JP2008239655A - Reforming apparatus, gas turbine power generating installation, and method for controlling reforming apparatus - Google Patents

Reforming apparatus, gas turbine power generating installation, and method for controlling reforming apparatus Download PDF

Info

Publication number
JP2008239655A
JP2008239655A JP2007078116A JP2007078116A JP2008239655A JP 2008239655 A JP2008239655 A JP 2008239655A JP 2007078116 A JP2007078116 A JP 2007078116A JP 2007078116 A JP2007078116 A JP 2007078116A JP 2008239655 A JP2008239655 A JP 2008239655A
Authority
JP
Japan
Prior art keywords
heavy oil
pressure
low
preheater
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007078116A
Other languages
Japanese (ja)
Inventor
Koji Nishida
浩二 西田
Akinori Hayashi
明典 林
Shinichi Inage
真一 稲毛
Osamu Yokota
修 横田
Hirokazu Takahashi
宏和 高橋
Shinsuke Kokubo
慎介 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007078116A priority Critical patent/JP2008239655A/en
Publication of JP2008239655A publication Critical patent/JP2008239655A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reforming apparatus in which the generation of cokes from heavy oil is suppressed in a heavy oil heater. <P>SOLUTION: The reforming apparatus includes a low-pressure heavy oil preheater 6a for heating the heavy oil, and a high-pressure heavy oil preheater 12 for further raising the temperature of the heavy oil after being heated in the order from the upstream side of a system for feeding the heavy oil, and further includes a reformer 32 for reforming the heated heavy oil from the feeding system by high-temperature high-pressure water, and separating the product into a reformed oil and tar. By the invention, the generation of the cokes from the heavy oil in the heavy oil heater can be suppressed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、改質反応装置,ガスタービン発電設備及び改質反応装置の制御方法に関する。   The present invention relates to a reforming reaction apparatus, a gas turbine power generation facility, and a control method for a reforming reaction apparatus.

重油をガスタービン発電設備の燃料に用いるためには、ガスタービン翼の腐食の原因となるバナジウムを除去すると共に、油の粘性を低下させる必要がある。   In order to use heavy oil as a fuel for a gas turbine power generation facility, it is necessary to remove vanadium that causes corrosion of gas turbine blades and to reduce the viscosity of the oil.

これを実現する方法として、重油と高温高圧水との混合流体を350〜550℃,5〜30MPaの条件下で改質反応させて重油を改質し、改質燃料を製造する技術が知られている。   As a method for realizing this, there is known a technique for producing a reformed fuel by reforming heavy oil by reforming a mixed fluid of heavy oil and high-temperature high-pressure water under conditions of 350 to 550 ° C. and 5 to 30 MPa. ing.

特開2003−286858号公報には、高温高圧条件下の改質器において重油と水を混合して改質反応させ、重油から軽質化した改質油を製造し、この改質燃料をガスタービン燃料として使用するガスタービン発電設備が開示されている。   Japanese Patent Application Laid-Open No. 2003-286858 discloses that a reformer under a high temperature and high pressure condition is mixed with a heavy oil and water to undergo a reforming reaction to produce a lightened reformed oil from the heavy oil. A gas turbine power generation facility for use as fuel is disclosed.

特開2003−286858号公報JP 2003-286858 A

ところで、高温高圧条件下で重油を加熱する重油加熱器では、熱分解により軽質成分と重質成分とに分離する反応が進む。重質成分は重合を繰返すことにより粘性の高いタールへと変化する。タールは、温度が高くなって重合が進みすぎると、重質成分の一部が固体であるコークスに変化して重油加熱器の伝熱管内面に付着する。そして、重油への伝熱を阻害する可能性がある。   By the way, in the heavy oil heater which heats heavy oil under high temperature and high pressure conditions, the reaction which separates into a light component and a heavy component by thermal decomposition advances. The heavy component is changed to a highly viscous tar by repeated polymerization. When the temperature becomes too high and the polymerization proceeds too much, tar changes to coke in which part of the heavy component is solid and adheres to the inner surface of the heat transfer tube of the heavy oil heater. And there is a possibility of inhibiting heat transfer to heavy oil.

そこで、本発明は、重油加熱器において重油からのコークス発生を抑制することを目的とする。   Therefore, an object of the present invention is to suppress coke generation from heavy oil in a heavy oil heater.

重油を供給する系統の上流側から順に、重油を加熱する低圧の重油予熱器と、前記加熱させた後の重油を更に昇温する高圧の重油予熱器を備え、前記供給系統からの加熱重油を高温高圧水により改質反応させて改質油とタールとに分離する改質器を備えたことを特徴とする。   In order from the upstream side of the system that supplies heavy oil, a low-pressure heavy oil preheater that heats heavy oil and a high-pressure heavy oil preheater that further raises the temperature of the heated heavy oil are provided. It is provided with a reformer that undergoes a reforming reaction with high-temperature and high-pressure water to separate it into reformed oil and tar.

本発明によれば、重油加熱器において重油からのコークス発生を抑制することができる。   According to the present invention, generation of coke from heavy oil can be suppressed in the heavy oil heater.

