JP4358692B2 - Heavy oil reformer and control method thereof, gas turbine power generation system and method of using reformed oil - Google Patents

Heavy oil reformer and control method thereof, gas turbine power generation system and method of using reformed oil Download PDF

Info

Publication number
JP4358692B2
JP4358692B2 JP2004198899A JP2004198899A JP4358692B2 JP 4358692 B2 JP4358692 B2 JP 4358692B2 JP 2004198899 A JP2004198899 A JP 2004198899A JP 2004198899 A JP2004198899 A JP 2004198899A JP 4358692 B2 JP4358692 B2 JP 4358692B2
Authority
JP
Japan
Prior art keywords
oil
reformed
concentration
vanadium concentration
reformed oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004198899A
Other languages
Japanese (ja)
Other versions
JP2006022135A (en
Inventor
宏和 高橋
信幸 穂刈
真一 稲毛
浩二 西田
修 横田
雅彦 山岸
林  明典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Hitachi Ltd filed Critical Petroleum Energy Center PEC
Priority to JP2004198899A priority Critical patent/JP4358692B2/en
Publication of JP2006022135A publication Critical patent/JP2006022135A/en
Application granted granted Critical
Publication of JP4358692B2 publication Critical patent/JP4358692B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、重質油の改質装置とその制御方法に係る。また重質油改質装置を備えたガスタービン発電システムに関する。更に、重質油改質装置で改質された改質油を改質油利用機器で使用するための使用方法に関する。   The present invention relates to a heavy oil reformer and a control method thereof. The present invention also relates to a gas turbine power generation system equipped with a heavy oil reformer. Furthermore, the present invention relates to a usage method for using the reformed oil reformed by the heavy oil reformer in the reformed oil utilization equipment.

重金属を多く含む重質油はガスタービン発電燃料として適さないので、脱金属して有用なエネルギー源に変換する方法が提案されている(例えば、特許文献1,2参照)。   Since heavy oil containing a large amount of heavy metal is not suitable as a gas turbine power generation fuel, a method of demetalizing and converting it into a useful energy source has been proposed (for example, see Patent Documents 1 and 2).

特許文献1および2には、高温高圧水と重質油を20MPa以上、400℃程度の反応条件下で接触させることにより、重質油を分解して、炭化水素ガス、軽質油分、重質分、金属酸化物等の金属化合物を得ることが記載されている。また、炭化水素ガスと軽質油分を高温高圧水に溶解させて改質油とし、一方、重質油中に存在する金属化合物をカルシウム化合物、コークス等の捕捉剤と結合させることにより捕捉して除去することが記載されている。   In Patent Documents 1 and 2, heavy oil is decomposed by contacting high-temperature and high-pressure water and heavy oil under reaction conditions of 20 MPa or higher and about 400 ° C. to produce hydrocarbon gas, light oil, heavy oil. And obtaining metal compounds such as metal oxides. Also, hydrocarbon gas and light oil are dissolved in high-temperature and high-pressure water to obtain reformed oil, while metal compounds present in heavy oil are captured and removed by binding with scavengers such as calcium compounds and coke. It is described to do.

特開2003-261881号公報(要約)JP 2003-261881 A (summary) 特開2003-49180号公報(要約、段落番号0009)Japanese Unexamined Patent Publication No. 2003-49180 (Abstract, Paragraph 0009)

上記した特許文献には、改質油に含まれる腐食性物質であるバナジウム(V)等の金属の濃度をリアルタイムで確認する方法は記載されていない。V等の金属の濃度を計測する方法には、ICPやフレームレス原子吸光法などがあるが、計測に時間がかかる。測定頻度が少ない場合には、V濃度の高い改質油がガスタービン燃焼器に供給される場合があり、タービン翼の腐食が進行して発電効率を下げる恐れがある。このため、メンテナンス作業の周期を上げなければならないという問題がある。   The above-mentioned patent document does not describe a method for confirming the concentration of a metal such as vanadium (V) which is a corrosive substance contained in the reformed oil in real time. Methods for measuring the concentration of metals such as V include ICP and flameless atomic absorption, but the measurement takes time. When the measurement frequency is low, reformed oil with a high V concentration may be supplied to the gas turbine combustor, and the turbine blades may be corroded to reduce power generation efficiency. For this reason, there exists a problem that the period of a maintenance work must be raised.

本発明の目的は、重質油を高温高圧水と混合し反応させて改質する重質油改質装置において、改質油に含まれるVの濃度をリアルタイムで計測することができるようにすることにある。   An object of the present invention is to enable measurement of the concentration of V contained in reformed oil in real time in a heavy oil reformer for reforming by mixing and reacting heavy oil with high-temperature and high-pressure water. There is.

本発明は、重質油を高温高圧水と混合、反応させて改質する重質油改質装置において、生成された改質油の動粘度を測定し、この動粘度からV濃度を算出するV濃度算出装置を含むことを特徴とする。   The present invention measures the kinematic viscosity of the produced reformed oil and calculates the V concentration from this kinematic viscosity in a heavy oil reformer that reforms by mixing and reacting heavy oil with high-temperature and high-pressure water. A V concentration calculation device is included.

本発明は、改質油の動粘度からV濃度を算出できるという新知見に基づくものであり、これによってリアルタイムでV濃度を計測することが可能になった。   The present invention is based on the new knowledge that the V concentration can be calculated from the kinematic viscosity of the reformed oil, and this makes it possible to measure the V concentration in real time.

本発明によれば、重質油改質装置をガスタービン等の重質油利用機器と接続して使用する場合に、改質油のV濃度を連続的或いは所定の周期で計測し、V濃度が高い場合に改質油に低V濃度油を補給して利用機器へ供給することが可能になる。   According to the present invention, when the heavy oil reforming apparatus is used in connection with heavy oil utilizing equipment such as a gas turbine, the V concentration of the reformed oil is measured continuously or at a predetermined cycle. When it is high, it becomes possible to supply low V concentration oil to the reformed oil and supply it to the utilization equipment.

以上を踏まえて、本発明では、重質油を高温高圧水と混合し反応させて改質する反応器と、前記反応器において改質された改質油を貯留する改質油タンクと、前記改質油タンクへ低V濃度油を補給する低Vム濃度油補給装置と、前記改質油の動粘度を測定する動粘度測定器と、動粘度からV濃度を算出し該V濃度と前記改質油タンク内の改質油貯留量とにより前記改質油タンクへ補給する低V濃度油の量を決定するV濃度調節コントローラを備えた重質油改質装置を提案する。   Based on the above, in the present invention, a reactor that reforms by mixing and reacting heavy oil with high-temperature and high-pressure water, a reformed oil tank that stores the reformed oil reformed in the reactor, A low V concentration oil replenishing device for supplying low V concentration oil to the reformed oil tank, a kinematic viscosity measuring device for measuring the kinematic viscosity of the reformed oil, a V concentration calculated from the kinematic viscosity, and the V concentration A heavy oil reforming apparatus including a V concentration adjustment controller that determines the amount of low V concentration oil to be replenished to the reforming oil tank based on the amount of reforming oil stored in the reforming oil tank is proposed.

また、重質油を高温高圧水と混合し反応させて改質する反応器と、前記反応器で生成された改質油の動粘度を測定する動粘度測定器と、動粘度からV濃度を算出して前記反応器へ水および重質油を供給するポンプの流量を調節するV濃度調節コントローラを備えた重質油改質装置を提案する。   In addition, a reactor for reforming by mixing and reacting heavy oil with high temperature and high pressure water, a kinematic viscosity measuring device for measuring the kinematic viscosity of the reformed oil produced in the reactor, and a V concentration from the kinematic viscosity. A heavy oil reformer having a V concentration adjustment controller that adjusts the flow rate of a pump that calculates and adjusts the flow of water and heavy oil to the reactor is proposed.

