を制御しつ\、水
素貯蔵槽の操業を行うものである。(Means for Solving the Problems) The present invention aims to solve the above problems and efficiently extract or store hydrogen. The hydrogen storage tank is operated by determining the relationship between heat transfer, heat transfer, and reaction heat using the predictive formula described below, and the hydrogen storage tank is operated while controlling the inside of the tank so that the hydrogen reaction rate is maximized. be.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明における予測式は、金属水素化物の種類により種
々なものが考えられるが、例えば水素貯蔵合金がLc−
Ni5 系においての一例を示せば、次のようなもので
ある。Various prediction formulas in the present invention can be considered depending on the type of metal hydride. For example, if a hydrogen storage alloy is Lc-
An example in the Ni5 system is as follows.
水素化物槽内の熱伝達速度の推定式;
%式%)
水素吸蔵放出反応速度の推定式:
但し、γ :反応速度 (17sec )K:頻度
因子
E :活性化エネルギー(−)
e、z、:指数関数
6一
R:ガス定数 0.j/℃)
T :絶対温度 (0K)
J!n:自然対数
P :槽内圧力 (Ki/c肩)
p、 :平衡圧力 (?/crl )H:水素吸蔵
量 (mol、/ mo、Q)1Z:水素吸紙合金量
(moi)
これらの推定式を用いて、水素化物槽に併設したコンピ
ューターにより、水素度合(87M )及び槽内温度T
(0K)i算出し、該水素濃度(87M)と槽内温度(
T)により反応速度γヶ計算する。そしてこの反応速度
に基づき稼働するのであるが、該反応速度が最大になる
ような朱件、即ち、圧力及び温度を調整して、稼働する
と実技に適するのである。Estimation formula for heat transfer rate in hydride tank; % formula %) Estimation formula for hydrogen absorption and release reaction rate: Where, γ: Reaction rate (17 sec) K: Frequency factor E: Activation energy (-) e, z, : Exponential function 6-R: Gas constant 0. j/℃) T: Absolute temperature (0K) J! n: Natural logarithm P: Tank internal pressure (Ki/c shoulder) p,: Equilibrium pressure (?/crl) H: Hydrogen storage amount (mol, / mo, Q) 1Z: Hydrogen absorbing paper alloy amount (moi) These Using the estimation formula, a computer attached to the hydride tank calculates the degree of hydrogen (87M) and the tank temperature T.
(0K) i was calculated, and the hydrogen concentration (87M) and the tank temperature (
Calculate the reaction rate γ by T). The system operates based on this reaction rate, and it is suitable for practical use if the system is operated under conditions that maximize the reaction rate, that is, the pressure and temperature.
この方法の一例として、第1図及び第2図に基つき説明
する。An example of this method will be explained based on FIGS. 1 and 2.
水素吸蔵合金槽内の水素化反応速度は、式(4)に示さ
れるように、水累圧カP及び内部温度1.(0:(0K
)
(T −273) によって律速されているから、実
際に本発明で操業する場合は、式(3)及び(4)によ
り、内部の合金の反応状態、温度を推定する。As shown in equation (4), the hydrogenation reaction rate in the hydrogen storage alloy tank depends on the cumulative water pressure P and the internal temperature 1. (0:(0K
) (T -273) Therefore, when actually operating according to the present invention, the reaction state and temperature of the internal alloy are estimated using equations (3) and (4).
その結果として、第1図に示すような槽内の温度分布が
求まる。図中■→@→Oは時間が経緯するに従い、温度
曲線が変化することを示すが、時間の推移と共に、外表
面より反応熱が奪われて、水素の吸蔵が進行しているこ
とが判かる。As a result, the temperature distribution inside the tank as shown in FIG. 1 is determined. ■→@→O in the figure indicates that the temperature curve changes as time progresses, but it can be seen that as time progresses, reaction heat is removed from the outer surface and hydrogen storage progresses. Karu.