重油を改質反応させて改質燃料を製造する本発明の改質反応装置及び改質反応装置を備えたガスタービンシステム、その制御方法について、図面を参照して説明する。   A reforming reaction apparatus, a gas turbine system equipped with a reforming reaction apparatus, and a control method thereof for producing reformed fuel by reforming heavy oil will be described with reference to the drawings.

図1は重油と高温高圧水を改質反応させ、重油から改質燃料を製造する改質反応装置
100を示すものである。
FIG. 1 shows a reforming reaction apparatus 100 for producing a reformed fuel from heavy oil by a reforming reaction of heavy oil and high-temperature high-pressure water.

重油を供給する系統は、重油タンク1の重油を改質器32に供給するために設けたポンプなどを含めた系統であり、改質器32の上流側に位置する。以下、重油を供給する系統に設けられた各装置について説明する。   The system for supplying heavy oil is a system including a pump or the like provided for supplying heavy oil in the heavy oil tank 1 to the reformer 32, and is located upstream of the reformer 32. Hereinafter, each apparatus provided in the system | strain which supplies heavy oil is demonstrated.

まず、重油タンク1と、この重油タンク1から供給された重油を加圧する低圧の重油ポンプ2と、加圧された重油4を昇温する改質油冷却器5を備える。重油4は、改質油冷却器5にて昇温した後に低圧の重油予熱器6aに供給し、高温高圧の水との改質反応に適した重油組成まで熱分解させるために350℃〜550℃まで昇温する。高温高圧水は、超臨界水又は亜臨界水を使用することが出来る。   First, a heavy oil tank 1, a low-pressure heavy oil pump 2 that pressurizes the heavy oil supplied from the heavy oil tank 1, and a reforming oil cooler 5 that raises the temperature of the pressurized heavy oil 4 are provided. The heavy oil 4 is heated in the reformed oil cooler 5 and then supplied to the low-pressure heavy oil preheater 6a to thermally decompose it to a heavy oil composition suitable for the reforming reaction with high-temperature and high-pressure water. The temperature is raised to ° C. As the high-temperature and high-pressure water, supercritical water or subcritical water can be used.

低圧の重油予熱器6aで昇温した後、熱分解した重油は重油冷却器7に供給して冷却し、熱分解の過程で生じたガス成分8と液成分(熱分解重油)9とに分離する。熱分解重油9は高圧の重油ポンプ10で供給され、高圧の重油予熱器12において改質反応に適した350〜450℃,5〜30MPaまで昇温,昇圧する。このように、重油を加熱する際に、低圧の重油予熱器と高圧の重油予熱器に分けることで、コークスの発生を抑制することができる。尚、重油冷却器7での熱分解重油8の冷却温度は、高圧の重油ポンプ10の使用許容温度までで十分である。使用許容温度が低圧の重油予熱器6a出口での重油温度よりも高い場合は、重油冷却器7を必ずしも設ける必要はない。   After the temperature is raised by the low-pressure heavy oil preheater 6a, the pyrolyzed heavy oil is supplied to the heavy oil cooler 7 to be cooled and separated into a gas component 8 and a liquid component (pyrolytic heavy oil) 9 generated in the process of pyrolysis. To do. The pyrolysis heavy oil 9 is supplied by a high-pressure heavy oil pump 10, and is heated to 350 to 450 ° C. and 5 to 30 MPa, which is suitable for the reforming reaction, and the pressure is increased in the high-pressure heavy oil preheater 12. Thus, when heating heavy oil, generation | occurrence | production of coke can be suppressed by dividing into a low pressure heavy oil preheater and a high pressure heavy oil preheater. The cooling temperature of the pyrolysis heavy oil 8 in the heavy oil cooler 7 is sufficient up to the allowable use temperature of the high pressure heavy oil pump 10. When the allowable use temperature is higher than the heavy oil temperature at the low pressure heavy oil preheater 6a outlet, the heavy oil cooler 7 is not necessarily provided.

一方、水タンク21と、この水タンク21から高圧の水ポンプ22によって高圧水系統23を通して供給した水24は、重油冷却器7にて昇温した後、高圧水予熱器25にて改質反応に適した350〜450℃,5〜30MPaまで昇温,昇圧する。   On the other hand, the water 24 supplied from the water tank 21 through the high-pressure water system 23 by the high-pressure water pump 22 is heated by the heavy oil cooler 7 and then reformed by the high-pressure water preheater 25. The temperature is raised to 350 to 450 ° C. and 5 to 30 MPa, and the pressure is increased.

昇温,昇圧した熱分解重油9と水24は、混合器31にて混合させた後、改質器32に供給する。そして、高温高圧の水24により熱分解重油中の軽質成分である改質燃料33を抽出する。重力により改質器32下部に存在する重質成分のタール34は、タール系統35より抜き出し、タールタンク36に貯蔵する。   The pyrolysis heavy oil 9 and water 24 whose temperature has been raised and increased are mixed in the mixer 31 and then supplied to the reformer 32. And the reformed fuel 33 which is a light component in pyrolysis heavy oil is extracted with the high-temperature / high-pressure water 24. The heavy component tar 34 existing under the reformer 32 due to gravity is extracted from the tar system 35 and stored in the tar tank 36.

