JP5255291B2 - How to stop the reformer - Google Patents
How to stop the reformer Download PDFInfo
- Publication number
- JP5255291B2 JP5255291B2 JP2008025434A JP2008025434A JP5255291B2 JP 5255291 B2 JP5255291 B2 JP 5255291B2 JP 2008025434 A JP2008025434 A JP 2008025434A JP 2008025434 A JP2008025434 A JP 2008025434A JP 5255291 B2 JP5255291 B2 JP 5255291B2
- Authority
- JP
- Japan
- Prior art keywords
- reformer
- steam
- raw material
- water vapor
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
本発明は原料ガスと水蒸気の混合物を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器であって、該改質器の運転停止後に水蒸気を改質器内に封入し、改質器内部を正圧に保持する保圧工程を設けた改質器の停止方法に関する。 The present invention is a reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of a raw material gas and steam in the presence of a reforming catalyst, and reforms the steam after the reformer is shut down. The present invention relates to a method for stopping a reformer provided with a pressure-holding step for sealing the inside of the reformer and maintaining the interior of the reformer at a positive pressure.
従来から、原料ガスと水蒸気の混合物(以下、原料一水蒸気混合物という。)を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器が知られている。改質器で得られる水素リッチな改質ガスは、残留するCO(一酸化炭素)をCO低減手段で触媒の存在下に酸素含有ガスと反応させてCO2へ変換し、例えば固体高分子電解質型燃料電池に改質ガスを供給する場合は、数ppmレベルまでCOを低減する。原料ガスには、メタン等の炭化水素、メタノール等の脂肪族アルコール類、或いはジメチルエーテル等のエーテル類、都市ガスなどが用いられる。このような改質器において、メタンを原料ガスとして使用した場合の水蒸気改質の反応式は、CH4+2H2O→CO2+4H2で示すことができ、好ましい改質反応温度は、650〜750℃の範囲である。 2. Description of the Related Art Conventionally, there is known a reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of a source gas and steam (hereinafter referred to as a source-steam mixture) in the presence of a reforming catalyst. The hydrogen-rich reformed gas obtained in the reformer is converted into CO 2 by reacting residual CO (carbon monoxide) with an oxygen-containing gas in the presence of a catalyst by means of CO reduction, for example, a solid polymer electrolyte. When the reformed gas is supplied to the fuel cell, CO is reduced to several ppm level. As the source gas, hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, city gas, and the like are used. In such a reformer, a reaction formula of steam reforming when methane is used as a raw material gas can be expressed as CH 4 + 2H 2 O → CO 2 + 4H 2 , and a preferable reforming reaction temperature is 650 to The range is 750 ° C.
改質器の改質反応に必要な熱を供給する方式として外部加熱型と、内部加熱型がある。外部加熱型の改質器は、外部に加熱部を設け、その熱源で原料ガスと水蒸気を反応させて改質ガスを生成するようになっている。内部加熱型の改質器はその供給側(上流側)に部分酸化反応層を設け、該部分酸化反応層で発生した熱を用いて下流側に配備した水蒸気改質反応層を水蒸気改質反応温度まで加熱し、該加熱された水蒸気改質触媒層で水蒸気改質反応をさせて水素リッチな改質ガスを生成するようになっている。 There are an external heating type and an internal heating type as a system for supplying heat necessary for the reforming reaction of the reformer. The external heating type reformer is provided with a heating unit outside, and a reformed gas is generated by reacting a raw material gas and water vapor with a heat source. The internal heating type reformer is provided with a partial oxidation reaction layer on the supply side (upstream side), and the steam reforming reaction layer disposed on the downstream side using the heat generated in the partial oxidation reaction layer is subjected to a steam reforming reaction. Heating to a temperature is performed, and a steam reforming reaction is performed in the heated steam reforming catalyst layer to generate a hydrogen-rich reformed gas.