このようにある時間での装置内の温度分布を求め、所定
圧力における反応速度が最大になるように、槽同温度を
変化させる。その状態を示したのが第2図で、各圧力に
おける反応速度曲線を表わし、その最大点を点A−Fで
示している。In this way, the temperature distribution within the apparatus at a certain time is determined, and the temperature of the tank is changed so that the reaction rate at a predetermined pressure is maximized. This state is shown in FIG. 2, which shows reaction rate curves at various pressures, the maximum points of which are indicated by points A-F.
従って、本装置を操業する際、点A −+ B−+ (
:→D−+E −p Fと変化させながら稼働すれば、
これらの状態を反応開始から終了まで集積することによ
り、全体としての反応時間を最も短かくすることができ
る。Therefore, when operating this device, the point A −+ B−+ (
:→D-+E-p If you operate while changing it to F,
By accumulating these states from the start to the end of the reaction, the overall reaction time can be made the shortest.
(作用) 本発明を実施する装置を第3図に示す。(effect) An apparatus for carrying out the invention is shown in FIG.
水素貯蔵槽1内に水素貯蔵合金2が貯蔵され、該槽内へ
水素導入及び取出しパイプ3が挿入されている。該パイ
プ3に、計算機4に連結した圧力調整パルプ5及び圧力
計6が設置されている。また、該槽内部に内部温度調整
パイプ7が設けられ、該槽外部に外部温度調整装置9が
設けられており、いずれも、計算機4に連結したパルプ
8.lOが設置されている。A hydrogen storage alloy 2 is stored in a hydrogen storage tank 1, and a hydrogen introduction and extraction pipe 3 is inserted into the tank. A pressure regulating pulp 5 and a pressure gauge 6 connected to a computer 4 are installed in the pipe 3. Further, an internal temperature regulating pipe 7 is provided inside the tank, and an external temperature regulating device 9 is provided outside the tank, both of which are connected to the pulp 8. lO is installed.
次に、該装置の操作方法を述べると、先ず、前述の式(
3)及び(4)に基づき、計算機4で成る時間での水素
貯蔵槽l内部の温度を求める。次いで該槽1内の所定の
圧力における反応速度が第2図に示す極太値をとるよう
に、内部温度調整パイプ7へ流入する熱媒体流量ケバル
プ8で、及び若しくは外部温度調整装置9のバルブ1o
で調整して、上記槽内部の温度を変化させると同時に、
該槽1内部の圧力を、水素導入及び取出しパイプ3に設
置した圧力調整バルブ5により、圧力計6を見ながら所
定の圧力に調整する。Next, to explain how to operate this device, first, the above-mentioned formula (
Based on 3) and (4), calculate the temperature inside the hydrogen storage tank l at the time indicated by the calculator 4. Next, the flow rate of the heat medium flowing into the internal temperature regulating pipe 7 is controlled by the valve 8 or the valve 1o of the external temperature regulating device 9 so that the reaction rate at a predetermined pressure in the tank 1 takes an extremely large value as shown in FIG.
At the same time, the temperature inside the tank is changed by adjusting the
The pressure inside the tank 1 is adjusted to a predetermined pressure using a pressure regulating valve 5 installed on the hydrogen introduction and extraction pipe 3 while checking the pressure gauge 6.
このように操作することにより、常に槽内部の反応速度
が最大になるように、水素貯蔵槽を操業することができ
る。By operating in this way, the hydrogen storage tank can be operated so that the reaction rate inside the tank is always maximized.
(実施例) 本発明の方法での操業の実施例を次に示す。(Example) An example of operation in the method of the present invention is shown below.
先ず、水素吸蔵合金Lα−N1を貯蔵槽に挿入し、温度
lO℃、圧力” ’91crlで操業を開始した。First, the hydrogen storage alloy Lα-N1 was inserted into a storage tank, and operation was started at a temperature of 10° C. and a pressure of 91 crl.
この時の反応速度は1.5 (1/5ec)であった。The reaction rate at this time was 1.5 (1/5 ec).
