JPH0252235B2 - - Google Patents

Info

Publication number
JPH0252235B2
JPH0252235B2 JP60135452A JP13545285A JPH0252235B2 JP H0252235 B2 JPH0252235 B2 JP H0252235B2 JP 60135452 A JP60135452 A JP 60135452A JP 13545285 A JP13545285 A JP 13545285A JP H0252235 B2 JPH0252235 B2 JP H0252235B2
Authority
JP
Japan
Prior art keywords
hydrogen
base material
silicon
permeation
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60135452A
Other languages
Japanese (ja)
Other versions
JPS61294389A (en
Inventor
Kimichika Fukushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP60135452A priority Critical patent/JPS61294389A/en
Publication of JPS61294389A publication Critical patent/JPS61294389A/en
Publication of JPH0252235B2 publication Critical patent/JPH0252235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は核融合炉の壁材等として有用な水素透
過防止構造材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a structural material for preventing hydrogen permeation useful as a wall material of a nuclear fusion reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

核融合炉では、拡散や電荷交換によつてプラズ
マから漏出した水素同位体が上記プラズマを囲ん
でいる容器、例えば、ステンレス鋼からなる第一
壁に照射される。この第一壁に照射されてその材
料中に入り込んだ上記水素同位体の大部分は、プ
ラズマ側の材料表面に拡散して上記プラズマ側に
再放出され、或いは上記プラズマ中から飛び出し
た中性子、または上記水素同位体やヘリウム等の
照射によつて上記壁材料中に生じた格子欠陥に捕
捉される。しかしながら、その一部は第一壁中を
拡散して冷却水側に透過する。この第一壁を透過
して冷却水側に漏れる水素同位体がトリチウムの
場合、その冷却系機器の放射能汚染を招き、上記
冷却水系機器の保守、補修の大きな障害が発生す
る。したがつて上記汚染・障害を防止するために
は、水素同位体の透過を防止・抑制しうる構造材
が要望されている。
In a fusion reactor, hydrogen isotopes leaked from the plasma due to diffusion or charge exchange are irradiated onto a container surrounding the plasma, for example a first wall made of stainless steel. Most of the hydrogen isotopes that have entered the material by irradiating the first wall are diffused to the surface of the material on the plasma side and re-emitted to the plasma side, or neutrons ejected from the plasma, or It is trapped in lattice defects generated in the wall material by irradiation with the hydrogen isotope, helium, or the like. However, some of it diffuses through the first wall and permeates to the cooling water side. If the hydrogen isotope leaking through the first wall and leaking to the cooling water side is tritium, it will cause radioactive contamination of the cooling system equipment, causing major problems in maintenance and repair of the cooling water system equipment. Therefore, in order to prevent the above-mentioned contamination and damage, there is a need for a structural material that can prevent and suppress the permeation of hydrogen isotopes.

上記の例のほか、例えば多目的高温ガス炉にお
いて、二次側の水素ガスが一次側ヘリウムガス中
に透過すると、その水素ガスによつて炉心が損傷
を受ける恐れがあるため、熱交換器の伝熱壁材料
として水素の透過を防止しうる材料が要望されて
いる。
In addition to the above examples, for example, in a multipurpose high-temperature gas reactor, if hydrogen gas on the secondary side permeates into the helium gas on the primary side, the reactor core may be damaged by the hydrogen gas, so the heat exchanger There is a need for a material that can prevent hydrogen permeation as a thermal wall material.

しかしながら、核融合炉の壁材として用いるこ
とのできる構造材には水素同位体の透過を有効に
抑制または防止するものが開発されていなかつ
た。
However, no structural material that can be used as a wall material for a fusion reactor that effectively suppresses or prevents the permeation of hydrogen isotopes has been developed.

〔発明の目的〕[Purpose of the invention]

本発明は上記要望を満足させるためになされた
もので、水素同位体の透過を効果的に防止または
抑制できる水素透過防止構造材を提供することを
目的とする。
The present invention was made to satisfy the above-mentioned needs, and an object of the present invention is to provide a hydrogen permeation prevention structural material that can effectively prevent or suppress the permeation of hydrogen isotopes.

〔発明の概要〕[Summary of the invention]

本発明の水素透過防止構造材は、ベース材に、
好ましくは、ステンレス鋼から成るベース材にケ
イ素濃度の高い領域を形成したことを特徴とする
ものである。
The hydrogen permeation prevention structural material of the present invention has a base material including:
Preferably, it is characterized in that a region with a high silicon concentration is formed in a base material made of stainless steel.

〔発明の実施例〕[Embodiments of the invention]

以下図面を参照して本発明の実施例について説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は実施例に係る水素透過防止構造材の模
式的な構造図であり、1は核融合壁材のベース材
である。
FIG. 1 is a schematic structural diagram of a hydrogen permeation prevention structural material according to an example, and 1 is a base material of a fusion wall material.