改質器32で抽出した軽質成分の改質燃料23と水24は、改質燃料系統37に設けた減圧器38にて減圧した後に気液分離器39に供給する。気液分離器39の内部には、常温の水24aを流した冷却用伝熱管40を設ける。そして、水の飽和温度以下まで改質燃料33と水24の温度を下げることにより、改質燃料23と水24は、気体の改質ガス
41と水24を含む液体の改質油42に分離する。液体の水24と改質油42は油水分離器51にて分離し、それぞれ改質油タンク43と水タンク21にて貯蔵する。改質油42は必要に応じて、改質ガス41との併用又は単独で使用することができる。
The light component reformed fuel 23 and water 24 extracted by the reformer 32 are supplied to the gas-liquid separator 39 after being decompressed by the decompressor 38 provided in the reformed fuel system 37. Inside the gas-liquid separator 39, a cooling heat transfer tube 40 in which normal temperature water 24a is flowed is provided. Then, by reducing the temperature of the reformed fuel 33 and the water 24 to below the saturation temperature of the water, the reformed fuel 23 and the water 24 are separated into a liquid reformed oil 42 containing a gaseous reformed gas 41 and water 24. To do. Liquid water 24 and reformed oil 42 are separated by an oil / water separator 51 and stored in a reformed oil tank 43 and a water tank 21, respectively. The reformed oil 42 can be used in combination with the reformed gas 41 or alone as required.

重油中のバナジウム等の重金属は、重質成分のタールの中に主に含まれる。そのため、改質燃料のバナジウム濃度は低減し、改質油の粘性も低下する。よって、バナジウム等の重金属を含むこと、又は粘性が高いことで燃料油として使用できない重油から改質油を製造することで、重油の適用範囲が広くなる。   Heavy metals such as vanadium in heavy oil are mainly contained in the heavy component tar. Therefore, the vanadium concentration of the reformed fuel is reduced, and the viscosity of the reformed oil is also lowered. Therefore, the range of application of heavy oil is widened by producing reformed oil from heavy oil that cannot be used as fuel oil because it contains heavy metals such as vanadium or has high viscosity.

また、重油の供給系統3には、通常使用する低圧の重油予熱器6aとは別の低圧の重油予熱器6bを並列して接続している。そして、低圧の重油予熱器6aの上流側・下流側の重油供給系統に切替弁61a,61bを設けており、切替弁61a,61bに挟まれた区間を特に低圧重油供給系統3aとする。本実施例では、切替弁61a,61bに挟まれた区間に、異なる低圧重油供給系統3bを設けている。   The heavy oil supply system 3 is connected in parallel with a low-pressure heavy oil preheater 6b different from the normally used low-pressure heavy oil preheater 6a. The switching valves 61a and 61b are provided in the upstream and downstream heavy oil supply systems of the low-pressure heavy oil preheater 6a, and the section sandwiched between the switching valves 61a and 61b is particularly referred to as the low-pressure heavy oil supply system 3a. In the present embodiment, different low-pressure heavy oil supply systems 3b are provided in a section sandwiched between the switching valves 61a and 61b.

重油4は、低圧の重油予熱器6aで350〜550℃まで加熱され、高温高圧での改質反応に適した重油組成まで熱分解する。この熱分解により重油の軽質成分と重質成分が生じる。そのため、重油の熱分解が進みすぎると、重質成分が重合して固体であるコークスが発生する。そして、重油予熱器の伝熱管内にコークスが付着し、伝熱性能を低下させる可能性がある。   The heavy oil 4 is heated to 350 to 550 ° C. in the low-pressure heavy oil preheater 6a and thermally decomposed to a heavy oil composition suitable for the reforming reaction at high temperature and high pressure. This pyrolysis produces light and heavy components of heavy oil. Therefore, if the thermal decomposition of heavy oil proceeds too much, heavy components are polymerized to generate solid coke. And coke adheres in the heat exchanger tube of a heavy oil preheater, and there exists a possibility of reducing heat transfer performance.

本実施例では、低圧の重油予熱器6aの伝熱性能が低下した場合には、切替弁61a,61bにより低圧の重油予熱器6bを作動させる。このような運転によって、連続的に重油の供給を可能としている。   In this embodiment, when the heat transfer performance of the low-pressure heavy oil preheater 6a is lowered, the low-pressure heavy oil preheater 6b is operated by the switching valves 61a and 61b. By such an operation, it is possible to continuously supply heavy oil.