2時間後に温度55°C1圧力30 Kg/cii で
、反応速度e(]、/5ec)の状態で操業を完了した
。After 2 hours, the operation was completed at a temperature of 55° C., a pressure of 30 Kg/cii, and a reaction rate of e(], /5ec).
本発明の方法と、従来法と全比較すると、第1表のよう
になる。これにより、本発明法の優位性が明らかとなっ
た。A complete comparison of the method of the present invention and the conventional method is shown in Table 1. This revealed the superiority of the method of the present invention.
以上、本発明法7予測式(3)及び(4)に基づいて説
明したが、系の状態を推定できるものであれば、回帰式
或いは実績値との差を学習、補正するよう々式でも良い
。なお水素貯蔵槽が、平板でなく円筒状であれば、式(
1)は円柱座標系のモデル式を用いることになる。The above explanation was based on prediction formulas (3) and (4) of the present invention method 7, but as long as the system state can be estimated, a regression formula or a formula that learns and corrects the difference from the actual value may also be used. good. Note that if the hydrogen storage tank is cylindrical rather than a flat plate, the formula (
1) uses a model formula of a cylindrical coordinate system.
(発明の効果)
本発明法は従来法と比較して反応完結時間を短縮できる
と共に、水素貯蔵槽内の状態を正確に把握できることか
ら、槽内部に特殊な内部状態の測定装置が不用となり、
また、本発明法は、計算機に操業ロジックを組めるので
、操業者が不要となって人件費の節約ができる等、従来
法に比べ安価で正確な且つ、再現性の良い操業が実現で
きる。(Effects of the Invention) Compared to conventional methods, the method of the present invention can shorten the reaction completion time, and the state inside the hydrogen storage tank can be accurately grasped, eliminating the need for a special internal state measuring device inside the tank.
In addition, since the method of the present invention allows the operation logic to be set in a computer, an operator is not required, saving labor costs, and it is possible to realize an operation that is cheaper, more accurate, and has better reproducibility than the conventional method.
従って本発明法の工業的効果は甚大である。Therefore, the industrial effect of the method of the present invention is enormous.
第1図は水素貯蔵槽内温度と該槽内部の合金層表面より
の距離との関係の図表、第2図は所定圧力における槽内
温度と反応速度の関係の図表、第3図は本発明装置の一
部切断概略図、第4図は水素含有量と平俣丁解離圧の関
係の図表である。Figure 1 is a diagram showing the relationship between the temperature inside the hydrogen storage tank and the distance from the surface of the alloy layer inside the tank, Figure 2 is a diagram showing the relationship between the temperature inside the tank and the reaction rate at a given pressure, and Figure 3 is a diagram showing the relationship between the temperature in the hydrogen storage tank and the distance from the surface of the alloy layer inside the tank. FIG. 4, a partially cutaway schematic diagram of the apparatus, is a chart of the relationship between hydrogen content and Hiramata-cho dissociation pressure.
Claims (1)
を吸蔵及び放出する水素貯蔵槽の操業方法において、該
水素貯蔵槽内部の水素化反応速度式及び熱伝達速度式か
ら成る予測式に基づいて、水素化反応進行度合を算出し
、該槽内温度を制御することにより、所定圧力における
上記水素化反応速度の所望速度を求め、該速度により水
素貯蔵槽を稼働せしめることを特徴とする水素貯蔵槽の
操業方法。 2 槽内温度と槽内圧力を制御して、水素化反応速度を
最大にして、水素貯蔵槽を稼働する特許請求の範囲第1
項記載の操業方法。[Scope of Claims] 1. A method for operating a hydrogen storage tank in which hydrogen is absorbed and released by a hydrogen storage alloy filled in the hydrogen storage tank, which is based on the hydrogenation reaction rate equation and heat transfer rate equation inside the hydrogen storage tank. By calculating the degree of progress of the hydrogenation reaction based on the prediction formula, and controlling the temperature inside the tank, a desired rate of the hydrogenation reaction rate at a predetermined pressure is determined, and the hydrogen storage tank is operated at this rate. A method of operating a hydrogen storage tank characterized by: 2. Claim 1, in which the hydrogen storage tank is operated by controlling the tank internal temperature and tank pressure to maximize the hydrogenation reaction rate.