部分酸化反応は、CH4+1/2・O2→CO+2H2で示すことができ、好ましい部分酸化反応の温度は250℃以上の範囲である。内部加熱型の改質器を改良したものとして自己酸化内部加熱型の改質器が知られている。自己酸化内部加熱型の改質器は、外側の予備改質室とそれに連通する内側の主改質室を備えた二重構造になっており、予備改質室には改質触媒層が設けられ、主改質室には酸化空気の供給管、改質触媒と酸化触媒を混合した混合触媒層、シフト触媒層等が設けられる。なお主改質室の中央部に酸化空気を供給する供給管が延長され、その供給管が混合触媒層に延長する部分に複数のノズルからなる空気噴出部が形成される。 The partial oxidation reaction can be represented by CH 4 + 1/2 · O 2 → CO + 2H 2 , and the preferable partial oxidation reaction temperature is in the range of 250 ° C. or higher. A self-oxidation internal heating type reformer is known as an improvement of the internal heating type reformer. The self-oxidation internal heating type reformer has a double structure with an outer pre-reforming chamber and an inner main reforming chamber communicating with it, and the pre-reforming chamber is provided with a reforming catalyst layer. The main reforming chamber is provided with an oxidizing air supply pipe, a mixed catalyst layer in which the reforming catalyst and the oxidation catalyst are mixed, a shift catalyst layer, and the like. Note that a supply pipe for supplying oxidized air is extended to the central portion of the main reforming chamber, and an air ejection portion including a plurality of nozzles is formed in a portion where the supply pipe extends to the mixed catalyst layer.
改質器の水蒸気改質に必要な水蒸気を供給するために水蒸気発生手段が設けられる。水蒸気発生手段は気体燃料または液体燃料をバーナで燃焼し、その燃焼ガスで水を加熱して水蒸気を発生するものである。水蒸気発生手段で発生した水蒸気と原料ガス供給手段からの原料ガスは例えばエジェクターからなる混合器で混合され、得られた原料一水蒸気混合物が改質器に供給される。 A steam generating means is provided for supplying steam necessary for steam reforming of the reformer. The water vapor generating means burns gaseous fuel or liquid fuel with a burner and heats water with the combustion gas to generate water vapor. The water vapor generated by the water vapor generating means and the raw material gas from the raw material gas supplying means are mixed by, for example, a mixer comprising an ejector, and the obtained raw material-steam mixture is supplied to the reformer.
例えば内部加熱型の改質器を停止する際、改質器への原料ガス供給および酸化空気の供給を停止すると、改質器の内部温度は低下するため、改質器内に残留する原料ガスが炭素析出温度以上(例えば200℃以上の温度)の高温が継続すると、改質器内に残留する原料ガスが炭素析出現象を起こす。その炭素析出を防止するため、例えば特許文献1に、改質システム停止に際して改質器内部に残留する原料ガスを水蒸気でパージする方法が提案されている。 For example, when the internal heating type reformer is stopped, if the supply of the raw material gas to the reformer and the supply of oxidized air are stopped, the internal temperature of the reformer decreases, so the raw material gas remaining in the reformer However, when the high temperature of the carbon deposition temperature or higher (for example, the temperature of 200 ° C. or higher) continues, the raw material gas remaining in the reformer causes a carbon deposition phenomenon. In order to prevent the carbon deposition, for example, Patent Document 1 proposes a method of purging the raw material gas remaining inside the reformer with water vapor when the reforming system is stopped.