低圧の重油予熱器6aにおける伝熱性能の低下は、伝熱管外面に取り付けた温度計62の示度により容易に判断することができる。コークスが伝熱管内面に付着すると、コークスが熱抵抗体となるため、加熱量一定条件(例えば電気ヒータを使用)の場合は伝熱管外表面の温度が上昇するためである。コークス付着に伴う伝熱管外面温度の上昇を温度計
62によりモニタリングし、所定の設定値以上、例えば初期より30℃以上上昇した時に、低圧の重油予熱器6bを昇温して、切替弁61a,61bにて低圧の重油供給系統3bに切替えればよい。
The decrease in heat transfer performance in the low-pressure heavy oil preheater 6a can be easily determined by the reading of the thermometer 62 attached to the outer surface of the heat transfer tube. This is because when coke adheres to the inner surface of the heat transfer tube, the coke becomes a thermal resistor, and the temperature of the outer surface of the heat transfer tube rises in the case of a constant heating amount condition (for example, using an electric heater). The temperature increase of the heat transfer tube outer surface accompanying coke adhesion is monitored by the thermometer 62, and when the temperature rises by more than a predetermined set value, for example, 30 ° C. or more from the initial stage, the low pressure heavy oil preheater 6b is heated, It is only necessary to switch to the low-pressure heavy oil supply system 3b at 61b.

また、系統から切り離された低圧の重油予熱器6aの出入口には、窒素63と酸素64を供給するガス供給系統65を設けている。ガス供給系統65には、窒素63の供給量を調整する弁66a,酸素64の供給量を調整する弁66b,窒素や酸素を外部へ排出する弁66cを設けている。これらの弁は、重油4を低圧の重油予熱器6aで昇温する時には閉止しておく。そして、切替弁61a,61bにて重油供給系統3aが系統から切り離された時に、弁66a,66cは開口して切替弁61aと61bに挟まれた区間に窒素63を供給する。その後、弁66bを開口して酸素64を供給し、伝熱管温度と酸素濃度を調整することにより、伝熱管内のコークスを徐々に燃焼させて除去する。そして、燃料ガス67を外部へ放出する。   A gas supply system 65 for supplying nitrogen 63 and oxygen 64 is provided at the inlet / outlet of the low-pressure heavy oil preheater 6a separated from the system. The gas supply system 65 is provided with a valve 66a for adjusting the supply amount of nitrogen 63, a valve 66b for adjusting the supply amount of oxygen 64, and a valve 66c for discharging nitrogen and oxygen to the outside. These valves are closed when the temperature of the heavy oil 4 is raised by the low-pressure heavy oil preheater 6a. When the heavy oil supply system 3a is disconnected from the system by the switching valves 61a and 61b, the valves 66a and 66c are opened to supply nitrogen 63 to the section sandwiched between the switching valves 61a and 61b. Thereafter, the valve 66b is opened to supply oxygen 64, and the coke in the heat transfer tube is gradually burned and removed by adjusting the heat transfer tube temperature and the oxygen concentration. Then, the fuel gas 67 is released to the outside.

低圧重油供給系統3aと、並列配置した低圧重油供給系統3bの配管等の構成は同じであり、低圧の重油予熱器6bで同様に伝熱管内面へのコークス付着により伝熱性能が低下した場合にも、同様の手順で伝熱管内のコークスを除去する。本実施例により、たとえコークスが発生して重油予熱器の伝熱管内面に付着しても、重油改質反応装置を停止することなく改質燃料を製造することができる。   The configuration of the piping of the low-pressure heavy oil supply system 3a and the low-pressure heavy oil supply system 3b arranged in parallel is the same, and in the case where the heat transfer performance deteriorates due to coke adhesion to the inner surface of the heat transfer tube in the low-pressure heavy oil preheater 6b as well. Also, remove the coke in the heat transfer tube in the same way. According to this embodiment, even if coke is generated and adheres to the inner surface of the heat transfer tube of the heavy oil preheater, the reformed fuel can be produced without stopping the heavy oil reforming reaction apparatus.

本実施例では、低圧の重油予熱器6,高圧の重油予熱器12,高圧水予熱器25,改質器32は電気ヒータ68により昇温又は保温している。但し、高温蒸気又は高温燃焼ガスを用いて昇温又は保温することも可能である。また、熱エネルギーを有効使用するために、改質器冷却器5に重油4,重油冷却器7に水24を供給して昇温しているが、熱交換せずに直接、低圧の重油予熱器6,高圧水予熱器25に供給してもよい。更に、気液分離器39内の改質燃料33と水24の冷却のために冷却用伝熱管40を配置しているが、気液分離器内に低温の水を噴霧して、噴霧水の潜熱と顕熱により冷却することも可能である。   In this embodiment, the low pressure heavy oil preheater 6, the high pressure heavy oil preheater 12, the high pressure water preheater 25, and the reformer 32 are heated or kept warm by an electric heater 68. However, it is also possible to raise the temperature or keep the temperature using high temperature steam or high temperature combustion gas. In order to effectively use the heat energy, the temperature of the reformer cooler 5 is increased by supplying the heavy oil 4 and the water 24 to the heavy oil cooler 7 and the temperature is raised. You may supply to the vessel 6 and the high-pressure water preheater 25. Further, a cooling heat transfer tube 40 is disposed for cooling the reformed fuel 33 and the water 24 in the gas-liquid separator 39, and low-temperature water is sprayed into the gas-liquid separator to thereby spray water. Cooling by latent heat and sensible heat is also possible.