The operating method described in section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61037130A JPS62196498A (en) | 1986-02-21 | 1986-02-21 | Operating method for hydrogen storage tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61037130A JPS62196498A (en) | 1986-02-21 | 1986-02-21 | Operating method for hydrogen storage tank |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62196498A true JPS62196498A (en) | 1987-08-29 |
Family
ID=12489030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61037130A Pending JPS62196498A (en) | 1986-02-21 | 1986-02-21 | Operating method for hydrogen storage tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62196498A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104075110A (en) * | 2013-03-28 | 2014-10-01 | 通用汽车环球科技运作有限责任公司 | Method of increasing storage capacity of natural gas tank |
JP2017075656A (en) * | 2015-10-15 | 2017-04-20 | 株式会社日立プラントメカニクス | Storage tank system using hydrogen storage alloy |
-
1986
- 1986-02-21 JP JP61037130A patent/JPS62196498A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104075110A (en) * | 2013-03-28 | 2014-10-01 | 通用汽车环球科技运作有限责任公司 | Method of increasing storage capacity of natural gas tank |
JP2017075656A (en) * | 2015-10-15 | 2017-04-20 | 株式会社日立プラントメカニクス | Storage tank system using hydrogen storage alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6356237B2 (en) | Gas filling method and station | |
Sloan et al. | Water content of methane gas in equilibrium with hydrates | |
US7500497B2 (en) | Method of filling compressed-gas containers with gas | |
Sun et al. | Study on dissociation characteristics of CO2 hydrate with THF for cooling application | |
Burakovsky et al. | Ab initio melting curve of osmium | |
Padki et al. | Two-phase flow pressure-drop type and thermal oscillations | |
Mofidi et al. | Study of heat and mass transfer in MgCl2/NH3 thermochemical batteries | |
Song et al. | Numerical and experimental study of La–Ni hydriding kinetics based on the varying-size model | |
CN105909224A (en) | Natural gas hydrate dual-horizontal-well electrical heating auxiliary depressurization exploitation experimental device and working method | |
JP2001213609A (en) | Process of producing hydrogen and apparatus therefor | |
JPS62196498A (en) | Operating method for hydrogen storage tank | |
Bjurstrom et al. | The dynamics of hydrogen transfer in a metal hydride heat pump | |
Kaza et al. | 3 Intraparticle diffusion effects in the methanation reaction | |
CN117497101A (en) | Method and device for predicting molten steel temperature of tundish in continuous casting process | |
CN106770396B (en) | Method for measuring hydrogen storage material hydrogen discharge reaction thermodynamic parameter | |
Lancaster et al. | Excess molar enthalpies of nine binary steam mixtures: new and corrected values | |
Yu et al. | A reactor model for hydrogen generation from sodium borohydride and water vapor | |
Dedrick et al. | Heat and mass transport in metal hydride based hydrogen storage systems | |
Farrell et al. | First-principles molecular dynamics study of the structure and dynamic behavior of liquid Li 4 BN 3 H 10 | |
JP7195519B2 (en) | Hydrogen storage rate estimation system and hydrogen storage rate estimation method | |
Masi | Survey of Experimental Determinations of Heat Capacity of Ten Technically Important Gases | |
KR101234854B1 (en) | A method of thermal analysis for gas storing medium and a equipment of thermal analysis for gas storing medium | |
Seshadri et al. | Structure of the oxidation layer for stoichiometric and lean methane-air flames | |
JP4358692B2 (en) | Heavy oil reformer and control method thereof, gas turbine power generation system and method of using reformed oil | |
JPH06103987A (en) | Hydrogen filling method and hydrogen filling device |