また、重質油を高温高圧水と混合し反応させて改質する反応器を具備する重質油改質装置の制御方法であって、前記反応器で生成された改質油の動粘度を測定し、動粘度からV濃度を算出し、得られたV濃度と改質油の生成量から前記反応器へ供給する水の流量および重質油の流量の設定値を計算しポンプの流量を変更するようにした重質油改質装置の制御方法を提案する。   A method for controlling a heavy oil reformer comprising a reactor for reforming by mixing and reacting heavy oil with high temperature and high pressure water, wherein the kinematic viscosity of the reformed oil produced in the reactor is controlled. Measure and calculate the V concentration from the kinematic viscosity, calculate the set values of the flow rate of water and heavy oil supplied to the reactor from the obtained V concentration and the amount of reformate produced, and calculate the flow rate of the pump A control method for a heavy oil reforming apparatus is proposed.

更に、重質油を高温高圧水と混合し反応させて改質油を生成する重質油改質装置と、前記重質油改質装置で生成された改質油を貯留する改質油タンクと、前記改質油タンクから供給された改質油を燃料に用いて発電を行うガスタービン発電装置と、前記改質油タンクへ低V濃度油を補給する低V濃度油補給装置と、前記改質油タンクに流入される改質油の動粘度を測定する動粘度測定器と、得られた動粘度をもとにV濃度を算出し該V濃度と前記改質油タンクへ流入する改質油の流量および前記改質油タンクの液位から前記改質油タンクへ供給する低V濃度油の補給量を決定するV濃度調節コントローラを具備した重質油焚きガスタービン発電システムを提案する。   Furthermore, a heavy oil reformer for producing a reformed oil by mixing and reacting a heavy oil with high-temperature high-pressure water, and a reformed oil tank for storing the reformed oil produced by the heavy oil reformer A gas turbine power generation device that generates power using the reformed oil supplied from the reformed oil tank as fuel, a low V concentration oil replenishing device that replenishes the reformed oil tank with low V concentration oil, A kinematic viscosity measuring device that measures the kinematic viscosity of the reformed oil that flows into the reformed oil tank, and a V concentration that is calculated based on the obtained kinematic viscosity, and the V concentration and the modified oil that flows into the reformed oil tank. A heavy oil-fired gas turbine power generation system including a V concentration adjustment controller for determining a replenishment amount of low V concentration oil supplied to the reforming oil tank from a flow rate of the refined oil and a liquid level of the reforming oil tank is proposed. .

更に、重質油を高温高圧水と混合し反応させて改質油を生成する重質油改質装置と、前記重質油改質装置で生成された改質油を貯留する改質油タンクと、前記改質油タンクから供給された改質油を燃料に用いて発電を行うガスタービン発電装置と、前記改質油タンクへ低V濃度油を補給するための低V濃度油タンクと、前記重質油改質装置で生成された改質油の動粘度測定結果をもとに算出されたV濃度が制限値未満であるときに前記改質油タンクに貯留された改質油の一部を前記低V濃度油タンクへ返送する改質油返送装置とを具備した重質油焚きガスタービン発電システムを提案する。   Furthermore, a heavy oil reformer for producing a reformed oil by mixing and reacting a heavy oil with high-temperature high-pressure water, and a reformed oil tank for storing the reformed oil produced by the heavy oil reformer A gas turbine power generation device that generates power using the reformed oil supplied from the reformed oil tank as a fuel, a low V concentration oil tank for replenishing the reformed oil tank with low V concentration oil, One of the reformed oil stored in the reformed oil tank when the V concentration calculated based on the kinematic viscosity measurement result of the reformed oil generated by the heavy oil reformer is less than the limit value. A heavy oil-fired gas turbine power generation system including a reforming oil return device for returning a part to the low V concentration oil tank is proposed.

また、重質油を高温高圧水と混合し反応させて改質油を生成し、生成した改質油の動粘度を測定し、該動粘度からV濃度を算出し、改質油のV濃度が制限値を超えている場合に前記改質油に低V濃度油を補給しV濃度を調節して改質油利用機器へ供給する方法を提案する。   Moreover, heavy oil is mixed with high-temperature high-pressure water and reacted to produce reformed oil, the kinematic viscosity of the produced reformed oil is measured, the V concentration is calculated from the kinematic viscosity, and the V concentration of the reformed oil is calculated. Proposes a method for supplying low-concentration oil to the reformed oil and adjusting the V-concentration to supply the reformed oil using equipment when the value exceeds the limit value.

本発明の重質油改質装置は、重質油を高温高圧水と混合、反応させて分解し改質する反応器と、この反応器で得られた改質油を減圧後に水蒸気を含む炭化水素ガスと改質油とに気液分離する気液分離器と、分離された改質油を貯留する改質油タンクと、改質油タンク内の改質油あるいは改質油タンクに流入する改質油の一部を抜き出して動粘度を測定する動粘度測定器と、改質油中のV濃度を動粘度から計算し改質油タンクに供給する低V濃度油の流量を調節する命令を出すV濃度調節コントローラを含むことができる。   The heavy oil reforming apparatus of the present invention comprises a reactor for mixing and reacting heavy oil with high-temperature and high-pressure water to decompose and reform, and carbonization containing steam after reducing the pressure of the reformed oil obtained in this reactor. A gas-liquid separator that separates gas and liquid into hydrogen gas and reformed oil, a reformed oil tank that stores the separated reformed oil, and the reformed oil in the reformed oil tank or flows into the reformed oil tank A kinematic viscosity meter that extracts a part of the reformed oil and measures the kinematic viscosity, and an instruction to calculate the V concentration in the reformed oil from the kinematic viscosity and adjust the flow rate of the low V concentration oil supplied to the reformed oil tank A V concentration adjustment controller.

重質油改質装置で得られた改質油は、例えばガスタービン発電システムにおいて発電機駆動用の動力を発生させる燃料として使用することができる。   The reformed oil obtained by the heavy oil reformer can be used as a fuel for generating power for driving a generator in a gas turbine power generation system, for example.

本発明によれば、ガスタービン燃焼器にV濃度が制限値以下の改質油を供給することができ、改質油中のV濃度をコントロールして、ガスタービン翼の腐食を抑制できる。また、重質油改質装置の性能劣化による改質油中のV濃度上昇に対して、メンテナンス周期を長期化できる。   According to the present invention, reformed oil having a V concentration equal to or lower than the limit value can be supplied to the gas turbine combustor, and the V concentration in the reformed oil can be controlled to suppress gas turbine blade corrosion. In addition, the maintenance cycle can be extended with respect to the increase in the V concentration in the reformed oil due to the performance deterioration of the heavy oil reformer.

本発明により、改質油に含まれるV濃度を簡易な方法で計測することができるようになった。これにより、改質油利用機器例えばガスタービンの腐食を抑制できるようになった。   According to the present invention, the V concentration contained in the reformed oil can be measured by a simple method. Thereby, it became possible to suppress the corrosion of the reformed oil utilizing equipment such as a gas turbine.

以下、図面を用いて本発明の実施の形態を説明する。但し、本発明は、以下の実施例に限定されない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention is not limited to the following examples.

本実施例では、重質油を改質し、改質油中のV濃度を測定し、V濃度が高いときにV濃度が低い油を混合してV濃度を調整し、これを燃料に用いてガスタービンを駆動する重質油焚ガスタービン発電システムについて、図1及び図2を用いて説明する。   In this embodiment, heavy oil is reformed, the V concentration in the reformed oil is measured, and when the V concentration is high, oil having a low V concentration is mixed to adjust the V concentration, and this is used as fuel. A heavy oil tank gas turbine power generation system for driving the gas turbine will be described with reference to FIGS.

本システムでは、水を加圧供給する水供給ポンプ30で水100を20MPaに昇圧し、水予熱器40で450℃まで加熱することによって高温高圧水102を生成する。同様に、重質油を加圧供給する重質油供給ポンプ31で重質油101を20MPaに昇圧し、油予熱器41で350℃まで加熱することによって油を高温高圧重質油103とする。水予熱器40および油予熱器41には電気ヒータ、あるいは高温蒸気との熱交換器等を用いることができる。   In this system, the water 100 is pressurized to 20 MPa by the water supply pump 30 for supplying water under pressure, and the water preheater 40 is heated to 450 ° C. to generate the high-temperature and high-pressure water 102. Similarly, the pressure of the heavy oil 101 is increased to 20 MPa by the heavy oil supply pump 31 that supplies heavy oil under pressure, and the oil is heated to 350 ° C. by the oil preheater 41, whereby the oil is changed to the high temperature / high pressure heavy oil 103. . As the water preheater 40 and the oil preheater 41, an electric heater, a heat exchanger with high-temperature steam, or the like can be used.