特許文献1の改質システムの停止方法は、改質器への原料ガス供給停止後に改質器に残留する原料ガスを水蒸気でパージした後、自然冷却にまかせ、改質器の内部温度が原料ガスの炭素析出温度以下になった時点で改質器内に原料ガスを封入している。しかし改質器内部に水蒸気を封入した状態で改質器が自然冷却されていく過程において、改質器内部の温度が水蒸気の露点以下になると水蒸気の一部凝縮し、改質器内部が負圧になる恐れがある。改質器内部を負圧状態のまま放置すると、配管に設けた弁の接続部分などから外部の空気を吸い込み触媒を劣化させる。 The method for stopping the reforming system in Patent Document 1 is that the raw material gas remaining in the reformer is purged with steam after the supply of the raw material gas to the reformer is stopped, and then the natural gas is allowed to cool naturally. The raw material gas is sealed in the reformer when the temperature becomes lower than the carbon deposition temperature of the gas. However, in the process where the reformer is naturally cooled while steam is sealed inside the reformer, when the temperature inside the reformer falls below the dew point of the steam, the steam partially condenses and the reformer is negatively charged. There is a risk of pressure. If the inside of the reformer is left in a negative pressure state, external air is sucked in from a connection portion of a valve provided in the pipe and the catalyst is deteriorated.
そこで、改質器の内部に負圧状態が継続しないようにするため、その凝縮分を補うように水蒸気を適宜改質器に補給する必要がある。なお改質器の停止に際して行われるこのような負圧防止工程を本発明では保圧工程という。 Therefore, in order to prevent the negative pressure state from continuing inside the reformer, it is necessary to appropriately supply steam to the reformer so as to compensate for the condensate. In addition, such a negative pressure prevention process performed when the reformer is stopped is referred to as a pressure holding process in the present invention.
前記のように改質器の負圧状態を解決するため、水蒸気発生手段から新たな水蒸気を改質器に供給する必要がある。しかしそのためには改質システムの停止操作中も水蒸気発生手段を運転継続するか、負圧状態になるごとに水蒸気発生手段を起動する必要がある。このように改質器の停止操作中においても水蒸気発生手段を継続的にもしくは頻発的に運転して多量の水蒸気補給を行うと、それに応じた量の燃料が消費されるので、システムの運転と停止を含めた全体の熱効率が低下するという問題が生じる。 In order to solve the negative pressure state of the reformer as described above, it is necessary to supply new steam to the reformer from the steam generating means. However, for that purpose, it is necessary to continue the operation of the steam generation means even during the stop operation of the reforming system or to start the steam generation means every time the negative pressure state is reached. Thus, even when the reformer is stopped, if the steam generating means is operated continuously or frequently to supply a large amount of steam, a corresponding amount of fuel is consumed. There arises a problem that the overall thermal efficiency including the stoppage is lowered.
さらに、改質器の自然冷却時における内部温度は一様ではなく領域により異なるので、温度の低い領域では水蒸気の凝縮が比較的早期に発生する。そのため改質器への水蒸気補給量もそれに応じて増加してしまい、消費される熱エネルギーも増加する。そこで本発明は、このような従来の改質器の停止方法における問題を解決することを課題とし、そのための新しい改質器の停止方法を提供することを目的とする。 Furthermore, since the internal temperature during natural cooling of the reformer is not uniform and varies depending on the region, condensation of water vapor occurs relatively early in the region where the temperature is low. As a result, the amount of steam supplied to the reformer also increases accordingly, and the consumed heat energy also increases. SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve such a problem in the conventional reformer stopping method, and to provide a new reformer stopping method therefor.
前記課題を解決する本発明の改質器の停止方法は、原料ガスと水蒸気の混合物を改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する改質器であって、該改質器の運転停止後に水蒸気を改質器に封入して保圧工程を行うようにした改質器の停止方法において、
前記保圧工程に用いる水蒸気には原料ガスが混合され、
前記保圧工程に先立って改質器内部を水蒸気でパージする水蒸気パージ工程を行うことを特徴とする(請求項1)。
A method for stopping a reformer of the present invention that solves the above-described problem is a reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of a raw material gas and steam in the presence of a reforming catalyst. In the method for stopping the reformer in which steam is enclosed in the reformer after the operation of the reformer is stopped and the pressure holding step is performed ,
A raw material gas is mixed with water vapor used in the pressure holding step,
Prior to the pressure holding step, a steam purge step of purging the interior of the reformer with steam is performed (claim 1).
