JPH0252237B2 - - Google Patents

Info

Publication number
JPH0252237B2
JPH0252237B2 JP60211553A JP21155385A JPH0252237B2 JP H0252237 B2 JPH0252237 B2 JP H0252237B2 JP 60211553 A JP60211553 A JP 60211553A JP 21155385 A JP21155385 A JP 21155385A JP H0252237 B2 JPH0252237 B2 JP H0252237B2
Authority
JP
Japan
Prior art keywords
hydrogen
vanadium
base material
permeation
structural material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60211553A
Other languages
Japanese (ja)
Other versions
JPS6270549A (en
Inventor
Kimichika Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60211553A priority Critical patent/JPS6270549A/en
Publication of JPS6270549A publication Critical patent/JPS6270549A/en
Publication of JPH0252237B2 publication Critical patent/JPH0252237B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は核融合炉の壁材などとして有用な水素
透過防止構造材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a hydrogen permeation prevention structural material useful as a wall material of a nuclear fusion reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

核融合炉においては、拡散や電荷交換によつて
プラズマから漏出した水素同位体が上部プラズマ
を囲んでいる容器の壁、たとえばステンレス鋼か
らなる第一壁に照射される。この第一壁に照射さ
れてその内部に入り込んだ水素同位体の大部分は
プラズマ側の表面に拡散してプラズマ側に再放出
されたり、プラズマ中から飛び出した中性子また
は水素同位体やヘリウムなどの照射によつて壁材
料中に生じた格子欠陥に捕捉される。しかしなが
ら、その一部は第一壁中を拡散して冷却水側に透
過する。この第一壁を透過して冷却水側に漏れる
水素同位体がトリチウムである場合、その冷却系
機器の放射能汚染を招き、冷却系機器の保守・補
修上大きな障害となる。したがつて、そのような
汚染障害を防止するために、水素同位体の透過を
防止し、あるいは抑制し得る構造材が要望される
訳である。
In a fusion reactor, hydrogen isotopes leaked from the plasma through diffusion and charge exchange are irradiated onto the walls of a vessel surrounding the upper plasma, such as a first wall made of stainless steel. Most of the hydrogen isotopes that irradiate this first wall and enter its interior are diffused to the surface on the plasma side and re-emitted to the plasma side, or neutrons or hydrogen isotopes that fly out from the plasma, helium, etc. It is trapped in the lattice defects created in the wall material by the irradiation. However, some of it diffuses through the first wall and permeates to the cooling water side. If the hydrogen isotope leaking through this first wall and leaking to the cooling water side is tritium, it will cause radioactive contamination of the cooling system equipment, which will become a major obstacle in the maintenance and repair of the cooling system equipment. Therefore, in order to prevent such pollution problems, there is a need for a structural material that can prevent or suppress the permeation of hydrogen isotopes.

上記の例のほかにも、たとえば多目的高温ガス
炉において二次側の水素ガスが一次側ヘリウムガ
ス中に透過すると、その透過水素ガスによつて炉
心が損傷を受けるおそれがあるため、熱交換器の
伝熱壁材料として水素の透過を防止し得る構造材
が要望される。
In addition to the above examples, for example, in a multi-purpose high-temperature gas reactor, if hydrogen gas on the secondary side permeates into the helium gas on the primary side, the reactor core may be damaged by the permeated hydrogen gas. There is a need for a structural material that can prevent hydrogen permeation as a heat transfer wall material.

しかるに水素同位体の透過を有効に抑制または
防止することの可能な、核融合炉の壁材などとし
ての構造材は未だ提案されていない。
However, no structural material, such as a wall material for a nuclear fusion reactor, that can effectively suppress or prevent the permeation of hydrogen isotopes has yet been proposed.

〔発明の目的〕[Purpose of the invention]

本発明は上記要望を満足させるためになされた
もので、水素同位体の透過を効果的に防止または
抑制することの可能な水素透過防止構造材を提供
することを目的とするものである。
The present invention was made to satisfy the above-mentioned needs, and an object of the present invention is to provide a hydrogen permeation prevention structural material that can effectively prevent or suppress the permeation of hydrogen isotopes.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明の水素透過防
止構造材は、ベース材、好ましくはステンレス鋼
からなるベース材にバナジウム高濃度領域を形成
したことを特徴とするものである。
In order to achieve the above object, the hydrogen permeation prevention structural material of the present invention is characterized in that a high vanadium concentration region is formed in a base material, preferably a base material made of stainless steel.