高温高圧水102および高温高圧重質油103は反応器1の上流で混合され混合流体104となり、反応器1に供給される。反応器1を外部から加熱ヒータ20で加熱し混合流体104の温度を450℃に昇温した。反応器1における蒸気換算の平均滞留時間は30h-1とした。混合流体104に含まれる重質油と水との反応により、重質油が改質され、炭化水素ガスおよび軽質油、分子量の大きい重質分となる。炭化水素ガス、軽質油は高温高圧水に溶解、混合して改質分106となり、反応器1の上部から搬送される。重質分105は高温高圧水には溶解、混合せず、反応器1の下部に沈降する。重質油中に含まれる金属類は重質分105に濃縮され、反応器出口バルブ13を開閉することにより、重質分抜き出し器2へ除去される。重質分抜き出し器2内の圧力が反応器1の圧力と同じ圧力になった後、反応器出口バルブ13を閉止し、重質分抜き出しバルブ14を開放し、重質分105を系外に抜き出す。本実施例では、重質分抜き出し器2より抜き出された重質分105は重質分回収器3に回収した。反応器1の圧力は減圧器4と減圧バルブ12によって調整される。ここで、減圧器4にはオリフィスを用い、反応器1の圧力変動を減圧バルブ12の微小開閉により抑える。 The high-temperature high-pressure water 102 and the high-temperature high-pressure heavy oil 103 are mixed upstream of the reactor 1 to become a mixed fluid 104 and supplied to the reactor 1. The reactor 1 was heated from the outside with the heater 20, and the temperature of the mixed fluid 104 was raised to 450 ° C. The average residence time in terms of vapor in the reactor 1 was 30 h −1 . The heavy oil contained in the mixed fluid 104 reacts with water to reform the heavy oil, resulting in a hydrocarbon gas, a light oil, and a heavy component having a large molecular weight. Hydrocarbon gas and light oil are dissolved and mixed in high-temperature and high-pressure water to form a reformed portion 106, which is conveyed from the top of the reactor 1. The heavy fraction 105 does not dissolve or mix in the high-temperature high-pressure water, but settles at the bottom of the reactor 1. Metals contained in the heavy oil are concentrated in the heavy portion 105 and removed to the heavy portion extractor 2 by opening and closing the reactor outlet valve 13. After the pressure in the heavy extractor 2 becomes the same as the pressure in the reactor 1, the reactor outlet valve 13 is closed, the heavy extractor valve 14 is opened, and the heavy component 105 is removed from the system. Extract. In this example, the heavy component 105 extracted from the heavy component extractor 2 was collected in the heavy component collector 3. The pressure in the reactor 1 is adjusted by the decompressor 4 and the decompression valve 12. Here, an orifice is used for the decompressor 4, and pressure fluctuations in the reactor 1 are suppressed by minute opening and closing of the decompression valve 12.

金属類を除去された改質分106は、減圧器4で0.1MPaに減圧された後、気液分離器5に供給され、水蒸気、水素、一酸化炭素、メタン、エタン、プロパン、ブタン等を含んだ炭化水素ガス107と液化する成分である改質油108に分離される。炭化水素ガス107はVを含んでいないため、そのまま炭化水素ガス流量制御バルブ16で流量制御されガスタービン燃焼器60へ供給される。   The reformed portion 106 from which the metals have been removed is decompressed to 0.1 MPa by the decompressor 4 and then supplied to the gas-liquid separator 5, where steam, hydrogen, carbon monoxide, methane, ethane, propane, butane and the like are supplied. It is separated into the hydrocarbon gas 107 contained and the reformed oil 108 which is a component to be liquefied. Since the hydrocarbon gas 107 does not contain V, the flow rate is controlled by the hydrocarbon gas flow rate control valve 16 as it is and is supplied to the gas turbine combustor 60.

気液分離器5で分離された改質油108は改質油流量計73で流量を計測された後、改質油タンク6に貯留される。改質油タンク6に貯留された改質油108の一部は改質油抜き出しバルブ15を開けることで動粘度測定器70に抜き出され、動粘度が測定される。測定された動粘度の信号は、V濃度調節コントローラ71に送られ、V濃度が計算される。つまり、動粘度測定器70とV濃度調節コントローラ71によってV濃度算出装置が形成される。V濃度が制限値よりも高い場合には、低V濃度油タンク7に貯留された低V濃度油112が低V濃度油ポンプ32を用いて改質油タンク6に供給され、改質油108中のV濃度が調整される。低V濃度油112には軽油やA重油等のように、動粘度、密度、発熱量等の物性値が改質油に近くV濃度の低い燃料油が用いられる。V濃度がガスタービン制限値未満に調整された軽質油109は、軽質油ポンプ33により加圧され、ガスタービン燃料油110としてガスタービン燃焼器60に供給される。ガスタービン燃焼器60に供給された軽質油109および炭化水素ガス107は、圧縮機62で加圧された空気113と混合して燃焼し、燃焼ガス114となりガスタービン61を駆動し、燃焼排ガス115となり煙突53より大気中へ放出される。   The reformed oil 108 separated by the gas-liquid separator 5 is stored in the reformed oil tank 6 after the flow rate is measured by the reformed oil flow meter 73. A part of the reformed oil 108 stored in the reformed oil tank 6 is extracted to the kinematic viscosity measuring device 70 by opening the reformed oil extraction valve 15, and the kinematic viscosity is measured. The measured kinematic viscosity signal is sent to the V concentration controller 71 to calculate the V concentration. That is, a V concentration calculating device is formed by the kinematic viscosity measuring device 70 and the V concentration adjusting controller 71. When the V concentration is higher than the limit value, the low V concentration oil 112 stored in the low V concentration oil tank 7 is supplied to the reformed oil tank 6 using the low V concentration oil pump 32, and the reformed oil 108 is supplied. The V concentration inside is adjusted. As the low V concentration oil 112, a fuel oil having a physical property value such as kinematic viscosity, density, and calorific value close to that of the reformed oil, such as light oil or heavy oil A, is used. The light oil 109 having the V concentration adjusted to be less than the gas turbine limit value is pressurized by the light oil pump 33 and supplied to the gas turbine combustor 60 as the gas turbine fuel oil 110. The light oil 109 and the hydrocarbon gas 107 supplied to the gas turbine combustor 60 are mixed with the air 113 pressurized by the compressor 62 and combusted to become the combustion gas 114, which drives the gas turbine 61, and the combustion exhaust gas 115 It is discharged into the atmosphere from the chimney 53.

図2は本実施形態における運転・制御方法のフローチャートである。図1と合わせて重質油改質装置の運転・制御方法を説明する。   FIG. 2 is a flowchart of the operation / control method in the present embodiment. The operation and control method of the heavy oil reformer will be described with reference to FIG.

