JPS62196380A - Structural material preventing penetration of hydrogen - Google Patents

Structural material preventing penetration of hydrogen

Info

Publication number
JPS62196380A
JPS62196380A JP61033887A JP3388786A JPS62196380A JP S62196380 A JPS62196380 A JP S62196380A JP 61033887 A JP61033887 A JP 61033887A JP 3388786 A JP3388786 A JP 3388786A JP S62196380 A JPS62196380 A JP S62196380A
Authority
JP
Japan
Prior art keywords
hydrogen
base material
isotopes
region
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61033887A
Other languages
Japanese (ja)
Inventor
Kimichika Fukushima
公親 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61033887A priority Critical patent/JPS62196380A/en
Publication of JPS62196380A publication Critical patent/JPS62196380A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To effectively prevent the penetration of isotopes of hydrogen through a base material made of stainless steel as the wall material of a nuclear fusion reactor by forming a region in which the concn. of Zr is high in the base material. CONSTITUTION:When a base material 1 made of stainless steel, carbon steel or a heat resistant alloy is used as the wall material of a nuclear fusion reactor, a region 2 in which the concn. of Zr is high is formed in the base material 1 in one layer or plural layers. Zr may be distributed in the whole base material at a uniform concon. or with a concn. gradient. isotopes of hydrogen such as light hydrogen, heavy hydrogen and tritium from the nuclear fusion reactor are held in the region 2 in the base material, so the escape of the isotopes from the reactor through the base material as the wall material of the reactor is prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は核融合炉の壁材等として有用な水素透過防止構
造材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a structural material for preventing hydrogen permeation useful as a wall material of a nuclear fusion reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

核融合炉では、拡散や電荷交換によってプラズマから漏
出した水素同位体が上部プラズマを囲んでいる容器、例
えば、ステンレス鋼からなる第−壁に照射される。この
第−壁に照射されてその材料中に入り込んだ上記水素同
位体の大部分は、プラズマ側の材料表面に拡散して上記
プラズマ側に再放出され、或いは上記プラズマ中から飛
び出した中性子または水素同位体やヘリウム等の照射に
よって上記壁材料中に生じた格子欠陥に捕捉される。し
かしながら、その一部は第一壁中金拡散して冷却水側に
透過する。この第−壁を透過して冷却水側に漏れる水素
同位体がトリチウムの場合、その冷却系機器の放射能汚
染を招き、上記冷却系機器の保守・補修の大きな障害が
発生する。したがって上記汚染障害を防止するためには
、水素同位体の透過を防止・抑制しうる構造材が要望さ
れている。
In a fusion reactor, hydrogen isotopes leaked from the plasma by diffusion or charge exchange are irradiated into a container surrounding the upper plasma, for example a third wall made of stainless steel. Most of the hydrogen isotopes that are irradiated onto this third wall and enter the material are diffused to the surface of the material on the plasma side and re-emitted to the plasma side, or are converted into neutrons or hydrogen ejected from the plasma. It is trapped in lattice defects created in the wall material by irradiation with isotopes, helium, etc. However, some of it diffuses into the first wall and permeates to the cooling water side. If the hydrogen isotope leaking through the second wall and leaking to the cooling water side is tritium, it will cause radioactive contamination of the cooling system equipment, causing major problems in maintenance and repair of the cooling system equipment. Therefore, in order to prevent the above-mentioned pollution problems, there is a need for a structural material that can prevent and suppress the permeation of hydrogen isotopes.

上記の例のほか、例えば多目的高温ガス炉において、二
次側の水素ガスが一次側ヘリウムガス中に透過すると、
その水素ガスによって炉心が損傷を受ける恐れがあるた
め、熱交換器の伝熱壁材料として水素の透過を防止しつ
る材料が要望されている。
In addition to the above examples, for example, in a multi-purpose high temperature gas reactor, when hydrogen gas on the secondary side permeates into helium gas on the primary side,
Since the reactor core may be damaged by the hydrogen gas, there is a need for a material that can prevent hydrogen from permeating as a heat transfer wall material for a heat exchanger.

しかしながら、水素同位体の透過を有効に抑制または防
止できる。核融合炉の壁相等としての構造材は、未だ開
発されるに至っていない。
However, hydrogen isotope permeation can be effectively suppressed or prevented. Structural materials for the walls of nuclear fusion reactors have not yet been developed.

〔発明の目的〕[Purpose of the invention]

本発明は、上記要望金・9足させるためになされたもの
で、水素同位体の透過全効果的に防止または抑制できる
水素透過防止1造材全提供すること全目的とする。
The present invention has been made to meet the above-mentioned requirements, and its entire purpose is to provide a hydrogen permeation prevention material that can effectively prevent or suppress the permeation of hydrogen isotopes.