〔発明の実施例〕[Embodiments of the invention]

以下、図面を参照して本発明の実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る水素透過防止
構造材10の模式的な構造図であり、核融合炉を
構成する壁材のベース材12の内部にバナジウム
高濃度領域14を形成して成るものである。ベー
ス材12の材質は特に限定されるものではなく、
核融合炉の構造材として用いることのできるもの
であればいかなる材料でもよく、たとえばステン
レス鋼や炭素鋼、耐熱合金、アルミニウム合金、
ニツケル合金などであり得るが、好ましくはステ
ンレス鋼である。バナジウム高濃度領域14は、
バナジウム濃度の分布を表わす第2図aに示すよ
うにベース材12中に1つの層を形成するように
してもよいし、また、同図bに示すようにベース
材12中に複数の層を形成するようにしたり、同
図cに示すようにベース材12の全体にわたつて
均一に形成するようにしたり、さらには同図dに
示すようにベース材12中に濃度勾配をつけて形
成したりすることができる。
FIG. 1 is a schematic structural diagram of a hydrogen permeation prevention structural material 10 according to an embodiment of the present invention, in which a vanadium high concentration region 14 is formed inside a base material 12 of a wall material constituting a nuclear fusion reactor. It consists of The material of the base material 12 is not particularly limited,
Any material can be used as long as it can be used as a structural material for a nuclear fusion reactor, such as stainless steel, carbon steel, heat-resistant alloys, aluminum alloys, etc.
It may be a nickel alloy or the like, but is preferably stainless steel. The vanadium high concentration region 14 is
One layer may be formed in the base material 12 as shown in FIG. 2a showing the distribution of vanadium concentration, or a plurality of layers may be formed in the base material 12 as shown in FIG. The base material 12 may be formed uniformly over the entire base material 12 as shown in FIG. You can

本発明において、「バナジウム高濃度領域」と
いうのは、ベース材12中を透過しようとする水
素同位体を有効に保持してその水素同位体の透過
を防止することのできる濃度のバナジウムを含有
する領域のことを意味し、ベース材12の材質、
第2図a〜dに示したような領域14の形態など
によつてバナジウム濃度は適宜変更することがで
きる。バナジウム高濃度領域はベース材12の表
面に例えばメツキによつて形成してもよい。
In the present invention, a "high vanadium concentration region" refers to a region containing vanadium at a concentration that can effectively retain hydrogen isotopes that are about to permeate through the base material 12 and prevent the hydrogen isotopes from permeating. The area refers to the material of the base material 12,
The vanadium concentration can be changed as appropriate depending on the shape of the region 14 as shown in FIGS. 2a to 2d. The vanadium high concentration region may be formed on the surface of the base material 12 by plating, for example.

次にバナジウム高濃度領域14の作用について
述べる。
Next, the function of the vanadium high concentration region 14 will be described.

第1図に示すように拡散や電荷交換によつてプ
ラズマ3から漏出した中性子4および水素同位体
5は容器壁を構成する水素透過防止構造材10を
照射すると、大部分はプラズマ3側に再放出さ
れ、一部は透過しようとするが、バナジウム高濃
度領域14が水素同位体5を保持し、水素透過も
防止する。
As shown in FIG. 1, when the neutrons 4 and hydrogen isotopes 5 leaked from the plasma 3 due to diffusion and charge exchange irradiate the hydrogen permeation prevention structure 10 that constitutes the container wall, most of them are returned to the plasma 3 side. The hydrogen isotope 5 is released and some of it tries to permeate, but the vanadium-rich region 14 retains the hydrogen isotope 5 and also prevents hydrogen permeation.

第3図は、150KeVのH+を110℃のステンレス
鋼およびバナジウムに2×1019ion/cm2まで照射
し、表面から再放出される量(%)を、照射した
H+のフルエンスの関数として示したものである。
この第3図の結果によれば、ステンレス鋼からは
ほとんど100%再放出されるのに対し、バナジウ
ムではせいぜい10%程度しか再放出されない。後
者の残りの90%はバナジウム中に保持されること
になる。すなわちバナジウムはステンレス鋼より
も水素保持力が格段に大きい。したがつてベース
材にバナジウム高濃度領域を形成すると、プラズ
マ側からバナジウム高濃度領域に拡散してきた水
素同位体はバナジウム高濃度領域に保持され、冷
却水側へ透過できなくなることが分かる。
Figure 3 shows the amount (%) re-emitted from the surface of stainless steel and vanadium at 110℃ when irradiated with 150KeV H + up to 2×10 19 ions/cm 2 .
Shown as a function of H + fluence.
According to the results shown in Figure 3, stainless steel re-releases almost 100%, while vanadium re-releases only about 10% at most. The remaining 90% of the latter will be retained in vanadium. In other words, vanadium has a much greater hydrogen retention capacity than stainless steel. Therefore, it can be seen that when a high vanadium concentration region is formed in the base material, hydrogen isotopes that have diffused into the high vanadium concentration region from the plasma side are retained in the high vanadium concentration region and cannot pass through to the cooling water side.