本発明の重質油改質装置の運転方法では、ガスタービン61にV濃度の高いガスタービン燃料油110が供給されることのないように、改質油108の動粘度を測定してV濃度を予測し、改質油タンク6に低V濃度油112を供給してV濃度を調節する。ステップS1では改質油108は改質油タンク6に供給、貯留され、改質油108の一部が一定時間間隔で改質油抜き出しバルブ15を開けることにより改質油タンク6から抜き出される。ステップS2では、動粘度測定器70にて改質油108の動粘度を測定し、測定結果をV濃度調節コントローラ71に送る。ステップS3では、送られた動粘度をもとに、V濃度調節コントローラ71において図3に示した実験的に調べた改質油中V濃度と動粘度の関係を関数にしたものから改質油108のV濃度が計算される。ここで、改質油中V濃度と動粘度の関係は原料の重質油によって異なるが、実験により改質油中V濃度と動粘度の関数を調べることができる。ステップS4では、改質油タンク6の液位を改質油タンク液位計72により測定し、ステップS5ではステップS4の測定結果の信号をV濃度調節コントローラ71が受け、改質油108の貯留量を計算する。   In the operation method of the heavy oil reformer of the present invention, the kinematic viscosity of the reformed oil 108 is measured to prevent the gas turbine 61 from being supplied with the gas turbine fuel oil 110 having a high V concentration. The low V concentration oil 112 is supplied to the reforming oil tank 6 to adjust the V concentration. In step S1, the reformed oil 108 is supplied to and stored in the reformed oil tank 6, and a part of the reformed oil 108 is extracted from the reformed oil tank 6 by opening the reformed oil extraction valve 15 at regular time intervals. . In step S 2, the kinematic viscosity of the reformed oil 108 is measured by the kinematic viscosity measuring device 70, and the measurement result is sent to the V concentration adjusting controller 71. In step S3, based on the sent kinematic viscosity, the V oil concentration controller 71 uses the function of the relationship between the V concentration in the reformed oil and the kinematic viscosity as shown in FIG. A V concentration of 108 is calculated. Here, the relationship between the V concentration in the reformed oil and the kinematic viscosity varies depending on the heavy oil as the raw material, but the function of the V concentration in the reformed oil and the kinematic viscosity can be examined by experiment. In step S4, the liquid level in the reformed oil tank 6 is measured by the reformed oil tank liquid level gauge 72. In step S5, the V concentration controller 71 receives the measurement result signal in step S4 and stores the reformed oil 108. Calculate the quantity.

一方、ステップS6では、改質油流量計73で改質油108の流量を測定しておき、ステップS7ではV濃度調節コントローラ71により測定間隔の間の改質油流量平均値を求める。   On the other hand, in step S6, the flow rate of the reformed oil 108 is measured by the reformed oil flow meter 73, and in step S7, the average value of the reformed oil flow rate during the measurement interval is obtained by the V concentration controller 71.

次にステップS8では、次回ステップS1を実施するまでの測定間隔を決定する。測定間隔が短いほどV濃度を正確に管理できるが、ここでは改質油タンク6の容量、改質油108の流量およびV濃度から計算される以下の(1)〜(3)式を用いて測定間隔を決める。   Next, in step S8, a measurement interval until the next execution of step S1 is determined. The shorter the measurement interval, the more accurately the V concentration can be managed. Here, the following equations (1) to (3) calculated from the capacity of the reforming oil tank 6, the flow rate of the reforming oil 108 and the V concentration are used. Determine the measurement interval.

(1)式は改質油108のバナジウム濃度を求める式である。   Equation (1) is an equation for obtaining the vanadium concentration of the reformed oil 108.

Figure 0004358692
Figure 0004358692

(2)式は改質油108のバナジウム濃度aが、ガスタービン燃焼器に改質油を供給する際の制限値として設定した0.5ppmより低い場合に、動粘度の測定間隔を求める式である。   Equation (2) is an equation for obtaining the kinematic viscosity measurement interval when the vanadium concentration a of the reformed oil 108 is lower than 0.5 ppm set as a limit value when the reformed oil is supplied to the gas turbine combustor. .

Figure 0004358692
Figure 0004358692

(3)式は改質油108のバナジウム濃度aが0.5ppmより高い場合に動粘度の測定間隔を求める式である。   Equation (3) is an equation for obtaining the kinematic viscosity measurement interval when the vanadium concentration a of the reformed oil 108 is higher than 0.5 ppm.

Figure 0004358692
Figure 0004358692

ここで、tは定間隔、Vは改質油タンク6中の油の貯留量、Fは改質油108の流量(ステップS7で求めた測定間隔の間の平均値)、aは改質油108中のバナジウム濃度、cnは今回測定した改質油タンク6中の油のバナジウム濃度、cn-1は前回測定した改質油タンク6中の油のバナジウム濃度である。 Here, t is a regular interval, V is the amount of oil stored in the reformed oil tank 6, F is the flow rate of the reformed oil 108 (average value during the measurement interval obtained in step S7), and a is the reformed oil The vanadium concentration in 108, c n is the vanadium concentration of the oil in the reformed oil tank 6 measured this time, and c n-1 is the vanadium concentration of the oil in the reformed oil tank 6 measured last time.

ステップS9では、ステップS3で求めた改質油タンク中の改質油のV濃度が制限値未満であることを確認する。制限値未満であれば改質油に低V濃度油を供給する必要もなく、かつ水供給ポンプ30および重質油供給ポンプ31を調節する必要もないので、ステップS8の(3)式で計算した測定間隔時間後にステップS1からステップS9までを繰り返す。改質油タンク6中の油のV濃度が制限値以上である場合にはステップS10以降に進む。   In step S9, it is confirmed that the V concentration of the reformed oil in the reformed oil tank obtained in step S3 is less than the limit value. If it is less than the limit value, it is not necessary to supply low-V-concentration oil to the reformed oil, and it is not necessary to adjust the water supply pump 30 and heavy oil supply pump 31, so calculate using equation (3) in step S8. Steps S1 to S9 are repeated after the measurement interval time. When the V concentration of the oil in the reformed oil tank 6 is not less than the limit value, the process proceeds to step S10 and subsequent steps.

ステップS10では、改質油タンク6内の改質油108のバナジウム濃度をガスタービン入口燃料制限値以下に下げるのに必要な低V濃度油112の供給量を計算する。供給量の計算は、V濃度と改質油タンク6中の油の貯留量から式(4)を用いて計算する。   In step S10, the supply amount of the low V concentration oil 112 necessary for lowering the vanadium concentration of the reformed oil 108 in the reformed oil tank 6 to be equal to or less than the gas turbine inlet fuel limit value is calculated. The supply amount is calculated using the equation (4) from the V concentration and the amount of oil stored in the reformed oil tank 6.

Figure 0004358692
Figure 0004358692

ここで、ΔVは低V濃度油112の供給量、clはバナジウム濃度のガスタービン入口制限値である。 Here, [Delta] V the supply amount of the low V concentrations oil 112, c l is a gas turbine inlet limit vanadium concentration.

ステップS11ではステップS10で計算した量の低V濃度油を改質油タンク6に供給した場合の液位を計算し、液位がタンクの許容量未満であるか否かを判定する。改質油タンク6の液位が許容量未満であればステップS12に進み、許容値以上になる場合にはステップS13に進む。ステップS12では低V濃度油ポンプ32を起動し、ステップS10で計算した量の低V濃度油を改質油タンク6に供給し、改質油タンク6中の油のV濃度をガスタービン入口制限値未満に調節する。ステップS13でも低V濃度油ポンプ32を起動し、改質油タンク6の許容値まで低V濃度油112を供給して、改質油タンク6中の油のV濃度を可能な限り低下させる。   In step S11, the liquid level when the amount of low V concentration oil calculated in step S10 is supplied to the reforming oil tank 6 is calculated, and it is determined whether or not the liquid level is less than the allowable amount of the tank. If the liquid level in the reformed oil tank 6 is less than the allowable amount, the process proceeds to step S12, and if it exceeds the allowable value, the process proceeds to step S13. In step S12, the low V concentration oil pump 32 is started, the amount of low V concentration oil calculated in step S10 is supplied to the reforming oil tank 6, and the V concentration of the oil in the reforming oil tank 6 is limited to the gas turbine inlet. Adjust to less than the value. Also in step S13, the low V concentration oil pump 32 is started and the low V concentration oil 112 is supplied to the allowable value of the reforming oil tank 6 to reduce the V concentration of the oil in the reforming oil tank 6 as much as possible.