上記改質器の停止方法において、
前記保圧工程中に改質器の内圧が低下した際には該改質器内部に水蒸気を補給することができる(請求項2)。
In the above reformer stopping method,
When the internal pressure of the reformer decreases during the pressure holding step, steam can be replenished inside the reformer (claim 2).
本発明の改質器の停止方法は、請求項1に記載のように、保圧工程に用いる水蒸気に原料ガスが混合されていることを特徴とする。このように凝縮気体である水蒸気に非凝縮気体である原料ガスが混合されると、混合物としての露点が水蒸気100%の場合の露点より低下し、水蒸気の凝縮温度が低下するので実質的に水蒸気の凝縮を抑制できる。 The method for stopping a reformer according to the present invention is characterized in that a raw material gas is mixed with water vapor used in the pressure-holding step. Thus, when the raw material gas which is non-condensed gas is mixed with water vapor which is condensed gas, the dew point as a mixture is lower than the dew point when water vapor is 100%, and the condensation temperature of water vapor is lowered, so that water vapor is substantially reduced. Can be prevented from condensing.
例えば水蒸気/原料ガスの炭素数比が2.8になるように水蒸気に原料ガスを混合した場合、大気圧下での水蒸気の露点は100℃であるが、水蒸気:都市ガス(C1.2H4.4)は3.36(mol比)であるから、大気圧下における水蒸気分圧は{3.36/(3.61+1)}×1013=781hPaとなる。これは露点にすると93℃に相当する(以下、本発明では混合により低下した露点を実質露点と称する)。この例における実質露点と大気圧下での水蒸気のみの露点との温度差は7℃であるが、それに応じた水蒸気の凝縮開始時期を遅らせることができる。 For example, when the raw material gas is mixed with the water vapor so that the carbon number ratio of the water vapor / the raw material gas is 2.8, the dew point of the water vapor at atmospheric pressure is 100 ° C., but the water vapor: city gas (C1.2H4. Since 4) is 3.36 (mol ratio), the water vapor partial pressure under atmospheric pressure is {3.36 / (3.61 + 1)} × 1013 = 781 hPa. This corresponds to 93 ° C. in terms of dew point (hereinafter, the dew point lowered by mixing is referred to as a real dew point in the present invention). In this example, the temperature difference between the real dew point and the dew point of only water vapor at atmospheric pressure is 7 ° C., but the condensation start time of water vapor can be delayed accordingly.
さらに水蒸気に非凝縮性気体である原料ガスが混合しているため、改質器の局部的な温度低下領域において仮に水蒸気の一部が凝縮したとしても、該領域では水蒸気が凝縮した分だけ凝縮性の水蒸気の混合割合が減少することになり、それ以降の水蒸気の時間当たりの凝縮量はより抑制される。これらの理由から、仮に保圧維持のため改質器にその後水蒸気を補給する場合が生じたとしても、全体としての水蒸気補給量は従来法より減少する。 Furthermore, since the raw material gas, which is a non-condensable gas, is mixed with the water vapor, even if a part of the water vapor is condensed in the local temperature drop region of the reformer, the water vapor is condensed in the region as much as the water vapor is condensed. The mixing ratio of the water vapor decreases, and the amount of water vapor condensing per hour thereafter is further suppressed. For these reasons, even if the reformer is subsequently replenished with steam to maintain the holding pressure, the total steam replenishment amount is reduced from the conventional method.