次に、重油を改質反応させて改質燃料を製造する本発明の別の実施例である改質反応装置100を図2に示す。本実施例の改質反応装置は図1に示した実施例と基本構成は同じである。ここでは相違する低圧の重油予熱器の構成について説明する。   Next, FIG. 2 shows a reforming reaction apparatus 100 which is another embodiment of the present invention for producing reformed fuel by reforming heavy oil. The reforming reaction apparatus of this embodiment has the same basic configuration as the embodiment shown in FIG. Here, the structure of the different low-pressure heavy oil preheater will be described.

本実施例では、重油を昇温する温度帯を異ならしめた2つの低圧の重油予熱器を備える。具体的には、重油4を350〜400℃まで昇温する低温側の低圧の重油予熱器13と、その下流には350〜550℃まで昇温する高温側の低圧の重油予熱器14aと14bが配置されている。高温側の低圧の重油予熱器14aは並列に配置されている。重油4の熱分解により重質成分が過剰に重合することによって生じるコークスは、350〜400℃の温度では長時間保持されなければ生じない。一方、重合によって生じるコークスは、重油4の温度が高くなるほど短時間で生じるようになる。そこで本実施例では、重油4を350〜550℃まで昇温する高温側の低圧の重油予熱器14を並列に配置している。そのため、例えコークスが発生して伝熱管内面に付着して重油予熱器の伝熱性能が低下しても、高温側の低圧の重油予熱器14aの出入口に設けた切替弁61a,61bを切り替えることにより、高温側の低圧の重油予熱器14bを作動させて連続的に重油の供給を可能としている。   In this embodiment, two low-pressure heavy oil preheaters having different temperature zones for raising the temperature of heavy oil are provided. Specifically, the low-pressure side low-pressure heavy oil preheater 13 for raising the temperature of the heavy oil 4 to 350 to 400 ° C., and the high-temperature side low-pressure heavy oil preheater 14 a and 14 b for raising the temperature to 350 to 550 ° C. downstream thereof. Is arranged. The low-pressure heavy oil preheater 14a on the high temperature side is arranged in parallel. Coke generated by excessive polymerization of heavy components due to thermal decomposition of heavy oil 4 does not occur unless it is kept at a temperature of 350 to 400 ° C. for a long time. On the other hand, the coke generated by the polymerization is generated in a shorter time as the temperature of the heavy oil 4 becomes higher. Therefore, in this embodiment, the high-pressure low-pressure heavy oil preheater 14 for raising the temperature of the heavy oil 4 to 350 to 550 ° C. is arranged in parallel. Therefore, even if coke is generated and adheres to the inner surface of the heat transfer tube and the heat transfer performance of the heavy oil preheater decreases, the switching valves 61a and 61b provided at the inlet and outlet of the high pressure low pressure heavy oil preheater 14a are switched. Thus, the high-pressure low-pressure heavy oil preheater 14b is operated to continuously supply heavy oil.

高温側の低圧の重油予熱器14aの伝熱性能の低下は、伝熱管外面に取り付けた温度計62の示度により容易に判断することができる。コークス付着に伴う伝熱管外面温度の上昇を温度計62によりモニタリングしている。そして、所定の設定値以上、例えば初期より30℃以上上昇した時に、別の高温側の低圧の重油予熱器14bを昇温して、切替弁
61a,61bによって低圧重油供給系統3bに切替えることにより、連続した重油の供給運転が可能となる。
The decrease in heat transfer performance of the high-pressure low-pressure heavy oil preheater 14a can be easily determined by the reading of the thermometer 62 attached to the outer surface of the heat transfer tube. An increase in the outer surface temperature of the heat transfer tube due to coke adhesion is monitored by a thermometer 62. Then, when the temperature rises by more than a predetermined set value, for example, 30 ° C. or more from the beginning, the temperature of another high-pressure low-pressure heavy oil preheater 14b is raised and switched to the low-pressure heavy oil supply system 3b by the switching valves 61a and 61b. Continuous fuel oil supply operation becomes possible.

また、系統から切り離された高温側の低圧の重油予熱器14aの出入口には、窒素63と酸素64を供給するガス供給系統65を設けている。実施例1と同様に、ガス供給系統65には弁66a,66b,66cを設けている。そして、重油4を高温側の低圧の重油予熱器14aにて昇温する時には閉止しておく。切替弁61a,61bにて低圧重油供給系統3aが系統から切り離された時に、弁66a,66cは開口して切替弁61a,61bで閉止した区間の伝熱管内に窒素63を供給する。その後、弁66bを開口して酸素64を供給し、伝熱管温度と酸素濃度を調整することにより、伝熱管内のコークスを徐々に燃焼させて除去し、燃料ガス67を外部へ放出する。本実施例では、コークスが発生して伝熱管内面に付着して性能が低下するポテンシャルの高い、高温側の低圧の重油予熱器を並列配置する。そのため、常時使用しない重油予熱器の容量を小さくできると共に、酸素供給によりコークスを燃焼して除去する伝熱管の範囲を小さくできる。   A gas supply system 65 for supplying nitrogen 63 and oxygen 64 is provided at the inlet / outlet of the high-pressure low-pressure heavy oil preheater 14a separated from the system. As in the first embodiment, the gas supply system 65 is provided with valves 66a, 66b, 66c. Then, when the temperature of the heavy oil 4 is raised by the low-pressure heavy oil preheater 14a on the high temperature side, it is closed. When the low pressure heavy oil supply system 3a is disconnected from the system by the switching valves 61a and 61b, the valves 66a and 66c are opened and nitrogen 63 is supplied into the heat transfer tubes in the section closed by the switching valves 61a and 61b. Thereafter, the valve 66b is opened to supply oxygen 64, and by adjusting the heat transfer tube temperature and oxygen concentration, the coke in the heat transfer tube is gradually burned and removed, and the fuel gas 67 is released to the outside. In this embodiment, coke is generated and attached to the inner surface of the heat transfer tube, and a high-pressure low-pressure heavy oil preheater having a high potential for reducing the performance is arranged in parallel. Therefore, the capacity of the heavy oil preheater that is not always used can be reduced, and the range of the heat transfer tube that burns and removes coke by supplying oxygen can be reduced.