〔発明の概要〕[Summary of the invention]

本発明の水素透過防止溝造材は、ベース材中にジルコニ
ウムで4度の高い領域を形成したことを特徴とするもの
である。父、好ましくはベース材がステンレス鋼で形成
されたものである。
The hydrogen permeation prevention groove forming material of the present invention is characterized in that a region with a high degree of 4 degrees of zirconium is formed in the base material. The material, preferably the base material, is made of stainless steel.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の実施例(てついて説明する
Embodiments of the present invention will be described below with reference to the drawings.

第1図は実柿例に係る水素透過防止溝造材の模式的な構
造図であり11は核融合炉の壁材のベース材である。こ
のベース材の材質は、本発明において特に限定されず、
核融合炉の薄造材として用いることのできるものであれ
ばいずれのものでもよい5例えば1ステンレス鋼、炭素
@、耐熱合金1アルミ合金、ニッケル合金等があるが、
好ましくはステンレス鋼である。
FIG. 1 is a schematic structural diagram of a hydrogen permeation prevention groove material according to an actual persimmon example, and 11 is the base material of the wall material of the fusion reactor. The material of this base material is not particularly limited in the present invention,
Any material may be used as long as it can be used as a thin material for a fusion reactor.For example, 1 stainless steel, carbon@, heat-resistant alloy 1 aluminum alloy, nickel alloy, etc.
Preferably it is stainless steel.

また2はベース材1の内部に形成されたジルコニウム高
濃度領域である。ジルコニウム高濃度領域2は、ジルコ
ニウム濃度の分布全表わす第2図(a)に示すようにベ
ース材1中に一つの層を成すよってしても、第2図(b
lのようにベース材中に多数の層を成すようにしても第
2tすtclのようにペース全体に亘って均一に形成し
ても、さらに第2図Fdlに示すように濃度勾配つけて
もよい。
Moreover, 2 is a zirconium high concentration region formed inside the base material 1. Even if the high zirconium concentration region 2 forms one layer in the base material 1 as shown in FIG. 2(a), which shows the entire distribution of zirconium concentration,
Even if it forms many layers in the base material as shown in Figure 1, it forms uniformly over the entire pace as shown in 2nd tstcl, or it can be formed with a concentration gradient as shown in Figure 2 Fdl. good.

水明細書において「ジルコニウム高濃度領域」とは、ペ
ース材中全通過しようとする水素同位体を有効に保持し
て水素同位体の透過を防止することのできる濃度のジル
コニウムを含有する領域を指し、ベース材質の種類、上
記した領域の形懇などによってジルコニウム濃度を適宜
変更することができる。本発明において1例えばベース
材表面にジルコニウムメッキを施してもよいので濃度は
実質的に100重量%以下である。
In the Water Specification, the term "zirconium high concentration region" refers to a region containing zirconium at a concentration that can effectively retain all the hydrogen isotopes that are about to pass through the paste material and prevent the hydrogen isotopes from passing through. The zirconium concentration can be changed as appropriate depending on the type of base material, the shape of the above-mentioned region, etc. In the present invention, for example, the surface of the base material may be plated with zirconium, so the concentration is substantially 100% by weight or less.

〔発明の効果〕〔Effect of the invention〕

この発明の効果は次のように作用するものと考えられる
。拡散や電荷交換によってプラズマから漏出した中性子
および水素同位体5は、第1図に示すように、壁のベー
ス材1全照射する。大部分はプラズマ側に再放出され、
一部は透過しようとするが1高温度領域のジルコニウム
が水素同位体全トラップし水素透過も防止する。
The effects of this invention are thought to work as follows. Neutrons and hydrogen isotopes 5 leaked from the plasma due to diffusion and charge exchange irradiate the entire base material 1 of the wall, as shown in FIG. Most of it is re-emitted to the plasma side,
Some of it tries to pass through, but zirconium in the high temperature region traps all of the hydrogen isotopes and prevents hydrogen from passing through.

第3図はH+のエネルギーを変化させてジルコニウムK
H”i照射した場合のジルコニウム材料の水素保持率を
示す。ステンレス鋼では照射した水素の大半は表面から
外部へ放出されるのに対し、ジルコニウムでは約70チ
〜8o%が材料中に保持される。すなわち、ジルコニウ
ムではステンレス鋼より水素保持力が格段に大きい。従
って、ベース材にジルコニウム高濃度領域全形成せしめ
ると。
Figure 3 shows zirconium K by changing the energy of H+.
This shows the hydrogen retention rate of zirconium materials when irradiated with H"i. In stainless steel, most of the irradiated hydrogen is released from the surface to the outside, whereas in zirconium, about 70% to 8% is retained in the material. In other words, zirconium has a much higher hydrogen retention capacity than stainless steel.Therefore, if the base material is made to have a full zirconium high concentration region.

プラズマ側からジルコニウム高濃度領域に拡散してきた
水素同位体はジルコニウム高濃度領域に保持され冷却水
側へ透過できなくなるという本発明の舅造材の作用が大
証される。
This clearly demonstrates the effect of the sill material of the present invention in that hydrogen isotopes that have diffused from the plasma side into the zirconium high concentration region are retained in the zirconium high concentration region and cannot pass through to the cooling water side.