このベース材の材質は、本発明において特に限
定されず、核融合炉の構造材として用いることの
できるものであればいずれのものでもよい。その
例として、ステンレス鋼、炭素鋼、耐熱合金、ア
ルミ合金、ニツケル合金、セラミツクなどがある
が、好ましくはステンレス鋼である。
The material of this base material is not particularly limited in the present invention, and any material may be used as long as it can be used as a structural material of a fusion reactor. Examples include stainless steel, carbon steel, heat-resistant alloys, aluminum alloys, nickel alloys, and ceramics, with stainless steel being preferred.

また2はベース材1の内部に形成されたケイ素
高濃度領域である。ケイ素高濃度領域2は、ケイ
素濃度の分布を表す第2図aに示すようにベース
材中に一つの層を成すようにしても、第2図bの
ようにベース材中に多数の層をなすようにしても
第2図cのようにベース全体に亘つて均一に形成
しても、さらに第2図dに示すように濃度勾配を
つけてもよい。
Further, reference numeral 2 denotes a high silicon concentration region formed inside the base material 1. The high silicon concentration region 2 may be formed in one layer in the base material as shown in FIG. 2a showing the distribution of silicon concentration, or in multiple layers in the base material as shown in FIG. It may be formed uniformly over the entire base as shown in FIG. 2c, or it may be formed with a concentration gradient as shown in FIG. 2d.

本明細書において「ケイ素高濃度領域」とは、
ベース材中を通過しようとする水素同位体を有効
に保持して水素同位体の透過を防止することので
きる濃度のケイ素を含有する領域を指し、ベース
材質の種類、上記した領域の形態などによつてケ
イ素濃度を適宜変更することができる。ケイ素の
高濃度領域をベース材に形成する方法には、種々
の方法があり、例えばケイ素を合金成分として溶
融ベース材に添加して、また、ケイ素を多量に含
む板をベース材にグラツトさせて、形成すること
ができる。
In this specification, "silicon high concentration region" means
Refers to a region containing silicon at a concentration that can effectively retain and prevent hydrogen isotopes from passing through the base material, depending on the type of base material, the form of the above region, etc. Therefore, the silicon concentration can be changed as appropriate. There are various methods for forming a silicon-rich region in the base material. For example, silicon is added to the molten base material as an alloy component, and a plate containing a large amount of silicon is grafted onto the base material. , can be formed.

〔作用および発明の効果〕[Action and effect of the invention]

この発明の構造材は次のような作用をするもの
と考えられる。
The structural material of the present invention is thought to have the following effects.

拡散や電荷交換によつてプラズマ3から漏出し
た中性子4および水素同位体5は、第1図に示す
ように、壁のベース材1を、照射する。この中性
子照射等によつて材料中に格子欠陥等が生じる。
この格子欠陥等に、材料中を拡散してきた水素同
位体が捕獲保持される。保持された水素同位体と
ケイ素欠陥との結合力は、きわめて強くいつたん
水素同位体がケイ素欠陥に捕獲されると他の場所
へは動けずケイ素欠陥に保持されたままとなる。
また、保持された水素同位体の量が飽和濃度に達
するとケイ素高濃度領域には水素同位体は入り込
めなくなる。従つてベース材にケイ素高濃度領域
を形成せしめると、その領域よりプラズマ側にあ
る水素同位体はケイ素高濃度領域を通つて冷却水
側へ透過できなくなる。
Neutrons 4 and hydrogen isotopes 5 leaked from the plasma 3 due to diffusion and charge exchange irradiate the base material 1 of the wall, as shown in FIG. This neutron irradiation causes lattice defects and the like in the material.
Hydrogen isotopes that have diffused through the material are captured and held in these lattice defects. The binding force between the retained hydrogen isotope and the silicon defect is extremely strong, and once the hydrogen isotope is captured by the silicon defect, it cannot move to another location and remains retained in the silicon defect.
Furthermore, when the amount of retained hydrogen isotope reaches a saturation concentration, hydrogen isotope cannot enter the silicon-high concentration region. Therefore, if a high silicon concentration region is formed in the base material, hydrogen isotopes located on the plasma side of that region will not be able to pass through the silicon high concentration region to the cooling water side.

上記の水素同位体に関する特性は、おもに化学
的性質に基くものであるから、水素同位体である
軽水素、重水素、トリチウムの間での違いはほと
んどない。したがつて、単にトリウムの透過防止
のみならず重水素等の透過防止にも利用すること
ができる。
The above characteristics regarding hydrogen isotopes are mainly based on chemical properties, so there are almost no differences among hydrogen isotopes such as light hydrogen, deuterium, and tritium. Therefore, it can be used not only to prevent the permeation of thorium but also to prevent the permeation of deuterium and the like.

また、核融合炉材料について説明したが、前述
した高温ガス炉の熱交換器伝熱壁等、水素同位体
の透過を防止するための材料としても本発明の構
造材が働くと考えられる。
Further, although the explanation has been made regarding fusion reactor materials, it is thought that the structural material of the present invention also works as a material for preventing the permeation of hydrogen isotopes, such as the heat exchanger heat transfer wall of the aforementioned high temperature gas reactor.

本発明による水素透過防止構造材によれば、ト
リチウム等の水素同位体の透過を効果的に抑制す
ることができる。
According to the hydrogen permeation prevention structural material according to the present invention, permeation of hydrogen isotopes such as tritium can be effectively suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係る水素透過防止構
造材の構造を説明するための略図、第2図はベー
ス材に形成されるケイ素濃度の高い領域を示す図
である。 1…ベース材、2…ケイ素高濃度領域、3…プ
ラズマ、4…中性子、5…水素同位体。
FIG. 1 is a schematic diagram for explaining the structure of a hydrogen permeation prevention structural material according to an embodiment of the present invention, and FIG. 2 is a diagram showing a region with a high silicon concentration formed in a base material. 1... Base material, 2... Silicon high concentration region, 3... Plasma, 4... Neutron, 5... Hydrogen isotope.

Claims (1)

【特許請求の範囲】 1 ベース材にケイ素高濃度領域が形成されてい
ることを特徴とする水素透過防止構造材。 2 ベース材がステンレス鋼から成る特許請求の
範囲第1項記載の水素透過防止構造材。
[Scope of Claims] 1. A structural material for preventing hydrogen permeation, characterized in that a high silicon concentration region is formed in a base material. 2. The hydrogen permeation prevention structural material according to claim 1, wherein the base material is made of stainless steel.
JP60135452A 1985-06-21 1985-06-21 Hydrogen permeation preventive structure material Granted JPS61294389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60135452A JPS61294389A (en) 1985-06-21 1985-06-21 Hydrogen permeation preventive structure material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60135452A JPS61294389A (en) 1985-06-21 1985-06-21 Hydrogen permeation preventive structure material

Publications (2)

Publication Number Publication Date
JPS61294389A JPS61294389A (en) 1986-12-25
JPH0252235B2 true JPH0252235B2 (en) 1990-11-09

Family

ID=15152041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60135452A Granted JPS61294389A (en) 1985-06-21 1985-06-21 Hydrogen permeation preventive structure material

Country Status (1)

Country Link
JP (1) JPS61294389A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1722008B1 (en) * 2000-11-30 2015-03-11 Schott AG Use of H2 or H2 and O2 resistant barrier layer for coating in glass manufacturing

Also Published As

Publication number Publication date
JPS61294389A (en) 1986-12-25

Similar Documents

Publication Publication Date Title
Ma et al. In-vessel melt retention of pressurized water reactors: historical review and future research needs
Chauvin et al. Optimisation of inert matrix fuel concepts for americium transmutation
US3322644A (en) Core element for a breeder nuclear reactor
JPH0252235B2 (en)
Koga et al. Study on lithium rod test module and irradiation method for tritium production using high temperature gas-cooled reactor
JPS62263979A (en) Structural material preventing permeation of hydrogen
JPS62263980A (en) Structural material preventing permeation of hydrogen
JPH0252236B2 (en)
Vook Effects of radiation on materials
JPS63151893A (en) Hydrogen permeation preventive structural material
JPS62196380A (en) Structural material preventing penetration of hydrogen
JPS6270549A (en) Structural material preventing penetration of hydrogen
EP0360240A3 (en) Method of restraining diffusion of tritium and apparatus for same
Wozadlo et al. TRITIUM ANALYSIS OF MIXED-OXIDE FUEL RODS IRRADIATED IN A FAST FLUX.
JP2017090176A (en) Parallel plate transuranium nuclear fuel assembly
Guo et al. A Concise Design for the Irradiation of U–10Zr Metallic Fuel at a Very Low Burnup
Anikin et al. Determining the Characteristics of the Tritium Diffusion in the Structural Material of the Liquid-Salt Reactor
JPS6344198A (en) Pebble for manufacturing tritium and tritium production unit
Matsuura et al. T production using a high-temperature gas-cooled reactor for the DEMO fusion reactor: Li rod structure for the initial irradiation test
Trtik et al. Nuclear materials
JPH0246918B2 (en)
JPS61113764A (en) Structural material for preventing permeation of hydrogen
TAKEDA et al. Study on air ingress phenomena during a depressurization accident of a VHTR-18632
Gibson et al. ANNUAL PROGRESS REPORT ON REACTOR FUELS AND MATERIALS DEVELOPMENT FOR FY 1967.
Lee et al. Thermal Evaluations for Hypothetically Drain-Down Spent Fuel Storage Facility at SRS