本実施例により、たとえコークスが発生して高温側の低圧の重油予熱器における伝熱管内面に付着しても、改質反応装置を停止することなく改質燃料を製造することができる。   According to this embodiment, even if coke is generated and adheres to the inner surface of the heat transfer tube in the high-pressure low-pressure heavy oil preheater, the reformed fuel can be produced without stopping the reforming reaction apparatus.

次に、本発明の他の実施例である改質反応装置を備えたガスタービン発電設備200について図3を参照して説明する。図3において、本実施例の改質反応装置は図1に示した実施例と基本構成は共通であり、詳細な説明は省略する。   Next, a gas turbine power generation facility 200 including a reforming reaction apparatus according to another embodiment of the present invention will be described with reference to FIG. In FIG. 3, the reforming reaction apparatus of the present embodiment has the same basic configuration as the embodiment shown in FIG. 1, and detailed description thereof is omitted.

本実施例では、改質器32からの改質燃料33と水24は、減圧器38にてガスタービンの燃焼器71での燃焼に適切な圧力まで減圧し、気液分離器39に供給する。気液分離器39に設けられた冷却用伝熱管は、気液分離器内の設定圧力における水の飽和温度より高くなるように温度を調節する。そして、気液分離器39の改質燃料33と水24は、水24を含まない改質油42を改質油タンク43に供給する。改質油タンク43内の改質油42は、ガスタービンの燃焼器71に必要な量を改質油ポンプ45にて改質油系統46を通じて燃焼器71に供給する。また気液分離器39内で生成されたガス状の改質ガス41と水(蒸気)24は、改質ガス系統44を通して直接ガスタービンの燃焼器71に供給する。燃焼器71では圧縮器72によって圧縮された空気も供給されており、改質油42及び改質ガス41はこの圧縮された空気と共に燃焼器71にて燃焼される。燃焼器71で燃焼して発生した燃焼ガスはタービン73を駆動し、このタービン73の駆動によって発電機74を回転させて発電し、電力を得る。   In this embodiment, the reformed fuel 33 and the water 24 from the reformer 32 are decompressed to a pressure suitable for combustion in the combustor 71 of the gas turbine by the decompressor 38 and supplied to the gas-liquid separator 39. . The cooling heat transfer tube provided in the gas-liquid separator 39 adjusts the temperature so as to be higher than the saturation temperature of water at the set pressure in the gas-liquid separator. Then, the reformed fuel 33 and the water 24 of the gas-liquid separator 39 supply the reformed oil 42 not containing the water 24 to the reformed oil tank 43. The reformed oil 42 in the reformed oil tank 43 is supplied to the combustor 71 through the reformed oil system 46 by the reformed oil pump 45 in an amount necessary for the combustor 71 of the gas turbine. Further, the gaseous reformed gas 41 and water (steam) 24 generated in the gas-liquid separator 39 are supplied directly to the combustor 71 of the gas turbine through the reformed gas system 44. In the combustor 71, air compressed by the compressor 72 is also supplied, and the reformed oil 42 and the reformed gas 41 are combusted in the combustor 71 together with the compressed air. Combustion gas generated by combustion in the combustor 71 drives the turbine 73, and the turbine 73 is driven to rotate the generator 74 to generate electric power to obtain electric power.

本発明は高温高圧の条件下で重油と水を混合して改質反応させ、軽質成分の改質燃料と重質成分のタールとに分離して改質燃料を製造する重油の改質反応装置、並びに改質燃料を燃料とする改質反応装置を備えたガスタービンシステムに適用可能である。   The present invention relates to a heavy oil reforming reaction apparatus in which heavy oil and water are mixed and reformed under high temperature and high pressure conditions, and separated into a light component reformed fuel and a heavy component tar to produce a reformed fuel. In addition, the present invention can be applied to a gas turbine system including a reforming reaction apparatus using reformed fuel as fuel.

本発明の一実施例である重油を改質反応させて改質燃料を製造する改質反応装置を示す図。The figure which shows the reforming reaction apparatus which makes the reforming reaction of the heavy oil which is one Example of this invention, and manufactures a reformed fuel. 本発明の他の実施例である重油を改質反応させて改質燃料を製造する改質反応装置を示す図。The figure which shows the reforming reaction apparatus which makes the reforming reaction of the heavy oil which is another Example of this invention, and manufactures a reformed fuel. 本発明の更に別の実施例である重油から改質燃料を製造する改質反応装置を備えたガスタービンシステムを示すプラント系統図。The plant system diagram which shows the gas turbine system provided with the reforming reaction apparatus which manufactures reformed fuel from the heavy oil which is another Example of this invention.

符号の説明Explanation of symbols

1 重油タンク
2 低圧の重油ポンプ
6a,6b 低圧の重油予熱器
12 高圧の重油予熱器
13 低温側の低圧の重油予熱器
14 高温側の低圧の重油予熱器
21 水タンク
31 混合器
32 改質器
33 改質燃料
34 タール
35 タール系統
36 タールタンク
37 改質燃料系統
38 減圧器
39 気液分離器
40 冷却用伝熱管
41 改質ガス
42 改質油
43 改質油タンク
61a,61b 切替弁
62 温度計
65 ガス供給系統
66a,66b,66c 弁
71 燃焼器
72 圧縮機
73 ガスタービン
74 発電機
100 改質反応装置
200 ガスタービン発電設備
1 Heavy oil tank
2 Low pressure heavy oil pump 6a, 6b Low pressure heavy oil preheater 12 High pressure heavy oil preheater 13 Low pressure side low pressure heavy oil preheater 14 High temperature side low pressure heavy oil preheater 21 Water tank 31 Mixer 32 Reformer 33 Reformation Fuel 34 Tar 35 Tar system 36 Tar tank 37 Reformed fuel system 38 Decompressor 39 Gas-liquid separator 40 Heat transfer pipe 41 for cooling 41 Reformed gas 42 Reformed oil 43 Reformed oil tank 61a, 61b Switching valve 62 Thermometer 65 Gas Supply system 66a, 66b, 66c Valve 71 Combustor 72 Compressor 73 Gas turbine 74 Generator 100 Reforming reactor 200 Gas turbine power generation facility

Claims (6)

重油を供給する系統の上流側から順に、重油を加熱する低圧の重油予熱器と、前記加熱させた後の重油を更に昇温する高圧の重油予熱器を備え、前記供給系統からの加熱重油を高温高圧水により改質反応させて改質油とタールとに分離する改質器を備えたことを特徴とする改質反応装置。   In order from the upstream side of the system that supplies heavy oil, a low-pressure heavy oil preheater that heats heavy oil and a high-pressure heavy oil preheater that further raises the temperature of the heated heavy oil are provided. A reforming reaction apparatus comprising a reformer that undergoes a reforming reaction with high-temperature and high-pressure water and separates it into reformed oil and tar. 請求項1に記載の改質反応装置において、前記低圧の重油予熱器を並列に複数設けたことを特徴とする改質反応装置。   The reforming reaction apparatus according to claim 1, wherein a plurality of the low-pressure heavy oil preheaters are provided in parallel. 請求項1に記載の改質反応装置において、前記低圧の重油予熱器に酸素と不活性ガスを供給するガス供給系統が設けられたことを特徴とする改質反応装置。   The reforming reaction apparatus according to claim 1, wherein a gas supply system for supplying oxygen and an inert gas to the low-pressure heavy oil preheater is provided. 重油を供給する系統の上流側から順に、重油を加熱する温度帯を異ならしめた低温側の低圧の重油予熱器及び高温側の低圧の重油予熱器と、前記加熱させた後の重油を更に昇温する高圧の重油予熱器を備え、前記供給系統からの加熱重油を高温高圧水により改質反応させて改質油とタールとに分離する改質器を備えたことを特徴とする改質反応装置。   In order from the upstream side of the system supplying heavy oil, the low-temperature low-pressure heavy oil preheater and the high-temperature low-pressure heavy oil preheater with different temperature zones for heating heavy oil, and the heated heavy oil are further increased. A reforming reaction characterized by comprising a high-pressure heavy oil preheater for heating, and a reformer for reforming the heated heavy oil from the supply system with high-temperature high-pressure water to separate it into reformed oil and tar apparatus. 請求項1乃至4に記載の改質反応装置を備え、前記改質油をガスタービン燃料として使用することを特徴とするガスタービン発電設備。   A gas turbine power generation facility comprising the reforming reaction apparatus according to claim 1, wherein the reformed oil is used as a gas turbine fuel. 重油を加熱する低圧の重油予熱器と、前記加熱させた後の重油を更に昇温する高圧の重油予熱器を上流側から順に備え、前記加熱された重油を高温高圧水により改質反応させて改質油とタールとに分離する改質器を備えた改質反応装置の制御方法であって、
前記低圧の重油予熱器を並列に複数設け、
前記低圧の重油予熱器に設けられた伝熱管内部の性能が低下した場合に、残る前記低圧の重油予熱器に切り替えて使用することを特徴とする改質反応装置の制御方法。
A low-pressure heavy oil preheater for heating heavy oil and a high-pressure heavy oil preheater for further heating the heated heavy oil are provided in order from the upstream side, and the heated heavy oil is subjected to a reforming reaction with high-temperature high-pressure water. A method for controlling a reforming reaction apparatus having a reformer that separates reformed oil and tar,
A plurality of the low-pressure heavy oil preheaters are provided in parallel,
A control method for a reforming reaction apparatus, wherein when the performance inside a heat transfer tube provided in the low-pressure heavy oil preheater is deteriorated, the remaining low-pressure heavy oil preheater is switched to use.
JP2007078116A 2007-03-26 2007-03-26 Reforming apparatus, gas turbine power generating installation, and method for controlling reforming apparatus Pending JP2008239655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078116A JP2008239655A (en) 2007-03-26 2007-03-26 Reforming apparatus, gas turbine power generating installation, and method for controlling reforming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078116A JP2008239655A (en) 2007-03-26 2007-03-26 Reforming apparatus, gas turbine power generating installation, and method for controlling reforming apparatus

Publications (1)

Publication Number Publication Date
JP2008239655A true JP2008239655A (en) 2008-10-09

Family

ID=39911390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078116A Pending JP2008239655A (en) 2007-03-26 2007-03-26 Reforming apparatus, gas turbine power generating installation, and method for controlling reforming apparatus

Country Status (1)

Country Link
JP (1) JP2008239655A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180750A (en) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd Combined cycle power generation method and power generator
JP2003286858A (en) * 2002-03-29 2003-10-10 Hitachi Ltd Gas turbine equipment for burning reformed fuel and method of oil-heating the equipment
JP2005337214A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Heavy oil reforming gas turbine power generation system using high temperature/high pressure water
JP2006022135A (en) * 2004-07-06 2006-01-26 Hitachi Ltd Heavy oil-reforming unit, method for controlling the same, gas turbine power-generating system and method for using reformate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180750A (en) * 1997-09-03 1999-03-26 Mitsubishi Heavy Ind Ltd Combined cycle power generation method and power generator
JP2003286858A (en) * 2002-03-29 2003-10-10 Hitachi Ltd Gas turbine equipment for burning reformed fuel and method of oil-heating the equipment
JP2005337214A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Heavy oil reforming gas turbine power generation system using high temperature/high pressure water
JP2006022135A (en) * 2004-07-06 2006-01-26 Hitachi Ltd Heavy oil-reforming unit, method for controlling the same, gas turbine power-generating system and method for using reformate

Similar Documents

Publication Publication Date Title
JP4495004B2 (en) Heavy oil reformed fuel-fired gas turbine system and operation method thereof
US8529866B2 (en) Process for the production of hydrogen by steam reforming an oil cut with optimized steam production
NL1028354C2 (en) Supply of steam and hydrogen to a synthesis gas producing process or factory.
FR2990990A1 (en) Method for producing electricity by recovery of waste heat of e.g. fluids output from oil refinery, involves cooling effluent by heat transfer with coolant that is vaporized during heat transfer, and slackening vaporized coolant in turbine
JP2007224058A (en) Petrochemical complex
JP2008239655A (en) Reforming apparatus, gas turbine power generating installation, and method for controlling reforming apparatus
JP4643369B2 (en) Heavy oil reforming system and power generation system
KR101686259B1 (en) Self-generated power integration for gasification
JP2006046132A (en) Gas turbine system, reformed fuel combustion gas turbine system, and reformed fuel supply method for gas turbine system
JP2007186572A (en) Apparatus for reforming heavy oil, gas turbine with heavy oil-reforming apparatus, gas turbine plant with heavy oil-reforming apparatus, and method of reforming heavy oil
CN114981387A (en) Hydrocarbon pyrolysis with reduced exhaust emissions
JP4685644B2 (en) Heavy oil reformer, heavy oil reformer shutdown method, and gas turbine equipped with heavy oil reformer
JP2006017039A (en) Gas turbine and its lubricating oil cooling method
JP4550702B2 (en) Reformed fuel-fired gas turbine system
JP2006312917A (en) Power generating facility, gas turbine power generating facility, reformed fuel supplying method for power generating facility
JP2010270594A (en) Gas turbine system burning reformed fuel of heavy oil
JP5790045B2 (en) Hot air generator
JP2005337214A (en) Heavy oil reforming gas turbine power generation system using high temperature/high pressure water
JP2007278152A (en) Gas turbine system and method for operating gas turbine system
EP3814682B1 (en) Supercritical co2 cycle coupled to chemical looping arrangement
JP4715742B2 (en) Reformed fuel-fired gas turbine power generation system
JP4402531B2 (en) Heavy oil reforming apparatus and reforming method, gas turbine power generation apparatus and petroleum refining apparatus
KR101687912B1 (en) Vent Equipment for Gasifier
US20190113223A1 (en) METHOD FOR MINIMIZING NOx EMISSIONS DURING POX BASED SYNGAS PLANT STARTUP
JP2005154536A (en) Heavy oil reformer, its operating method and gas turbine power generation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120529