上述の水素同位体に関する特性は主として化学
的性質に基づくものであるから、水素同位体であ
る軽水素、重水素、トリチウムの間での違いはほ
とんどない。したがつて、単にトリチウムの透過
防止のみならず、重水素などの透過防止にも利用
することができる。また上述の実施例においては
核融合炉材料について述べたが、前述の高温ガス
炉の熱交換器伝熱壁など、水素同位体の透過を防
止するための材料としても本発明の構造材を用い
ることができる。
Since the above-mentioned characteristics regarding hydrogen isotopes are mainly based on chemical properties, there are almost no differences among hydrogen isotopes such as light hydrogen, deuterium, and tritium. Therefore, it can be used not only to prevent the permeation of tritium, but also to prevent the permeation of deuterium and the like. In addition, although the above-mentioned embodiments have described materials for fusion reactors, the structural material of the present invention can also be used as a material for preventing the permeation of hydrogen isotopes, such as heat exchanger heat transfer walls of the aforementioned high-temperature gas reactors. be able to.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、水素同位体
の透過を効果的に防止ないし抑制することの可能
な水素透過防止構造材を提供することができる。
As described above, according to the present invention, it is possible to provide a hydrogen permeation prevention structural material that can effectively prevent or suppress permeation of hydrogen isotopes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る水素透過防止
構造材の構造を模式的に示す断面図、第2図a〜
dはベース材に形成されるバナジウム高濃度領域
の異なる分布例を示す説明図、第3図はステンレ
ス鋼およびバナジウムにH+を照射したときの再
放出特性を示す特性線図である。 10…水素透過防止構造材、12…ベース材、
14…バナジウム高濃度領域。
FIG. 1 is a sectional view schematically showing the structure of a hydrogen permeation prevention structural material according to an embodiment of the present invention, and FIG.
d is an explanatory diagram showing different distribution examples of vanadium high concentration regions formed in the base material, and FIG. 3 is a characteristic diagram showing re-emission characteristics when stainless steel and vanadium are irradiated with H + . 10...Hydrogen permeation prevention structural material, 12...Base material,
14... Vanadium high concentration region.

Claims (1)

【特許請求の範囲】 1 ベース材にバナジウム高濃度領域を形成した
ことを特徴とする水素透過防止構造材。 2 前記ベース材がステンレス鋼であることを特
徴とする特許請求の範囲第1項記載の水素透過防
止構造材。
[Claims] 1. A structural material for preventing hydrogen permeation, characterized in that a high vanadium concentration region is formed in a base material. 2. The hydrogen permeation prevention structural material according to claim 1, wherein the base material is stainless steel.
JP60211553A 1985-09-25 1985-09-25 Structural material preventing penetration of hydrogen Granted JPS6270549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60211553A JPS6270549A (en) 1985-09-25 1985-09-25 Structural material preventing penetration of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60211553A JPS6270549A (en) 1985-09-25 1985-09-25 Structural material preventing penetration of hydrogen

Publications (2)

Publication Number Publication Date
JPS6270549A JPS6270549A (en) 1987-04-01
JPH0252237B2 true JPH0252237B2 (en) 1990-11-09

Family

ID=16607716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60211553A Granted JPS6270549A (en) 1985-09-25 1985-09-25 Structural material preventing penetration of hydrogen

Country Status (1)

Country Link
JP (1) JPS6270549A (en)

Also Published As

Publication number Publication date
JPS6270549A (en) 1987-04-01

Similar Documents

Publication Publication Date Title
US2832733A (en) Heavy water moderated neutronic reactor
US3322644A (en) Core element for a breeder nuclear reactor
US20050069074A1 (en) Nuclear plant spent fuel low temperature reactor
US5715289A (en) Rack for nuclear fuel assemblies, mainly comprising a single bundle of contiguous tubes
US3146173A (en) Fuel element
US3663366A (en) Shroud for a fuel assembly in a nuclear reactor
US3322636A (en) Breeder nuclear reactor
JPH0252237B2 (en)
JPS62263979A (en) Structural material preventing permeation of hydrogen
JPS63151893A (en) Hydrogen permeation preventive structural material
JPS62263980A (en) Structural material preventing permeation of hydrogen
Nightingale Graphite in nuclear industry
JPS62196380A (en) Structural material preventing penetration of hydrogen
US2837475A (en) Neutronic reactor having localized areas of high thermal neutron densities
JPH0252236B2 (en)
JPH02222866A (en) Spent fuel basket
EP0360240B1 (en) Method of restraining diffusion of tritium and apparatus for same
JPH0252235B2 (en)
US2850447A (en) Neutronic reactor
JP2010261930A (en) Fast reactor, irradiation assembly, irradiation pin, and irradiation pellet
JPH11352272A (en) Reactor core and fuel assembly and fuel element used for the core
JPH06100676B2 (en) Pebble for tritium production and tritium production equipment
JP2001330698A (en) Container for housing radioactive tank in which boron is mixedly included
JPS6344199A (en) Tritium production unit
JP2017090176A (en) Parallel plate transuranium nuclear fuel assembly