ステップS12あるいはステップS13が終了後、ステップS14に進み、改質油108中のV濃度を低下させるために、水供給ポンプ30および重質油供給ポンプ31の流量を計算する。我々の実験の結果、図4に示すように反応器1内の混合流体104の滞留時間が長いほど改質油108中のV濃度は低くなるという関係を見出した。この関係から分かるように、反応器1における混合流体104の滞留時間を長くすることで、改質油108中のV濃度をガスタービン入口制限値未満に低下させることができる。反応器1の滞留時間に対する改質油108中のV濃度を指数関数などの近似式にして、ステップS8で求めた改質油108中のV濃度aを制限値未満に下げるために必要な滞留時間を計算し、さらに該滞留時間にするための水供給ポンプ30および重質油供給ポンプ31の流量設定値を計算する。反応器1での反応速度に大きな変化を与えないように、水と重質油の割合は一定にして流量を変化させることが好ましいが、必ずしも割合を固定する必要はない。   After step S12 or step S13 is completed, the process proceeds to step S14, and the flow rates of the water supply pump 30 and the heavy oil supply pump 31 are calculated in order to reduce the V concentration in the reformed oil 108. As a result of our experiment, as shown in FIG. 4, it was found that the V concentration in the reformed oil 108 becomes lower as the residence time of the mixed fluid 104 in the reactor 1 becomes longer. As can be seen from this relationship, by increasing the residence time of the mixed fluid 104 in the reactor 1, the V concentration in the reformed oil 108 can be lowered below the gas turbine inlet limit value. The V concentration in the reformed oil 108 with respect to the residence time of the reactor 1 is made an approximate expression such as an exponential function, and the residence required for lowering the V concentration a in the reformed oil 108 obtained in step S8 below the limit value. Time is calculated, and further, flow rate set values of the water supply pump 30 and the heavy oil supply pump 31 for obtaining the residence time are calculated. In order not to give a large change to the reaction rate in the reactor 1, it is preferable to change the flow rate while keeping the ratio of water and heavy oil constant, but it is not always necessary to fix the ratio.

ステップS15では、ステップS14で計算した水供給ポンプ30および重質油供給ポンプ31の流量設定をV濃度調節コントローラ71から出る信号で変更させる。これにより反応器1の滞留時間を最適化し、改質油108中のV濃度がガスタービン入口制限値未満になる。ステップS15の終了後、ステップS6で計算した測定間隔後に再度ステップS1から繰り返す。   In step S15, the flow settings of the water supply pump 30 and heavy oil supply pump 31 calculated in step S14 are changed by a signal output from the V concentration adjusting controller 71. As a result, the residence time of the reactor 1 is optimized, and the V concentration in the reformed oil 108 becomes less than the gas turbine inlet limit value. After the end of step S15, it repeats from step S1 again after the measurement interval calculated in step S6.

図5に本実施例における反応器1の温度すなわち反応温度と改質油108中のV濃度との関係を示す。反応器1の圧力は5〜30MPa、滞留時間は120h-1〜12h-1の範囲である。この範囲において、350℃以上の反応温度でV除去反応が進行することから、反応温度は350℃以上であることが望ましい。また、反応器1の加熱手段である加熱ヒータ20に熱交換器を用いる場合、高温側の流体に燃焼排ガス115を用いることが可能である。燃焼排ガス115の温度は約550℃であり、反応温度は550℃以下が好ましい。より好ましくは、燃焼排ガス115と熱交換して混合流体104を昇温できる現実的な温度である450℃程度がより好ましい。 FIG. 5 shows the relationship between the temperature of the reactor 1, that is, the reaction temperature and the V concentration in the reformed oil 108 in this example. The pressure of the reactor 1 is 5 to 30 MPa, and the residence time is in the range of 120 h −1 to 12 h −1 . In this range, since the V removal reaction proceeds at a reaction temperature of 350 ° C. or higher, the reaction temperature is preferably 350 ° C. or higher. Further, when a heat exchanger is used for the heater 20 that is a heating means of the reactor 1, the combustion exhaust gas 115 can be used for the fluid on the high temperature side. The temperature of the combustion exhaust gas 115 is about 550 ° C., and the reaction temperature is preferably 550 ° C. or less. More preferably, about 450 ° C., which is a realistic temperature at which the mixed fluid 104 can be heated by exchanging heat with the combustion exhaust gas 115, is more preferable.

図6に反応器1の圧力と改質油108中のV濃度との関係を示す。反応器1の温度は450℃、滞留時間は約30h-1である。本実施例では圧力が20MPaの場合について記述したが、5〜30MPaにおいても改質油108中のV濃度をガスタービン入口制限値未満に下げることが可能であることを確認した。 FIG. 6 shows the relationship between the pressure in the reactor 1 and the V concentration in the reformed oil 108. The temperature of the reactor 1 is 450 ° C. and the residence time is about 30 h −1 . Although the case where the pressure was 20 MPa was described in this embodiment, it was confirmed that the V concentration in the reformed oil 108 can be lowered below the gas turbine inlet limit value even at 5 to 30 MPa.

本実施例により、改質油に含まれるV濃度を連続的に観測でき、ガスタービン燃料油110に含まれるV濃度をガスタービン入口制限値未満にすることができ、バナジウムアタック等の高温腐食によるガスタービン翼寿命の短命化を防ぐことができる。   According to the present embodiment, the V concentration contained in the reformed oil can be continuously observed, the V concentration contained in the gas turbine fuel oil 110 can be made less than the gas turbine inlet limit value, and due to high temperature corrosion such as vanadium attack. Shortening of the life of the gas turbine blade can be prevented.

本実施例では改質油108の一部を改質油タンク6の上流から抜き出して動粘度を測定し、動粘度をもとにV濃度を計算し、改質油タンク6中に貯留された油中のV濃度を調節する場合について図7を用いて説明する。図1と異なる点についてのみ説明し、同一の部分については説明を省略する。   In this example, a part of the reformed oil 108 was extracted from the upstream of the reformed oil tank 6 to measure the kinematic viscosity, and the V concentration was calculated based on the kinematic viscosity and stored in the reformed oil tank 6. The case of adjusting the V concentration in oil will be described with reference to FIG. Only differences from FIG. 1 will be described, and description of the same parts will be omitted.

本システムでは、改質油タンク6の上流に、改質油108を抜き出す配管である改質油抜き出し配管9が設けられる。実施例1の場合と同様に、気液分離器5で分離された改質油108は改質油流量計73で流量を測定された後、改質油タンク6に貯留される。改質油108の一部は改質油抜き出しバルブ15を開けることで動粘度測定器70に抜き出され、動粘度が測定される。得られた動粘度の信号はV濃度調節コントローラ71に送られ、そこでV濃度が計算される。   In this system, a reformed oil extraction pipe 9 that is a pipe for extracting the reformed oil 108 is provided upstream of the reformed oil tank 6. As in the case of the first embodiment, the reformed oil 108 separated by the gas-liquid separator 5 is measured in the reformed oil flow meter 73 and then stored in the reformed oil tank 6. A part of the reformed oil 108 is extracted to the kinematic viscosity measuring device 70 by opening the reformed oil extraction valve 15, and the kinematic viscosity is measured. The obtained kinematic viscosity signal is sent to the V concentration controller 71 where the V concentration is calculated.

低V濃度油タンク7に貯留された低V濃度油112は低V濃度油ポンプ32を用いて改質油タンク6に供給され、改質油中のV濃度が調整される。以後は、実施例1の場合と同様である。   The low V concentration oil 112 stored in the low V concentration oil tank 7 is supplied to the reformed oil tank 6 using the low V concentration oil pump 32, and the V concentration in the reformed oil is adjusted. The subsequent steps are the same as in the first embodiment.

図8は本実施形態における運転・制御方法のフローチャートであり、図7と合わせて重質油改質装置の運転・制御方法を説明する。   FIG. 8 is a flowchart of the operation / control method in this embodiment, and the operation / control method of the heavy oil reformer will be described in conjunction with FIG.

ステップS1〜ステップS3までは実施例1と同様である。ステップS4では、ステップS3で求めた改質油タンク中の改質油のV濃度が制限値未満であることを確認する。制限値未満であれば改質油に低V濃度油を供給する必要もなく、かつ水供給ポンプ30および重質油供給ポンプ31を調節する必要もないのでステップS1からステップS9までを繰り返す。測定間隔は短いほど、V濃度の高いガスタービン燃料油110をガスタービンに供給するリスクが減るが、測定間隔は任意に決めることができる。ただし、水供給ポンプ30および重質油供給ポンプ31の流量を変更した場合には、流量を変更したときにポンプから供給された水100および重質油101が改質油108として流出する時間を予測して、その時間に改質油108を抜き出してステップS1からの手順を繰り返すことが望ましい。   Steps S1 to S3 are the same as those in the first embodiment. In step S4, it is confirmed that the V concentration of the reformed oil in the reformed oil tank obtained in step S3 is less than the limit value. If it is less than the limit value, it is not necessary to supply low-V-concentration oil to the reformed oil, and it is not necessary to adjust the water supply pump 30 and the heavy oil supply pump 31, so steps S1 to S9 are repeated. The shorter the measurement interval, the lower the risk of supplying gas turbine fuel oil 110 with a high V concentration to the gas turbine, but the measurement interval can be arbitrarily determined. However, when the flow rates of the water supply pump 30 and the heavy oil supply pump 31 are changed, the time for the water 100 and the heavy oil 101 supplied from the pump to flow out as the reformed oil 108 when the flow rate is changed is set. It is desirable to predict and extract the reformed oil 108 at that time and repeat the procedure from step S1.

改質油108中のV濃度がガスタービン入口制限値より高い場合にはステップS5以降に進む。ステップS5では、改質油流量計73で改質油108の流量を測定し、ステップS6では実施例1と同様に、図4に示したように反応器1内の混合流体104の滞留時間と改質油108中のV濃度との関係を用いて、水供給ポンプ30および重質油供給ポンプ31の流量設定値を決定する。ステップS7では、ステップS6で計算した水供給ポンプ30および重質油供給ポンプ31の流量設定をV濃度調節コントローラ71から出る信号で変更させる。これにより反応器1の滞留時間を最適化し、改質油108中のV濃度がガスタービン入口制限値未満になる。   When the V concentration in the reformed oil 108 is higher than the gas turbine inlet limit value, the process proceeds to step S5 and subsequent steps. In step S5, the flow rate of the reformed oil 108 is measured by the reformed oil flow meter 73, and in step S6, the residence time of the mixed fluid 104 in the reactor 1 as shown in FIG. The flow rate setting values of the water supply pump 30 and the heavy oil supply pump 31 are determined using the relationship with the V concentration in the reformed oil 108. In step S7, the flow rate settings of the water supply pump 30 and heavy oil supply pump 31 calculated in step S6 are changed by a signal output from the V concentration adjustment controller 71. As a result, the residence time of the reactor 1 is optimized, and the V concentration in the reformed oil 108 becomes less than the gas turbine inlet limit value.

さらに、ステップS8ではV濃度調節コントローラ71で、改質油108と低V濃度油112を改質油タンク6の中で混合したときにV濃度が制限値未満になる流量を以下の式(5)を用いて計算する。   Further, in step S8, the flow rate at which the V concentration becomes less than the limit value when the reforming oil 108 and the low V concentration oil 112 are mixed in the reforming oil tank 6 by the V concentration adjusting controller 71 is expressed by the following equation (5). ) To calculate.

Figure 0004358692
Figure 0004358692

ここで、Flは低V濃度油112の流量、Fは改質油108の流量、cnは今回測定時の改質油108中のバナジウム濃度、cは低V濃度油112中のバナジウム濃度、clはバナジウム濃度のガスタービン入口制限値である。 Here, F l is the low V concentration oil 112 flow, F is the flow rate of the reformate 108, c n vanadium concentration in the reformate 108 during this measurement, c is the vanadium concentration in the low V concentration oil 112 , Cl is the gas turbine inlet limit value of vanadium concentration.

ステップS9では、改質油タンク6内の液位を改質油タンク液位計72で測定し、液位が改質油タンク6の液位の制限値を超えていないことを確認する。液位が制限値を超えていない場合にはステップS10に進み、改質油タンク6への低V濃度油112の供給を続ける。一方、改質油タンクの液位が制限値を超えた場合には、低V濃度油の供給を中止し、上記で設定した測定周期時間後に再度ステップS1からの手順を始める。   In step S9, the liquid level in the reformed oil tank 6 is measured by the reformed oil tank liquid level meter 72, and it is confirmed that the liquid level does not exceed the limit value of the liquid level in the reformed oil tank 6. When the liquid level does not exceed the limit value, the process proceeds to step S10, and the supply of the low V concentration oil 112 to the reformed oil tank 6 is continued. On the other hand, when the liquid level in the reformed oil tank exceeds the limit value, the supply of the low V concentration oil is stopped, and the procedure from step S1 is started again after the measurement cycle time set above.

本実施例により、改質油108のV濃度をリアルタイムに計測でき、低V濃度油112の供給量を適切に、速やかにコントロールできる。これにより、ガスタービン燃料油110に含まれるV濃度をガスタービン入口制限値未満にすることができ、バナジウムアタック等の高温腐食によるガスタービン翼寿命の短命化を防ぐことができる。本実施例では、改質油タンクに貯留され、V濃度が平均化された油を抜き出して動粘度を測定するのではなく、改質油タンク6に貯留される前の改質油の動粘度を計測するため、水供給ポンプ30および重質油供給ポンプ31の流量を正確に設定できる。   According to the present embodiment, the V concentration of the reformed oil 108 can be measured in real time, and the supply amount of the low V concentration oil 112 can be controlled appropriately and promptly. As a result, the V concentration contained in the gas turbine fuel oil 110 can be made less than the gas turbine inlet limit value, and shortening of the life of the gas turbine blade due to high temperature corrosion such as vanadium attack can be prevented. In this embodiment, the kinematic viscosity of the reformed oil before being stored in the reformed oil tank 6 is not measured by measuring the kinematic viscosity by extracting the oil stored in the reformed oil tank and averaging the V concentration. Therefore, the flow rates of the water supply pump 30 and the heavy oil supply pump 31 can be accurately set.

本実施例では、ガスタービン燃料となる軽質油の一部を低V濃度油タンク7に返送する改質油返送装置を含む重質油焚きガスタービン発電システムについて図9を用いて説明する。なお、図1と異なる部分についてのみ説明し、同一の部分については説明を省略する。   In this embodiment, a heavy oil-fired gas turbine power generation system including a reformed oil return device that returns a part of light oil used as gas turbine fuel to the low V concentration oil tank 7 will be described with reference to FIG. Only parts different from FIG. 1 will be described, and description of the same parts will be omitted.

本システムでは、改質油108の動粘度から計算されたV濃度がガスタービン燃焼器60に供給するための制限値以下である例えば0.1ppm程度の場合、軽質油ポンプ33で加圧されたガスタービン燃料油110の一部を低V濃度油タンク入口バルブ18の開放により貯留油111として低V濃度油タンク7へ供給する構成を持つ。動粘度測定器70とV濃度調節コントローラ71と軽質油ポンプ33および低V濃度油タンク入口バルブ18によって、本発明で云うところの改質油返送装置が形成される。   In this system, when the V concentration calculated from the kinematic viscosity of the reformed oil 108 is less than the limit value for supplying to the gas turbine combustor 60, for example, about 0.1 ppm, the gas pressurized by the light oil pump 33 is used. A part of the turbine fuel oil 110 is supplied to the low V concentration oil tank 7 as the stored oil 111 by opening the low V concentration oil tank inlet valve 18. The kinematic viscosity measuring device 70, the V concentration adjusting controller 71, the light oil pump 33, and the low V concentration oil tank inlet valve 18 form a reformed oil return device as referred to in the present invention.

貯留油111を抜き出すのは改質油タンク108内にガスタービンの連続運転に充分な量の油を持ち、かつ改質油タンク6内の油のV濃度がガスタービン入口制限値より低い場合である。特に、改質油タンク6内の油中のV濃度は0.1ppm程度或いはそれ以下であることが望ましい。   The stored oil 111 is extracted when the reforming oil tank 108 has a sufficient amount of oil for continuous operation of the gas turbine and the V concentration of the oil in the reforming oil tank 6 is lower than the gas turbine inlet limit value. is there. In particular, the V concentration in the oil in the reformed oil tank 6 is desirably about 0.1 ppm or less.

本実施例により、重質油の改質により生成した改質油を低V濃度油として貯留することができ、軽油やA重油などのように重質油より高価な燃料を購入しなくても良く、低コストで発電が可能になる。   According to this embodiment, the reformed oil produced by reforming heavy oil can be stored as low-V-concentration oil, and it is not necessary to purchase fuel more expensive than heavy oil such as light oil or heavy oil A. Good power generation is possible at low cost.

本発明により、重質油を高温高圧水と混合、反応させて改質する重質油改質装置或いはこれを具備したガスタービン発電システム等において、改質油のバナジウム濃度をオンタイムで計測することが可能になった。これにより、改質油のV濃度をコントロールして、ガスタービンの腐食を抑制することができるようになった。本発明によれば、重質油改質装置のメンテナンス周期を長期化できるというメリットもある。   According to the present invention, the vanadium concentration of the reformed oil is measured on-time in a heavy oil reformer that reforms by mixing and reacting heavy oil with high-temperature and high-pressure water or a gas turbine power generation system equipped with the reformer. It became possible. As a result, the V concentration of the reformed oil can be controlled to suppress corrosion of the gas turbine. According to the present invention, there is also an advantage that the maintenance cycle of the heavy oil reformer can be extended.

本発明の一実施例による重質油焚きガスタービン発電システムの概略図。1 is a schematic diagram of a heavy oil-fired gas turbine power generation system according to an embodiment of the present invention. 図1の実施例における運転・制御方法のフローチャートを示す図。The figure which shows the flowchart of the driving | operation and control method in the Example of FIG. 改質油中のバナジウム濃度と動粘度の関係を示す図。The figure which shows the relationship between vanadium density | concentration in modified oil, and kinematic viscosity. 改質油中のバナジウム濃度に及ぼす反応器内の混合流体滞留時間の影響を示す図。The figure which shows the influence of the mixed fluid residence time in a reactor which has on the vanadium density | concentration in reformed oil. 改質油中のバナジウム濃度に及ぼす反応器の温度の影響を示す図。The figure which shows the influence of the temperature of the reactor on the vanadium density | concentration in reformed oil. 改質油中のバナジウム濃度に及ぼす反応器の圧力の影響を示す図。The figure which shows the influence of the pressure of the reactor on the vanadium density | concentration in reformed oil. 本発明の他の実施例による重質油焚きガスタービン発電システムの概略図。The schematic of the heavy oil-fired gas turbine power generation system by other Examples of this invention. 図2の実施例における運転・制御方法のフローチャートを示す図。The figure which shows the flowchart of the driving | operation and control method in the Example of FIG. 本発明の更に他の実施例による重質油焚きガスタービン発電システムの概略図。The schematic of the heavy oil-fired gas turbine power generation system by other Example of this invention.

符号の説明Explanation of symbols

1…反応器、2…重質分抜き出し器、3…重質分回収器、4…減圧器、5…気液分離器、6…改質油タンク、7…低V濃度油タンク、9…改質油抜き出し配管、12…減圧バルブ、13…反応器出口バルブ、14…重質分抜き出しバルブ、15…改質油抜き出しバルブ、16…炭化水素ガス流量制御バルブ、17…燃焼器入口バルブ、18…低V濃度油タンク入口バルブ、20…加熱ヒータ、30…水供給ポンプ、31…重質油供給ポンプ、32…低V濃度油ポンプ、33…軽質油ポンプ、40…水予熱器、41…油予熱器、53…煙突、60…ガスタービン燃焼器、61…ガスタービン、62…圧縮機、70…動粘度測定器、71…V濃度調節コントローラ、72…改質油タンク液位計、73…改質油流量計、100…水、101…重質油、102…高温高圧水、103…高温高圧重質油、104…混合流体、105…重質分、106…改質分、107…炭化水素ガス、108…改質油、109…軽質油、110…ガスタービン燃料油、111…貯留油、112…低V濃度油、113…空気、114…燃焼ガス、115…燃焼排ガス。
1 ... Reactor, 2 ... Heavy fraction extractor, 3 ... Heavy fraction collector, 4 ... Decompressor, 5 ... Gas-liquid separator, 6 ... Reformed oil tank, 7 ... Low V concentration oil tank, 9 ... Reformed oil extraction pipe, 12 ... Reducing valve, 13 ... Reactor outlet valve, 14 ... Heavy extraction valve, 15 ... Reformed oil extraction valve, 16 ... Hydrocarbon gas flow control valve, 17 ... Combustor inlet valve, 18 ... Low V concentration oil tank inlet valve, 20 ... Heater, 30 ... Water supply pump, 31 ... Heavy oil supply pump, 32 ... Low V concentration oil pump, 33 ... Light oil pump, 40 ... Water preheater, 41 ... oil preheater, 53 ... chimney, 60 ... gas turbine combustor, 61 ... gas turbine, 62 ... compressor, 70 ... dynamic viscosity measuring device, 71 ... V concentration controller, 72 ... reformed oil tank level gauge, 73 ... reformed oil flow meter, 100 ... water, 101 ... heavy oil, 102 ... high temperature high pressure water, 103 ... high temperature high pressure heavy oil, 104 ... mixed fluid, 105 ... heavy component, 106 ... reformed component, 107 ... hydrocarbon gas, 108 ... reformed oil, 109 ... light oil, 110 ... gas turbine fuel oil, 111 ... stored oil, 112 ... low V concentration oil, 113 ... air, 114 ... combustion gas, 115 ... combustion exhaust gas.

Claims (7)