なお保圧工程の初期には、改質器の内部温度が原料ガスの炭素析出温度以上になっている期間もあるが、そのような期間においても、原料ガスの周囲に存在する水蒸気により原料ガスの炭素析出現象は実質的に防止される。また、前記の局部的な温度低下領域での水蒸気の混合割合が減少した場合には、原料ガス側からみると幾分ドライ状態に移行するが、当該領域は水蒸気の一部が凝縮する温度まで低下(炭素析出温度より低下)しているので、原料ガスの炭素析出は起こらない。
さらに、前記保圧工程に先立って改質器内部を水蒸気でパージする水蒸気パージ工程を設けたので、事前に改質器の内部が水蒸気で満たされるため、保圧工程では原料ガスを追加するだけでよく、且つ水蒸気に対する原料ガスの所望混合を容易に設定できる。
In the initial stage of the pressure holding process, there is a period in which the internal temperature of the reformer is equal to or higher than the carbon deposition temperature of the raw material gas. Even in such a period, the raw material gas is caused by water vapor present around the raw material gas. The carbon deposition phenomenon is substantially prevented. In addition, when the mixing ratio of water vapor in the local temperature decrease region is reduced, when viewed from the raw material gas side, it shifts to a somewhat dry state, but the region reaches a temperature at which a part of the water vapor is condensed. Since it is lowered (lower than the carbon deposition temperature), carbon deposition of the source gas does not occur.
Furthermore, since the steam purging process for purging the interior of the reformer with steam prior to the pressure holding process is provided, since the interior of the reformer is filled with steam in advance, only the source gas is added in the pressure holding process. The desired mixing of the raw material gas with respect to the water vapor can be easily set .
上記改質器の停止方法において、請求項2に記載のように、前記保圧工程中に改質器の内圧が低下した際には水蒸気を該改質器内部に補給することができる。このような水蒸気補給により、改質器が負圧領域になることをより確実に防止できる。
In the method for stopping the reformer, as described in
次に図面を参照して本発明を実施するための最良の形態を説明する。図1は本発明の停止方法の1例を説明するための改質器のプロセスフロー図である。1は改質器、2は水蒸気発生手段、3は混合器、4は脱硫装置、5はCO低減器、6は燃料電池等の改質ガスの使用設備、8,9は調整弁、a〜kは配管である。 Next, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a process flow diagram of a reformer for explaining an example of the stopping method of the present invention. 1 is a reformer, 2 is a steam generating means, 3 is a mixer, 4 is a desulfurizer, 5 is a CO reducer, 6 is a facility for using reformed gas such as a fuel cell, 8 and 9 are regulating valves, a to k is a pipe.
図1に示す改質器1は自己酸化内部加熱型改質器の例であるが、改質器1は他の形式の内部加熱型や外熱型であってもよい。水蒸気発生手段2は配管gから供給される都市ガスや燃料電池のアノード排ガスなどの燃料を、配管hから供給される燃焼用空気で燃焼して水蒸気を発生させるものである。水蒸気の原料である純水は配管jを介して水蒸気発生手段2に供給される。改質器1の運転中は、配管aから供給される都市ガス等の原料ガスを脱硫装置4で硫黄分を除去してから配管bを経て混合器3に供給される。混合器3は例えばエジェクターで構成され、配管cから供給される水蒸気の吸引力により原料ガスを吸引し、原料ガスと水蒸気の混合物を配管dから改質器1に供給する。なお水蒸気と原料ガスの混合比は調整弁8,9の開度調整や燃焼量の調整等により行うことができる。
Although the reformer 1 shown in FIG. 1 is an example of a self-oxidation internal heating type reformer, the reformer 1 may be another type of internal heating type or external heating type. The water vapor generating means 2 generates water vapor by burning fuel such as city gas supplied from the pipe g or anode exhaust gas of the fuel cell with combustion air supplied from the pipe h. Pure water, which is a raw material of water vapor, is supplied to the water vapor generating means 2 through the pipe j. During operation of the reformer 1, a raw material gas such as city gas supplied from the pipe a is supplied to the mixer 3 through the pipe b after the sulfur content is removed by the desulfurization device 4. The mixer 3 is composed of, for example, an ejector, sucks the source gas by the suction force of the steam supplied from the pipe c, and supplies the mixture of the source gas and the steam to the reformer 1 from the pipe d. The mixing ratio of the water vapor and the raw material gas can be adjusted by adjusting the opening of the adjusting
改質器1は内部に酸化触媒が配置され、配管iから供給される酸化用空気で原料ガスの一部を酸化し、発生する酸化熱で改質触媒を改質温度(700℃程度)まで昇温するようになっている。改質器1で生成した水素リッチな改質ガスは、配管eからCO低減器5に供給され、そこで改質ガスに残留するCO(一酸化炭素)を空気と反応させて、例えばppmオーダまで低減する。その際、使用する酸化用空気は配管kを介して供給される。COが低減された改質ガスは、配管fから燃料電池等の改質ガスの使用設備6に供給される。次に図1の改質器1の停止方法について説明する。 The reformer 1 has an oxidation catalyst disposed therein, oxidizes part of the raw material gas with the oxidizing air supplied from the pipe i, and the reforming catalyst is brought to the reforming temperature (about 700 ° C.) by the generated oxidation heat. The temperature rises. The hydrogen-rich reformed gas generated in the reformer 1 is supplied to the CO reducer 5 from the pipe e, where CO (carbon monoxide) remaining in the reformed gas is reacted with air to, for example, the order of ppm. To reduce. At that time, the oxidizing air to be used is supplied through the pipe k. The reformed gas with reduced CO is supplied from the pipe f to the reformed gas use facility 6 such as a fuel cell. Next, a method for stopping the reformer 1 of FIG. 1 will be described.