上記の水素同位体に関する特性は、おもに化学的性質に
基くものであるから、水素同位体である軽水素、゛重水
素、トリチウムの間での違いはほとんどない、したがっ
て、単にトリチウムの透過防止のみならず重水素等の透
過防止にも利用するととができる。また、核融合炉材料
について説明したが、前述した高温ガス炉の熱交換器伝
熱管等、水素同位体の透過を防止するための材料として
も本発明のrl造材が働くと考えられる。
The above characteristics regarding hydrogen isotopes are mainly based on chemical properties, so there is almost no difference between hydrogen isotopes such as light hydrogen, deuterium, and tritium. Therefore, it is only necessary to prevent the permeation of tritium. It can also be used to prevent the permeation of deuterium, etc. Furthermore, although the description has been made regarding fusion reactor materials, it is believed that the RL material of the present invention will also work as a material for preventing the permeation of hydrogen isotopes, such as heat exchanger tubes for the aforementioned high-temperature gas reactors.

本発明による水素透過防止溝造材によれば、トリチウム
等の水素同位体の透過全効果的に抑制することができる
According to the hydrogen permeation prevention groove material according to the present invention, permeation of hydrogen isotopes such as tritium can be completely suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る水素透過防止溝造材の講
造全説明する念めの+′7J1π2図はベース材に形成
されるジルコニウム4度の高い領域全説明する念もの図
、第3図は水素イオンの入射エネルギーに対するジルコ
ニウムの水素保持尤ヲ示す図である。 1・・ベース材 2・・ジルコニウム高濃度領域3・・
・プラズマ 4・・・中性子 5・・・水素同位体
Figure 1 is a diagram showing the complete explanation of the structure of the hydrogen permeation prevention groove material according to the embodiment of the present invention; FIG. 3 is a diagram showing the hydrogen retention of zirconium with respect to the incident energy of hydrogen ions. 1. Base material 2. Zirconium high concentration region 3.
・Plasma 4...Neutron 5...Hydrogen isotope

Claims (1)

【特許請求の範囲】 1、ベース材にジルコニウム高濃度領域が形成されるこ
とを特徴とする水素透過防止構造材。 2、ベース材がステンレス鋼から成る特許請求の範囲第
1項記載の水素透過防止構造材。
[Claims] 1. A structural material for preventing hydrogen permeation, characterized in that a high zirconium concentration region is formed in a base material. 2. The hydrogen permeation prevention structural material according to claim 1, wherein the base material is made of stainless steel.
JP61033887A 1986-02-20 1986-02-20 Structural material preventing penetration of hydrogen Pending JPS62196380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61033887A JPS62196380A (en) 1986-02-20 1986-02-20 Structural material preventing penetration of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61033887A JPS62196380A (en) 1986-02-20 1986-02-20 Structural material preventing penetration of hydrogen

Publications (1)

Publication Number Publication Date
JPS62196380A true JPS62196380A (en) 1987-08-29

Family

ID=12399034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61033887A Pending JPS62196380A (en) 1986-02-20 1986-02-20 Structural material preventing penetration of hydrogen

Country Status (1)

Country Link
JP (1) JPS62196380A (en)

Similar Documents

Publication Publication Date Title
Ma et al. In-vessel melt retention of pressurized water reactors: historical review and future research needs
US2736696A (en) Reactor
US3322644A (en) Core element for a breeder nuclear reactor
US20050069074A1 (en) Nuclear plant spent fuel low temperature reactor
US2806819A (en) Light water moderated neutronic reactor
Agnew Gas-cooled nuclear power reactors
US2832732A (en) Fuel assembly for a neutronic reactor
US2975116A (en) Neutronic reactor
JPS62196380A (en) Structural material preventing penetration of hydrogen
Koga et al. Study on lithium rod test module and irradiation method for tritium production using high temperature gas-cooled reactor
US3663366A (en) Shroud for a fuel assembly in a nuclear reactor
US3322636A (en) Breeder nuclear reactor
US2954335A (en) Neutronic reactor
JPS62263979A (en) Structural material preventing permeation of hydrogen
JPS62263980A (en) Structural material preventing permeation of hydrogen
JP5597375B2 (en) Fast reactor, irradiation assembly, irradiation pin and irradiation pellet
JPH0252236B2 (en)
JPH0252235B2 (en)
JPH0252237B2 (en)
JPS63151893A (en) Hydrogen permeation preventive structural material
JPH11352272A (en) Reactor core and fuel assembly and fuel element used for the core
JPS63269093A (en) Subminiature type nuclear reactor using thorium liquid nuclear fuels
JPS61113764A (en) Structural material for preventing permeation of hydrogen
JPS6256475B2 (en)
JPH0562714B2 (en)