重質油を高温高圧水と混合し反応させて改質し改質油を生成する重質油改質装置において、生成された改質油の動粘度を測定し該動粘度からバナジウム濃度を算出するバナジウム濃度算出装置を備えたことを特徴とする重質油改質装置。   In a heavy oil reformer that reforms heavy oil by mixing it with high-temperature and high-pressure water and reacting it, the kinematic viscosity of the resulting reformed oil is measured and the vanadium concentration is calculated from the kinematic viscosity. A heavy oil reformer comprising a vanadium concentration calculating device. 重質油を高温高圧水と混合し反応させて改質する反応器と、前記反応器において改質された改質油を貯留する改質油タンクと、前記改質油タンクへ低バナジウム濃度油を補給する低バナジウム濃度油補給装置と、前記改質油の動粘度を測定する動粘度測定器と、動粘度からバナジウム濃度を算出し該バナジウム濃度と前記改質油タンク内の改質油貯留量とから前記改質油タンクへ補給する低バナジウム濃度油の量を決定するバナジウム濃度調節コントローラを備えたことを特徴とする重質油改質装置。   A reactor for reforming by mixing and reacting heavy oil with high temperature and high pressure water, a reformed oil tank for storing the reformed oil reformed in the reactor, and a low vanadium concentration oil to the reformed oil tank A low vanadium concentration oil replenishing device, a kinematic viscosity measuring device for measuring the kinematic viscosity of the reformed oil, a vanadium concentration is calculated from the kinematic viscosity, and the vanadium concentration is stored in the reformed oil tank. A heavy oil reforming apparatus comprising a vanadium concentration adjusting controller for determining an amount of low vanadium concentration oil to be replenished to the reforming oil tank from the amount. 重質油を高温高圧水と混合し反応させて改質する反応器と、前記反応器で生成された改質油の動粘度を測定する動粘度測定器と、動粘度からバナジウム濃度を算出して前記反応器へ水および重質油を供給するポンプの流量を調節するバナジウム濃度調節コントローラを備えたことを特徴とする重質油改質装置。   A reactor that reforms heavy oil mixed with high-temperature and high-pressure water and reacts; a kinematic viscosity meter that measures the kinematic viscosity of the reformed oil produced in the reactor; and the vanadium concentration is calculated from the kinematic viscosity. A heavy oil reforming apparatus comprising a vanadium concentration adjusting controller for adjusting a flow rate of a pump for supplying water and heavy oil to the reactor. 重質油を高温高圧水と混合し反応させて改質する反応器を具備する重質油改質装置の制御方法であって、前記反応器で生成された改質油の動粘度を測定し、動粘度からバナジウム濃度を算出し、得られたバナジウム濃度と改質油の生成量とから前記反応器に供給する水の流量および重質油の流量の設定値を計算しポンプの流量を変更するようにしたことを特徴とする重質油改質装置の制御方法。   A method for controlling a heavy oil reformer comprising a reactor for reforming by mixing heavy oil with high-temperature and high-pressure water, and measuring the kinematic viscosity of the reformed oil produced in the reactor. The vanadium concentration is calculated from the kinematic viscosity, and the set value of the flow rate of water supplied to the reactor and the flow rate of heavy oil is calculated from the obtained vanadium concentration and the amount of reformed oil, and the pump flow rate is changed. A control method for a heavy oil reforming apparatus, characterized in that: 重質油を高温高圧水と混合し反応させて改質油を生成する重質油改質装置と、前記重質油改質装置で生成された改質油を貯留する改質油タンクと、前記改質油タンクから供給された改質油を燃料に用いて発電を行うガスタービン発電装置と、前記改質油タンクへ低バナジウム濃度油を補給する低バナジウム濃度油補給装置と、前記改質油タンクに流入される改質油の動粘度を測定する動粘度測定器と、得られた動粘度からバナジウム濃度を算出し該バナジウム濃度と前記改質油タンクへ流入する改質油の流量および前記改質油タンクの液位とにより前記改質油タンクへ供給する低バナジウム濃度油の補給量を決定するバナジウム濃度調節コントローラを具備したことを特徴とする重質油焚きガスタービン発電システム。   A heavy oil reformer that mixes and reacts heavy oil with high-temperature and high-pressure water to produce reformed oil; a reformed oil tank that stores the reformed oil produced by the heavy oil reformer; A gas turbine power generation device that generates power using the reformed oil supplied from the reformed oil tank as a fuel, a low vanadium concentration oil replenishment device that replenishes the reformed oil tank with a low vanadium concentration oil, and the reforming A kinematic viscosity measuring device for measuring the kinematic viscosity of the reformed oil flowing into the oil tank, a vanadium concentration calculated from the obtained kinematic viscosity, the vanadium concentration and the flow rate of the reformed oil flowing into the reformed oil tank, and A heavy oil-fired gas turbine power generation system comprising a vanadium concentration adjusting controller that determines a replenishment amount of low vanadium concentration oil supplied to the reformed oil tank according to a liquid level of the reformed oil tank. 重質油を高温高圧水と混合し反応させて改質油を生成する重質油改質装置と、前記重質油改質装置で生成された改質油を貯留する改質油タンクと、前記改質油タンクから供給された改質油を燃料に用いて発電を行うガスタービン発電装置と、前記改質油タンクへ低バナジウム濃度油を補給するための低バナジウム濃度油タンクと、前記重質油改質装置で生成された改質油の動粘度測定結果をもとに算出されたバナジウム濃度が制限値未満であるときに前記改質油タンクに貯留された改質油の一部を前記低バナジウム濃度油タンクへ返送する改質油返送装置とを具備したことを特徴とする重質油焚きガスタービン発電システム。   A heavy oil reformer that mixes and reacts heavy oil with high-temperature and high-pressure water to produce reformed oil; a reformed oil tank that stores the reformed oil produced by the heavy oil reformer; A gas turbine power generation device that generates power using the reformed oil supplied from the reformed oil tank as a fuel, a low vanadium concentration oil tank for replenishing the reformed oil tank with a low vanadium concentration oil, and the heavy oil A part of the reformed oil stored in the reformed oil tank when the vanadium concentration calculated based on the kinematic viscosity measurement result of the reformed oil generated by the refined oil reformer is less than the limit value. A heavy oil-fired gas turbine power generation system comprising a reformed oil return device that returns the low vanadium concentration oil tank. 重質油を高温高圧水と混合し反応させて改質油を生成し、生成した改質油の動粘度を測定し、該動粘度からバナジウム濃度を算出し、改質油のバナジウム濃度が制限値を超えている場合に前記改質油に低バナジウム濃度油を補給しバナジウム濃度を調節して改質油利用機器へ供給することを特徴とする改質油の使用方法。   Heavy oil is mixed with high-temperature high-pressure water and reacted to produce reformed oil, the kinematic viscosity of the resulting reformed oil is measured, the vanadium concentration is calculated from the kinematic viscosity, and the vanadium concentration of the reformed oil is limited A method of using reformed oil, characterized in that when the value exceeds the value, low-vanadium concentration oil is replenished to the reformed oil, and the vanadium concentration is adjusted and supplied to the reformed oil utilization equipment.
JP2004198899A 2004-07-06 2004-07-06 Heavy oil reformer and control method thereof, gas turbine power generation system and method of using reformed oil Active JP4358692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198899A JP4358692B2 (en) 2004-07-06 2004-07-06 Heavy oil reformer and control method thereof, gas turbine power generation system and method of using reformed oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198899A JP4358692B2 (en) 2004-07-06 2004-07-06 Heavy oil reformer and control method thereof, gas turbine power generation system and method of using reformed oil

Publications (2)

Publication Number Publication Date
JP2006022135A JP2006022135A (en) 2006-01-26
JP4358692B2 true JP4358692B2 (en) 2009-11-04

Family

ID=35795652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198899A Active JP4358692B2 (en) 2004-07-06 2004-07-06 Heavy oil reformer and control method thereof, gas turbine power generation system and method of using reformed oil

Country Status (1)

Country Link
JP (1) JP4358692B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239655A (en) * 2007-03-26 2008-10-09 Hitachi Ltd Reforming apparatus, gas turbine power generating installation, and method for controlling reforming apparatus
JP4935463B2 (en) * 2007-03-30 2012-05-23 株式会社日立製作所 Heavy oil reformer and method for adjusting tar level of heavy oil reformer

Also Published As

Publication number Publication date
JP2006022135A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4495004B2 (en) Heavy oil reformed fuel-fired gas turbine system and operation method thereof
US7591983B2 (en) Heavy oil treating method and heavy oil treating system
CN113544372A (en) Ammonia decomposition facility, gas turbine plant equipped with same, and ammonia decomposition method
EP1289878A1 (en) Fuel reforming system
JP4451741B2 (en) Heavy oil reformer, reforming method and combined power generation system
JP4358692B2 (en) Heavy oil reformer and control method thereof, gas turbine power generation system and method of using reformed oil
KR100847972B1 (en) Gas reforming system
EP2634141B1 (en) Co2 separation and recovery equipment, and a coal gasification combined power plant comprising co2 separation and recovery equipment
JP5905933B2 (en) Waste heat recovery device and waste heat recovery method
EP2711335A1 (en) Removal of dissolved gases for boiler feed water preparation
JP2020106405A (en) Coal spontaneous heating character evaluation method, and coal spontaneous heating character evaluation device
JP2010275538A (en) Gas production apparatus
JP5235368B2 (en) Fuel reformer
JP4402867B2 (en) Reformer
JP4861088B2 (en) Heavy oil reformer and method of operating heavy oil reformer
JP2009226355A (en) Reduction treatment device
JP5255291B2 (en) How to stop the reformer
KR20210053286A (en) Support device, application method and support program
JP4847053B2 (en) Load control method for reforming system
JP4171062B2 (en) Processing method for heavy oil
JP2008095004A (en) Equipment and method for modification of heavy oil utilizing water
JP4402606B2 (en) Heavy oil reforming method using hydrothermal reaction and heavy oil reformer using hydrothermal reaction
JP4402531B2 (en) Heavy oil reforming apparatus and reforming method, gas turbine power generation apparatus and petroleum refining apparatus
AU2022254833A1 (en) Combustion system using, as an oxidiser, a mixture of molecular oxygen and a dehumidified gas obtained from combustion fumes
JP4921871B2 (en) Dimethyl ether reformed power generation system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250