(第1の実施態様)
改質器1の運転を停止するには、先ず調整弁8を閉じて混合器3への原料ガスの供給を停止すると共に、配管iから供給している酸化用空気を停止して改質器1の改質反応を停止する。その際、水蒸気発生手段2の運転はそのまま継続し、発生する水蒸気を配管c−混合器3−配管dの経路で改質器1に供給し、改質器1の内部に残留する原料ガスを水蒸気でパージする(水蒸気パージ工程)。
(First embodiment)
In order to stop the operation of the reformer 1, first, the
上記水蒸気パージ工程後、改質器1の内部温度は自然冷却により次第に下降していくが、それに応じて改質器1の内圧も次第に低下する。そこで、前記内圧が負圧にならないように保圧工程に移行する。保圧工程では、例えば調整弁8と調整弁9を調整して所定の水蒸気量と原料ガス量を混合器3から改質器1に水蒸気と原料ガスを供給することができる。なお原料ガスは混合器3を経由せずに、例えば脱硫装置4から直接あるいは加圧ポンプを経て改質器1に供給することもできる。
After the steam purge step, the internal temperature of the reformer 1 gradually decreases due to natural cooling, but the internal pressure of the reformer 1 gradually decreases accordingly. Therefore, the pressure holding process is performed so that the internal pressure does not become a negative pressure. In the pressure-holding step, for example, the regulating
保圧工程において、水蒸気に対する原料ガスの混合割合の上限は、保圧工程中、特にその初期段階で改質器1に供給する原料ガスが炭素析出を起こさない範囲に設定する。すなわち原料ガスに対する水蒸気の割合が多いほど炭素析出は起こりにくいので、実験等によりその範囲を定めることができる。
実験によれば、保圧の初期段階の改質器1の内部温度が400℃の場合は、水蒸気/原料ガスの炭素S/Cを0.4以上にして実質露点を75℃程度もしくは若干それ以上とし、同様に500℃の場合は水蒸気/原料ガスの炭素S/Cを1.1以上にして実質露点を85℃程度もしくは若干それ以上とすることが望ましいことが分かった。
In the pressure holding process, the upper limit of the mixing ratio of the raw material gas to the water vapor is set within a range in which the raw material gas supplied to the reformer 1 does not cause carbon deposition in the initial stage during the pressure holding process. That is, as the ratio of water vapor to the raw material gas increases, carbon precipitation is less likely to occur, and the range can be determined by experiments or the like.
According to the experiment, when the internal temperature of the reformer 1 at the initial stage of holding pressure is 400 ° C., the carbon S / C of the steam / feed gas is set to 0.4 or more, and the real dew point is about 75 ° C. or slightly Similarly, in the case of 500 ° C., it was found that it is desirable that the water vapor / source gas carbon S / C is 1.1 or more and the real dew point is about 85 ° C. or slightly higher.
改質器1の内部温度(特に改質触媒層の温度)が炭素析出温度以下(概略200℃以下)になった時点で、保圧工程を終了して原料ガス置換工程に移る。例えば加圧状態の原料ガスを配管a―b−dを経由して改質器1に供給し、改質器1の内部を原料ガスで置換して原料ガス封入状態とする。そして必要に応じて改質器1の周囲に設けた保温ヒータにより改質器1を保温し、改質器1の内部に結露を生じないようにする。 When the internal temperature of the reformer 1 (particularly the temperature of the reforming catalyst layer) becomes equal to or lower than the carbon deposition temperature (approximately 200 ° C. or lower), the pressure holding process is terminated and the raw material gas replacement process is started. For example, pressurized source gas is supplied to the reformer 1 via the pipes ab-d, and the interior of the reformer 1 is replaced with the source gas to be in a source gas sealed state. And if necessary, the reformer 1 is kept warm by a heat-retaining heater provided around the reformer 1 so that dew condensation does not occur inside the reformer 1.
(第2の実施態様)
第2の実施態様では、先ず調整弁8と調整弁9を閉じて混合器3への原料ガスと水蒸気の供給を停止すると共に、配管iから供給している酸化用空気を停止して改質反応を停止する。この状態で改質器1の内部には運転終了の直前に供給された原料ガスと水蒸気の混合物が残留したまま封入される。
(Second Embodiment)
In the second embodiment, first, the regulating
改質器1は内部に原料ガスと水蒸気の混合物が残留した状態で自然冷却されるが、その冷却期間は前記第1の実施態様における保圧工程と同様である。そして改質器1の内圧の低下に応じ、水蒸気および原料ガスを所定割合で補給することもできる。次いで改質器1の内部温度(特に改質触媒層の温度)が炭素析出温度以下(概略200℃以下)になった時点で、前記第1の実施態様と同様に保圧工程を終了し、改質器1の内部を原料ガスで置換する工程に移る。 The reformer 1 is naturally cooled with the mixture of the raw material gas and water vapor remaining therein, and the cooling period is the same as the pressure holding step in the first embodiment. And according to the fall of the internal pressure of the reformer 1, water vapor | steam and source gas can also be replenished in a predetermined ratio. Next, when the internal temperature of the reformer 1 (particularly the temperature of the reforming catalyst layer) is equal to or lower than the carbon deposition temperature (approximately 200 ° C. or lower), the pressure holding step is terminated in the same manner as in the first embodiment, The process proceeds to the step of replacing the interior of the reformer 1 with the raw material gas.
本発明の改質気の停止方法は、原料ガスを水蒸気改質して水素リッチな改質ガスを生成し、燃料電池等の付加設備に供給する改質システムに利用できる。 The method for stopping the reformed gas of the present invention can be used for a reforming system that generates a hydrogen-rich reformed gas by steam reforming the raw material gas and supplies it to additional equipment such as a fuel cell.
1 改質器
2 水蒸気発生手段
3 混合器
4 脱硫装置
5 CO低減器
6 改質ガスの使用設備
8,9 調整弁
a〜k 配管
1
DESCRIPTION OF SYMBOLS 3 Mixer 4 Desulfurization apparatus 5 CO reduction device 6 Equipment used for reforming
Claims (2)
前記保圧工程に用いる水蒸気には原料ガスが混合され、
前記保圧工程に先立って改質器内部を水蒸気でパージする水蒸気パージ工程を行うことを特徴とする改質器の停止方法。 A reformer that generates a hydrogen-rich reformed gas by steam reforming a mixture of raw material gas and steam in the presence of a reforming catalyst, and after the reformer is shut down, the steam is enclosed in the reformer. In the stopping method of the reformer so as to perform the pressure holding step,
A raw material gas is mixed with water vapor used in the pressure holding step,
A method for stopping a reformer comprising performing a steam purge step of purging the interior of the reformer with steam prior to the pressure holding step .
前記保圧工程中に改質器の内圧が低下した際には該改質器内部に水蒸気を補給することを特徴とする改質器の停止方法。 In claim 1,
A method of stopping a reformer, characterized in that when the internal pressure of the reformer decreases during the pressure holding step, steam is supplied into the reformer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008025434A JP5255291B2 (en) | 2008-02-05 | 2008-02-05 | How to stop the reformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008025434A JP5255291B2 (en) | 2008-02-05 | 2008-02-05 | How to stop the reformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009184864A JP2009184864A (en) | 2009-08-20 |
JP5255291B2 true JP5255291B2 (en) | 2013-08-07 |
Family
ID=41068510
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008025434A Expired - Fee Related JP5255291B2 (en) | 2008-02-05 | 2008-02-05 | How to stop the reformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5255291B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5607951B2 (en) * | 2010-02-26 | 2014-10-15 | 大阪瓦斯株式会社 | Method for maintaining a stopped state of a fuel cell system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0287480A (en) * | 1988-09-26 | 1990-03-28 | Fuji Electric Co Ltd | Operation stopping method of fuel cell power generation device |
JP2006176345A (en) * | 2004-12-21 | 2006-07-06 | Aisin Seiki Co Ltd | System and method for stopping fuel reformer |
JP4153958B2 (en) * | 2006-03-30 | 2008-09-24 | アイシン精機株式会社 | Fuel cell reforming apparatus and starting method thereof |
JP5063986B2 (en) * | 2006-03-30 | 2012-10-31 | 株式会社ティラド | Method for stopping reforming system and reforming system thereof |
JP2008105892A (en) * | 2006-10-25 | 2008-05-08 | Fuji Electric Holdings Co Ltd | Stopping method for fuel reformer |
-
2008
- 2008-02-05 JP JP2008025434A patent/JP5255291B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009184864A (en) | 2009-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4130603B2 (en) | Operation method of hydrogen production system | |
JP4724029B2 (en) | Method for shutting down reformer | |
JP4767543B2 (en) | Starting method of solid oxide fuel cell system | |
JP4495004B2 (en) | Heavy oil reformed fuel-fired gas turbine system and operation method thereof | |
JP2006049277A (en) | Reformed gas treatment at latter stage of reforming device | |
JP5063986B2 (en) | Method for stopping reforming system and reforming system thereof | |
JP2009004346A (en) | Reformer, fuel cell system, and shut-down method for reformer | |
JP5255291B2 (en) | How to stop the reformer | |
JP2012204330A (en) | Fuel cell power generation device and stopping method thereof | |
TWI503410B (en) | Methods and apparatus for production of synthesis gas | |
JP2006342003A (en) | Hydrogen production apparatus and method for stopping the same | |
JP2007284265A (en) | Method for stopping reforming system | |
US20080044699A1 (en) | Fuel processor having carbon monoxide removing unit and method of operating the same | |
JP4847759B2 (en) | Operation method of hydrogen production apparatus, hydrogen production apparatus, and fuel cell power generation apparatus | |
JP4872760B2 (en) | Operation control method and apparatus for fuel processor | |
JP2005314180A (en) | Method for stopping auto-oxidizable internal heating reformer | |
JP5305845B2 (en) | Fuel cell power generation system and operation method thereof | |
JP4909339B2 (en) | Operation method of hydrogen-containing gas generator | |
JP2006176345A (en) | System and method for stopping fuel reformer | |
JP2006294464A (en) | Fuel cell power generation system | |
JP4977312B2 (en) | Method for stopping fuel cell power generation system | |
JP2005209642A (en) | Starting and stopping method of fuel cell generator | |
JP2002241108A (en) | Fuel reforming apparatus and fuel cell power generation apparatus | |
JP4977311B2 (en) | Method for stopping fuel cell power generation system | |
JP5159059B2 (en) | Gas-liquid mixed fluid feeding method and feeding device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20121004 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121016 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130416 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130419 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5255291 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |