JPS6219523B2 - - Google Patents

Info

Publication number
JPS6219523B2
JPS6219523B2 JP54154681A JP15468179A JPS6219523B2 JP S6219523 B2 JPS6219523 B2 JP S6219523B2 JP 54154681 A JP54154681 A JP 54154681A JP 15468179 A JP15468179 A JP 15468179A JP S6219523 B2 JPS6219523 B2 JP S6219523B2
Authority
JP
Japan
Prior art keywords
aluminum oxide
fiber
polyester
microns
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54154681A
Other languages
Japanese (ja)
Other versions
JPS5679714A (en
Inventor
Hidehiro Okamoto
Tadao Sugawara
Hideo Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP15468179A priority Critical patent/JPS5679714A/en
Publication of JPS5679714A publication Critical patent/JPS5679714A/en
Publication of JPS6219523B2 publication Critical patent/JPS6219523B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特殊な表面形状を有するポリエステル
系繊維に関するものである。ポリエステル系繊維
は、そのすぐれた機能性、風合のため広く一般に
使用されているが、なお大きな欠点として難染性
であることに加えウール、絹などの天然繊維、レ
ーヨン、アセテートなどの半合成繊維にくらべ鮮
明性、色の深味、特に黒色の発色性が劣る点があ
げられる。 これらの欠点はポリエステル系繊維が染料の中
では鮮明性の乏しい分散染料で染められること、
またポリエステル系繊維の屈折率が1.7程度であ
り、他の繊維にくらべ高く、空気との屈折率差が
大きいため光の繊維内部への入射が阻害されるこ
とによる。またポリエステル系繊維は溶融紡糸法
で製造されるため、そのなめらかな表面が光の浸
入をさらに困難なものとしている。 従来、これらのポリエステル系繊維の発色性、
色の深味の向上を目的として、繊維表面に低屈折
率の化合物をコーテイングすることで、空気と繊
維の屈折率差を少なくし、繊維表面での光反射を
減少させる方法が考案されているが、その耐久性
には問題がある。 一方、繊維表面を粗にすることが光沢の改良と
色の深味を向上させるために考えられている。た
とえば特公昭46−26887には繊維表面の粗さを
0.03〜1ミクロン程度にすることにより、つや消
効果が得られることが記載されている。しかし、
つやを単に消すだけでは発色性や深味の向上が得
られないことは酸化チタンを添加した合成繊維染
色物の色が薄く、くすんで見えること、あるいは
高温高濃度の塩化亜鉛に代表されるポリエステル
繊維脆化剤水溶液中で処理されたポリエステル繊
維染色物の色が同様に薄く見えることから明らか
である。 そこで本発明者等は発色性向上を目的として繊
維表面を粗面化する場合、繊維表面での鏡面反射
を少なくすることに加え、繊維内部への光の侵入
を補助するための、光のトンネルを同時に存在さ
せることにより、つや消効果に加え、染色物の発
色性向上、特に色の深味、黒色の発色性向上が達
成されることを見出し本発明に至つた。 すなわち、本発明は100平方ミクロン当り5〜
30個存在する深さ0.3ミクロン以上、0.8ミクロン
以下で繊維軸方向にたて長の不連続なくぼみと、
さらに微小な凹凸で覆われた表面を有するポリエ
ステル系繊維であつて、該ポリエステル系繊維
が、ポリマーの重合が完結するまでの任意の段階
で、平均の一次粒子径が100mμ以下で、かつ0.1
〜5重量%の酸化アルミニウムを含有する酸化ア
ルミニウム含有乾式法酸化ケイ素を、該ポリマー
中に0.1〜5重量%添加含有させて重合を完結し
たものを紡糸、延伸した後、アルカリ水溶液で繊
維表面を加水分解したものであることを特徴とす
るポリエステル系繊維。 ここで深さ0.3ミクロン以上、0.8ミクロン以下
のくぼみは繊維内部への光の侵入を効率的に行な
わしめる光のトンネルに当り、さらに微小な凹凸
とは、凹凸のサイズが0.3ミクロン未満のもの
で、0.15ミクロン以上のものが望ましい。粗面に
よる光の散乱は、光の波長の40%程度の凹凸、す
なわち0.15ミクロン以上、0.3ミクロン未満のサ
イズの凹凸で最大となり、つや消の効果も大き
い。 しかしこのサイズの凹凸だけで覆われる場合
は、溶融紡糸されたポリエステル系繊維特有の鏡
面光沢を消すためには有効ではあるが、繊維内部
への光の侵入を、より効率的に行なうことにはな
らない。また凹凸のサイズが、可視光線の波長に
くらべ大きな場合、つまり0.8ミクロン以上の場
合は可視光に対する粗面とはなり得ず、単に光の
反射面積を増大させる結果となり、なめらかな表
面を有する場合にくらべ、染色物の色は薄くな
る。 一方、繊維表面の凹凸のサイズが0.3〜0.8ミク
ロンである場合、特にこの凹凸が繊維表面のくぼ
みとして形成される場合は、繊維表面のくぼみ内
部で、光の反射がくりかえされ、入射光はくぼみ
の外へ逃げ得ず、光の吸収効率が高められること
により、染色物はより濃く見える。 したがつて、深さ0.3〜0.8ミクロンの光の吸収
効率を高めるためのくぼみと、合成繊維特有の鏡
面光沢を減少させ、色に落着きを与えるための微
小な凹凸を共存させることにより、深味のある染
色物が得られる。 ここで言うくぼみの深さとは、くぼみの上に引
いた接線とくぼみの最深部間の垂直距離であり、
繊維の電子顕微鏡写真によつて求められる。この
くぼみは繊維軸にほぼ平行する、たて長のくぼみ
であり、その長さが10ミクロン以下、好ましくは
5ミクロン以下の場合が摩擦による繊維表面の破
損に対する強度が得られ望ましい。くぼみの数は
100平方ミクロン当り5個以下では、深味向上の
効果は得られず、30個以上の場合は、連続したく
ぼみになる傾向が強く、深味は減少する。また摩
擦に対する抵抗性が不足し、好ましくない。 たて長のくぼみが発色性向上に有効な理由は次
のように推定される。繊維は布帛の面に平行に配
列される確率が高く、一方、光の入射角は布帛の
面に直角を中心に分布する。光が布帛に直角に入
射する場合をモデルに考えれば容易に理解できる
ように、横長のくぼみの場合は光はくぼみ全体を
照らすのに対し、たて長のくぼみの場合は繊維の
側面部分のくぼみには影ができる。したがつて色
調が濃く見えると思われる。 かかる表面を有するポリエステル系繊維は、た
とえば該ポリエステルの重合が完結するまでの任
意の段階で平均の一次粒子径が100mμ以下の酸
化アルミニウム含有酸化ケイ素を0.1〜5重量%
添加して重合を完結し、さらに紡糸・延伸後、カ
セイソーダ等のアルカリ性水溶液中で加熱し、繊
維表面を加水分解処理することによつて得られ
る。 なお、酸化アルミニウム含有酸化ケイ素の平均
の一次粒子径は次の方法で測定したもので、平均
の一次粒子径とは、酸化アルミニウム含有酸化ケ
イ素の粉末を電子顕微鏡で10万倍に拡大した写真
を撮影し、得られた像から、各一次粒子の最長径
を測定し、1000個の平均として求めた値をいう。 本発明における酸化アルミニウム含有乾式法酸
化ケイ素とは乾式法で酸化ケイ素を製造する際に
ハロゲン化ケイ素中にハロゲン化アルミニウムを
存在させて製造した酸化アルミニウム含有酸化ケ
イ素である。ここに言う乾式法による酸化ケイ素
の製造法とは、たとえば「プラスチツク用および
ゴム用添加剤実用便覧」(化学工業社、昭和45年
8月10日発行)の524ページに記載されているよ
うな、一般にハロゲン化ケイ素を水素および酸素
とともに気相で熱分解させる方法である。 本発明における酸化アルミニウム含有酸化ケイ
素の酸化アルミニウム含有量は0.1〜5重量%と
する必要がある。すなわち、酸化アルミニウム含
有量が0.1重量%未満であるとポリエステル重合
反応中に激しく凝集を起し、アルカリ溶解処理後
に目的とする表面凹凸を有する繊維を得ることが
できないため、発色性向上効果が小さくなるので
好ましくない。一方、酸化アルミニウム含有量が
5重量%を越えると得られるポリマの黄味傾向が
増大(b値が大きくなる)するので好ましくな
い。なお、ポリマのb値は次の方法で測定した。 b値はポリマを直径2.5〜3.5mm、高さ4.5〜5.5
mmの円柱状に成形し、スガ試験機株式会社製直読
式色差コンピユーターで測定する。b値が大きい
ほどポリマの黄味傾向が増大する。また本発明の
ような原料の段階からハロゲン化ケイ素中にハロ
ゲン化アルミニウムを存在させて乾式法で製造し
た酸化アルミニウム含有酸化ケイ素と異なり、単
に酸化アルミニウムと酸化ケイ素を混合するだけ
ではポリエステルの重合反応中に凝集を起し、ア
ルカリ溶解処理後に目的とする凹凸を有する繊維
を得ることができないため、発色性向上効果が小
さくなるので好ましくない。 本発明における酸化アルミニウム含有乾式法酸
化ケイ素は脂肪族グリコール、脂肪族アルコール
あるいは水等にすでに公知の方法で分散させ、重
合反応が完結する以前、たとえばエステル化反
応、エステル交換反応または重合反応の任意の段
階で添加することができる。重合完結後に添加す
ると分散性が極度に悪化してしまうので好ましく
ない。なお、本発明における酸化アルミニウム含
有酸化ケイ素は紡糸工程での砂の目詰りあるい
は糸切れ等のトラブルを防止するため、自然沈降
法、遠心分離法等、一般に良く知られた方法で分
級し、粗大粒子をなるべく除いたものを使用する
ことが好ましい。 本発明におけるポリエステルとはテレフタル酸
またはそのエステル形成性誘導体をジカルボン酸
成分とし、エチレングリコール、1,4−ブタン
ジオールから選ばれるグリコールまたはそのエス
テル形成性誘導体をグリコール成分とするポリエ
ステルを対象とする。 このジカルボン酸成分の一部をたとえば5−ス
ルホイソフタル酸のモノアルカリ金属塩、イソフ
タル酸、ジフエニルジカルボン酸、ナフタレンジ
カルボン酸、アジピン酸、セバシン酸、ドデカン
ニ酸等のジカルボン酸またはそのエステル、p−
オキシ安息香酸、p−β−オキシエトキシ安息香
酸等のオキシカルボン酸またはそのエステルで置
き換えても良く、また脂肪族または脂環式グリコ
ールの一部をたとえば炭素数2〜10のアルキレン
グリコール、1,4−シクロヘキサンジメタノー
ル、1,4−ビス(β−オキシエトキシ)ベンゼ
ン、ビスフエノールAのビスグリコールエーテ
ル、ポリアルキレングリコール等の主グリコール
成分以外のグリコールで置き換えても良い。さら
にペンタエリスリトール、トリメチロールプロパ
ン、トリメリツト酸、トリメシン酸等の鎖分岐剤
やモノハイドリツクポリアルキレンオキサイド、
フエニル酢酸等の重合停止剤を少割合使用するこ
とも可能である。 かかる原料からポリエステルを製造するには、
たとえばテレフタル酸ジメチルを脂肪族または脂
環式グリコールでエステル交換反応せしめるか、
テレフタル酸を脂肪族グリコールで直接エステル
化反応せしめるか、またはテレフタル酸にエチレ
ンオキサイドを付加反応せしめるかしてテレフタ
ル酸の脂肪族または脂環式グリコールエステルお
よび/またはその低重合体を合成し、次いで該生
成物を常法により重合反応せしめる方法が最も広
く採用される。さらに本発明を実施するポリエス
テルの合成に当つては当業界周知の触媒、着色防
止剤、エーテル結合副生防止剤、抗酸化剤、難燃
剤等を適宜使用することができる。 本発明のポリエステル繊維は、たとえば特開昭
54−120728号公報に開示されている表面形態とは
異つており染色した時によりすぐれた発色を有す
る繊維である。以下実施例をあげて本発明を具体
的に説明する。なお、実施例中の部は重量部、%
は重量%を意味する。 実施例 1 テレフタル酸ジメチル100部、エチレングリコ
ール60部、酢酸マンガン・4水和物0.05部、三酸
化アンチモン0.04部をエステル交換缶に仕込み、
窒素ガス雰囲気4時間かけて140℃から230℃まで
昇温して生成するメタノールを連続的に系外へ留
去しながらエステル交換反応を行なつた。続い
て、得られた生成物にリン酸トリメチル0.05部を
加え、さらに塩化ケイ素と塩化アルミニウムを混
合して乾式法で製造した酸化アルミニウム含有率
が1%であり、かつ平均の一次粒子径が30mμの
酸化アルミニウム含有酸化ケイ素、水酸化テトラ
エチルアンモニウムの20%水溶液およびエチレン
グリコールを重合比が5:2.5:92.5の混合物を
分散せしめたスラリーを、酸化アルミニウム含有
乾式法酸化ケイ素が得られるポリエステルに対し
て1.0%になるようにして添加して重合缶に移行
した。 その後1時間30分かけて760mmHgから1mmHg
まで減圧し、次いで2時間かけて230℃から285℃
まで昇温した。1mmHg以下の減圧下、重合温度
285℃でさらに2時間、合計4時間重合した。反
応終了後ポリマを3mmの棒状で水中に吐出し、長
さ5mmに切断してポリエステルチツプを得た。 得られたポリエステルチツプのb値は4.1であ
つた。該ポリエステルチツプを180℃で3時間減
圧乾燥後、紡糸温度290℃、引取速度900m/min
で紡糸し、次いで延伸倍率3.45倍、ピン温度100
℃で延伸し、100デニール/48フイラメントの延
伸糸を得た。この延伸糸を延伸糸Aとする。 次いで上記と同様の操作で、酸化アルミニウム
含有酸化ケイ素を添加するかわりに、無機微粒子
を添加しない延伸糸、酸化アルミニウムを含まな
いで、かつ平均の一次粒子径が30mμの乾式法酸
化ケイ素を1%添加した延伸糸および平均の一次
粒子径が30mμのシリカゾルを添加した延伸糸を
得た。これらの延伸糸をそれぞれ延伸糸B,Cお
よびDとする。 これらの延伸糸A,B,CおよびDをそれぞ
れ、27ゲージのトリコツト靴下編機で筒編地とし
た後、98℃の3%カセイソーダ水溶液に浸漬し、
処理前の重量に対して20%、加水分解減量を行な
つた後、 Dianix Black FB−FS 15%owf 酢酸 0.5c.c./L 酢酸ソーダ 0.15g/L の浴比1:30の染浴中で130℃で60分間染色し、
その後常法に従い、還元洗浄を行ない、水洗して
乾燥した。得られた黒色染色物のL値をデジタル
測色色差計算機(スガ試験機(株)製)で測定し色の
濃さを比較した。 ここでL値とは色の視感濃度を現わすものであ
り、L値の小さいものほど濃色であることを示
す。結果は次に示すとおりであり、延伸糸Aは深
味のある濃い黒色が得られた。 延伸糸A染色物のL値 13.17 〃 B 〃 〃 13.95 〃 C 〃 〃 13.52 〃 D 〃 〃 13.54 また有彩色での効果を確認するため、上記黒色
の場合と同様、延伸糸A,B,CおよびDそれぞ
れの筒編地を20%加水分解減量を行ない Kayalon Polyester Blue TS 2.5%owf 酢酸 0.5c.c./L 酢酸ソーダ 0.15g/L の浴比1:30の染浴中で130℃で60分間染色し、
還元洗浄、水洗して乾燥した。 得られた染色物のL,a,b値を前記のデジタ
ル測色色差計算機を用いて測定し、L値と(a2
b21/2値を比較した。ここで(a2+b21/2は色
の鮮明度を現わす指標であり、値の大きなものほ
ど鮮明であり、L値が小さく、かつ(a2
b21/2値が大きなほど染色物の深味は増す。
The present invention relates to polyester fibers having a special surface shape. Polyester fibers are widely used due to their excellent functionality and texture, but one major drawback is that they are difficult to dye, and they can be mixed with natural fibers such as wool and silk, and semi-synthetic fibers such as rayon and acetate. Compared to fibers, it is inferior in clarity, depth of color, and especially black color development. These drawbacks are that polyester fibers are dyed with disperse dyes, which have poor clarity among dyes;
In addition, the refractive index of polyester fibers is approximately 1.7, which is higher than other fibers, and the difference in refractive index with air is large, which inhibits light from entering the fibers. Furthermore, since polyester fibers are manufactured using a melt-spinning method, their smooth surfaces make it more difficult for light to penetrate. Conventionally, the coloring properties of these polyester fibers,
In order to improve the depth of color, a method has been devised to reduce the difference in refractive index between air and fiber by coating the fiber surface with a compound with a low refractive index, thereby reducing light reflection on the fiber surface. However, there are problems with its durability. On the other hand, roughening the fiber surface is considered to improve gloss and color depth. For example, in Tokuko Sho 46-26887, the roughness of the fiber surface was
It is stated that a matting effect can be obtained by setting the thickness to about 0.03 to 1 micron. but,
The fact that simply removing the luster does not improve the color development and depth is that the color of synthetic fibers dyed with titanium oxide appears pale and dull, or that polyester fibers typified by high-temperature and high-concentration zinc chloride dyes. This is evident from the fact that the color of the polyester fiber dyeings treated in the aqueous embrittlement solution also appears lighter. Therefore, when roughening the fiber surface for the purpose of improving color development, the present inventors not only reduce specular reflection on the fiber surface, but also create a light tunnel to assist light penetration into the interior of the fiber. The present inventors have discovered that, in addition to the matting effect, the simultaneous presence of the dyes improves the color development of dyed products, particularly the depth of color and the improvement of black color development, resulting in the present invention. That is, the present invention provides 5 to 100 square microns.
There are 30 discontinuous depressions with a depth of 0.3 microns or more and 0.8 microns or less and vertical length in the fiber axis direction,
Furthermore, the polyester fiber has a surface covered with minute irregularities, and the polyester fiber has an average primary particle diameter of 100 mμ or less at any stage until polymerization is completed, and 0.1 mμ or less.
After completing the polymerization by adding 0.1 to 5% by weight of aluminum oxide-containing dry process silicon oxide containing ~5% by weight of aluminum oxide into the polymer, the fiber surface is coated with an alkaline aqueous solution. A polyester fiber characterized by being hydrolyzed. Here, depressions with a depth of 0.3 microns or more and 0.8 microns or less are considered to be light tunnels that allow light to efficiently penetrate inside the fiber, and microscopic irregularities are defined as those with a depth of less than 0.3 microns. , preferably 0.15 micron or more. The scattering of light by a rough surface is greatest when the unevenness is approximately 40% of the wavelength of the light, that is, the size of the unevenness is 0.15 microns or more and less than 0.3 microns, and the matting effect is also large. However, if it is covered only with irregularities of this size, it is effective in eliminating the specular gloss peculiar to melt-spun polyester fibers, but it is not effective in allowing light to penetrate inside the fibers more efficiently. It won't happen. In addition, if the size of the unevenness is larger than the wavelength of visible light, that is, 0.8 microns or more, it will not be a rough surface for visible light, but will simply increase the light reflection area, and if the surface has a smooth surface. The color of the dyed product will be lighter compared to the original color. On the other hand, when the size of the unevenness on the fiber surface is 0.3 to 0.8 microns, especially when the unevenness is formed as a depression on the fiber surface, light is repeatedly reflected inside the depression on the fiber surface, and the incident light is reflected in the depression. The dyed material appears darker due to the increased light absorption efficiency. Therefore, by coexisting 0.3 to 0.8 micron deep indentations to increase light absorption efficiency and minute irregularities to reduce the specular gloss peculiar to synthetic fibers and give a calming color, we have created a deep flavor. A certain dyeing is obtained. The depth of the depression here is the vertical distance between the tangent line drawn above the depression and the deepest part of the depression,
Determined from electron micrographs of fibers. This depression is a vertical depression approximately parallel to the fiber axis, and it is desirable that the length is 10 microns or less, preferably 5 microns or less, since this provides strength against damage to the fiber surface due to friction. The number of depressions is
If the number is less than 5 per 100 square microns, the effect of improving the depth cannot be obtained, and if it is more than 30, there is a strong tendency to form continuous depressions and the depth is reduced. Furthermore, it lacks resistance to friction, which is undesirable. The reason why vertically long depressions are effective in improving color development is presumed to be as follows. There is a high probability that the fibers are arranged parallel to the plane of the fabric, while the incident angle of light is distributed mainly at right angles to the plane of the fabric. As can be easily understood by considering the case where light is incident on the fabric at right angles, in the case of a horizontally elongated indentation, the light illuminates the entire indentation, whereas in the case of a vertically long indentation, the light illuminates only the side parts of the fibers. A shadow forms in the hollow. Therefore, the color tone appears to be darker. A polyester fiber having such a surface may be prepared by adding 0.1 to 5% by weight of aluminum oxide-containing silicon oxide having an average primary particle size of 100 mμ or less at any stage until the polymerization of the polyester is completed.
It is obtained by adding it to complete polymerization, and then heating it in an alkaline aqueous solution such as caustic soda after spinning and stretching to hydrolyze the fiber surface. The average primary particle size of silicon oxide containing aluminum oxide was measured using the following method. The longest diameter of each primary particle is measured from the image obtained by photographing, and the value is calculated as the average of 1000 particles. The aluminum oxide-containing dry process silicon oxide in the present invention is an aluminum oxide-containing silicon oxide produced by making aluminum halide exist in silicon halide when silicon oxide is produced by a dry process. The dry method for manufacturing silicon oxide mentioned here is, for example, the method described on page 524 of "Practical Handbook of Additives for Plastics and Rubber" (Kagaku Kogyosha, published August 10, 1970). This is a method in which silicon halide is generally thermally decomposed together with hydrogen and oxygen in the gas phase. In the present invention, the aluminum oxide content of the aluminum oxide-containing silicon oxide must be 0.1 to 5% by weight. In other words, if the aluminum oxide content is less than 0.1% by weight, violent agglomeration occurs during the polyester polymerization reaction, making it impossible to obtain fibers with the desired surface roughness after alkali dissolution treatment, resulting in a small effect of improving color development. This is not desirable. On the other hand, if the aluminum oxide content exceeds 5% by weight, the yellowing tendency of the resulting polymer increases (the b value increases), which is not preferable. In addition, the b value of the polymer was measured by the following method. The b value is 2.5 to 3.5 mm in diameter and 4.5 to 5.5 in height.
It is formed into a cylindrical shape of mm and measured using a direct-reading color difference computer manufactured by Suga Test Instruments Co., Ltd. The larger the b value, the greater the yellowing tendency of the polymer. Also, unlike the aluminum oxide-containing silicon oxide produced by a dry process by making aluminum halide exist in silicon halide from the raw material stage as in the present invention, simply mixing aluminum oxide and silicon oxide does not allow the polymerization reaction of polyester. This is not preferable because it causes agglomeration in the fibers, making it impossible to obtain fibers with the desired unevenness after the alkali dissolution treatment, which reduces the effect of improving color development. In the present invention, the aluminum oxide-containing dry process silicon oxide is dispersed in aliphatic glycol, aliphatic alcohol, water, etc. by a known method, and the aluminum oxide-containing dry process silicon oxide is dispersed in an aliphatic glycol, aliphatic alcohol, water, etc. by a known method, and the aluminum oxide-containing dry process silicon oxide is dispersed in an aliphatic glycol, aliphatic alcohol, water, etc. before the polymerization reaction is completed. It can be added at this stage. If it is added after the polymerization is completed, the dispersibility will be extremely deteriorated, which is not preferable. In addition, in order to prevent troubles such as clogging of sand or thread breakage during the spinning process, the aluminum oxide-containing silicon oxide used in the present invention is classified by a generally well-known method such as natural sedimentation or centrifugation to obtain coarse particles. It is preferable to use one from which particles are removed as much as possible. The polyester in the present invention refers to a polyester containing terephthalic acid or an ester-forming derivative thereof as a dicarboxylic acid component and a glycol selected from ethylene glycol and 1,4-butanediol or an ester-forming derivative thereof as a glycol component. A part of this dicarboxylic acid component may be, for example, a monoalkali metal salt of 5-sulfoisophthalic acid, a dicarboxylic acid such as isophthalic acid, diphenyldicarboxylic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid, dodecanedioic acid, or an ester thereof, p-
Oxycarboxylic acids such as oxybenzoic acid and p-β-oxyethoxybenzoic acid or esters thereof may be substituted, and a portion of the aliphatic or alicyclic glycol may be replaced with, for example, alkylene glycols having 2 to 10 carbon atoms, 1, Glycols other than the main glycol component may be substituted, such as 4-cyclohexanedimethanol, 1,4-bis(β-oxyethoxy)benzene, bisglycol ether of bisphenol A, and polyalkylene glycol. Furthermore, chain branching agents such as pentaerythritol, trimethylolpropane, trimellitic acid, trimesic acid, monohydric polyalkylene oxide,
It is also possible to use a small proportion of a polymerization terminator such as phenylacetic acid. To produce polyester from such raw materials,
For example, dimethyl terephthalate may be transesterified with aliphatic or cycloaliphatic glycols, or
An aliphatic or alicyclic glycol ester of terephthalic acid and/or a low polymer thereof is synthesized by directly esterifying terephthalic acid with an aliphatic glycol or by adding ethylene oxide to terephthalic acid, and then The most widely used method is to subject the product to a polymerization reaction using a conventional method. Further, in synthesizing the polyester in accordance with the present invention, catalysts, color inhibitors, ether bond by-product inhibitors, antioxidants, flame retardants, etc. well known in the art may be appropriately used. The polyester fiber of the present invention is, for example,
The fiber has a different surface morphology from that disclosed in Japanese Patent No. 54-120728, and has better color development when dyed. The present invention will be specifically explained below with reference to Examples. In addition, parts in the examples are parts by weight, %
means weight %. Example 1 100 parts of dimethyl terephthalate, 60 parts of ethylene glycol, 0.05 part of manganese acetate tetrahydrate, and 0.04 part of antimony trioxide were charged into a transesterification can.
The temperature was raised from 140° C. to 230° C. over 4 hours in a nitrogen gas atmosphere, and the transesterification reaction was carried out while the generated methanol was continuously distilled out of the system. Subsequently, 0.05 part of trimethyl phosphate was added to the obtained product, and silicon chloride and aluminum chloride were further mixed to produce an aluminum oxide product produced by a dry process, which had an aluminum oxide content of 1% and an average primary particle size of 30 mμ. A slurry in which a mixture of aluminum oxide-containing silicon oxide, a 20% aqueous solution of tetraethylammonium hydroxide, and ethylene glycol was dispersed in a polymerization ratio of 5:2.5:92.5 was added to the polyester containing aluminum oxide from which dry-method silicon oxide was obtained. It was added at a concentration of 1.0% and transferred to the polymerization can. After that, 760mmHg to 1mmHg over 1 hour and 30 minutes.
230℃ to 285℃ over 2 hours.
The temperature rose to Polymerization temperature under reduced pressure of 1 mmHg or less
Polymerization was continued for an additional 2 hours at 285°C for a total of 4 hours. After the reaction was completed, the polymer was discharged into water in the form of a 3 mm rod and cut into 5 mm lengths to obtain polyester chips. The b value of the obtained polyester chip was 4.1. After drying the polyester chips under reduced pressure at 180℃ for 3 hours, the spinning temperature was 290℃ and the take-up speed was 900m/min.
Then, the stretching ratio was 3.45 times and the pin temperature was 100.
The yarn was drawn at 100° C. to obtain a drawn yarn of 100 denier/48 filaments. This drawn yarn is referred to as drawn yarn A. Next, in the same manner as above, instead of adding aluminum oxide-containing silicon oxide, 1% of a drawn yarn containing no inorganic fine particles and dry method silicon oxide containing no aluminum oxide and having an average primary particle size of 30 mμ was added. A drawn yarn and a drawn yarn to which silica sol having an average primary particle size of 30 mμ were added were obtained. These drawn yarns are referred to as drawn yarns B, C, and D, respectively. These drawn yarns A, B, C, and D were each made into a tubular knitted fabric using a 27-gauge tricot sock knitting machine, and then immersed in a 3% caustic soda aqueous solution at 98°C.
After hydrolysis loss of 20% relative to the weight before treatment, Dianix Black FB-FS 15% owf acetic acid 0.5cc/L and sodium acetate 0.15g/L in a bath ratio of 1:30. Stain for 60 min at °C.
Thereafter, reduction cleaning was performed according to a conventional method, followed by washing with water and drying. The L value of the obtained black dyed product was measured using a digital color measurement color difference calculator (manufactured by Suga Test Instruments Co., Ltd.), and the color depth was compared. Here, the L value represents the visual density of a color, and the smaller the L value, the darker the color. The results are as shown below, and the drawn yarn A had a deep dark black color. L value of the drawn yarn A dyed product 13.17 〃 B 〃 〃 13.95 〃 C 〃 〃 13.52 〃 D 〃 13.54 In addition, in order to confirm the effect in chromatic colors, the drawn yarn A, B, C and D Each tubular knitted fabric was hydrolyzed to reduce its weight by 20% and dyed at 130°C for 60 minutes in a dye bath containing Kayalon Polyester Blue TS 2.5% owf, acetic acid 0.5cc/L, and sodium acetate 0.15g/L at a bath ratio of 1:30. ,
Reduction cleaning, washing with water, and drying were performed. The L, a, and b values of the obtained dyed product were measured using the digital colorimetric color difference calculator described above, and the L value and (a 2 +
b2 ) 1/2 values were compared. Here, (a 2 + b 2 ) 1/2 is an index that expresses the vividness of the color, and the larger the value, the clearer the color, and the smaller the L value, and (a 2 +
b 2 ) The larger the 1/2 value, the deeper the dyed product.

【表】 この結果、延伸糸Aは有彩色においてもより深
味のある色が得られることが確認できた。 延伸糸A,B,CおよびDの20%加水分解減量
を行なつた繊維の電子顕微鏡写真から深さ0.3〜
0.8ミクロンでたて長のくぼみの数を求めたとこ
ろ、下記のとおりであつた。
[Table] As a result, it was confirmed that drawn yarn A can provide deeper colors even in chromatic colors. Electron micrographs of drawn fibers A, B, C, and D with 20% hydrolytic weight loss at a depth of 0.3 to
The number of depressions with a vertical length of 0.8 microns was determined as follows.

【表】 これらの結果から酸化アルミニウム含有酸化ケ
イ素を添加した場合にはアルカリ加水分解処理に
より深さ0.3〜0.8μのくぼみおよび、さらに微小
な凹凸が多数発生し発色性が向上することは明白
である。 実施例 2 実施例1で用いた延伸糸AとBを27ゲージ、ト
リコツト靴下編機により筒編地とし98℃の5%カ
セイソーダ水溶液に浸漬し、時間を変え、延伸糸
A,Bでそれぞれ加水分解減量率が処理前の重量
に対して2%,10%,20%,30%,40%,50%の
ものを準備し、 Kayalon Polyester Blue TS 2%owf 酢酸 0.5c.c./l 酢酸ソーダ 0.15g/l の浴比1:40の染浴中で130℃で60分間染色し、
常法に従い、還元洗浄、水洗、乾燥を行なつた。 これらの染色物の電子顕微鏡写真で観察される
繊維の表面状態と染色物のL値、(a2+b21/2
の関係を第1表にまとめた。
[Table] From these results, it is clear that when aluminum oxide-containing silicon oxide is added, the alkaline hydrolysis treatment generates many 0.3-0.8 μ deep depressions and even minute irregularities, improving color development. be. Example 2 The drawn yarns A and B used in Example 1 were made into a tubular knitted fabric using a 27 gauge tricot sock knitting machine and immersed in a 5% caustic soda aqueous solution at 98°C, and hydrated with the drawn yarns A and B at different times. Prepare products with a decomposition weight loss rate of 2%, 10%, 20%, 30%, 40%, 50% of the weight before treatment, Kayalon Polyester Blue TS 2%owf Acetic acid 0.5cc/l Sodium acetate 0.15g /l in a dye bath with a bath ratio of 1:40 at 130℃ for 60 minutes,
Reduction cleaning, water washing, and drying were performed according to conventional methods. Table 1 summarizes the relationship between the surface condition of the fibers observed in electron micrographs of these dyed products and the L value and (a 2 +b 2 ) 1/2 value of the dyed products.

【表】 この結果、0.3〜0.8ミクロン深さのくぼみが
100平方ミクロン当り5〜30個の範囲内で、か
つ、さらに微小な凹凸が共在する本発明範囲内の
繊維表面が形成された場合にのみ、低いL値と高
い(a2+b21/2値を有する色、すなわち深味の
ある色が得られることが判明した。またこの測色
の結果は視感傾向ともよく合致しており本発明範
囲内の染色物の色は落ちつきのある深味を有して
いた。 実施例 3 実施例1において酸化アルミニウム含有乾式法
酸化ケイ素中の酸化アルミニウム含有率を第2表
に示したように変更した以外は実施例1と同様に
して重合、紡糸、延伸、編製、アルカリ加水分解
処理および染色評価を実施した。評価結果を第2
表に示した。酸化アルミニウム含有乾式法酸化ケ
イ素中の酸化アルミニウム含有率が0.1〜5重量
%の場合にはポリマのb値、アルカリ加水分解処
理後の表面状態、染色布の深味が好適であること
は明白である。
[Table] As a result, a depression with a depth of 0.3 to 0.8 microns is created.
A low L value and a high (a 2 + b 2 ) 1 can be obtained only when the fiber surface is formed within the range of the present invention, in which the number of irregularities is within the range of 5 to 30 per 100 square microns, and further minute irregularities coexist. It has been found that colors with a value of /2 , ie, deep colors, can be obtained. Moreover, the results of this color measurement were in good agreement with the visual tendency, and the colors of the dyed products within the scope of the present invention had a calm and deep tone. Example 3 Polymerization, spinning, stretching, knitting, and alkaline hydration were carried out in the same manner as in Example 1, except that the aluminum oxide content in the aluminum oxide-containing dry process silicon oxide was changed as shown in Table 2. Decomposition treatment and staining evaluation were performed. The second evaluation result
Shown in the table. It is clear that when the aluminum oxide content in the aluminum oxide-containing dry method silicon oxide is 0.1 to 5% by weight, the b value of the polymer, the surface condition after alkaline hydrolysis treatment, and the depth of the dyed fabric are favorable. .

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明による酸化アルミニウ
ム含有酸化ケイ素を添加したポリエステル系繊維
をそれぞれ10%,20%アルカリ加水分解処理した
ものの2800倍の表面電子顕微鏡写真である。第3
図は本発明範囲外の通常ポリエステル繊維の20%
アルカリ加水分解処理したものの1100倍の表面電
子顕微鏡写真である。
Figures 1 and 2 are 2800x magnification electron micrographs of the surfaces of polyester fibers containing aluminum oxide and silicon oxide according to the present invention subjected to 10% and 20% alkali hydrolysis treatment, respectively. Third
The figure shows 20% of normal polyester fibers outside the scope of the present invention.
This is an electron micrograph of the surface of the product subjected to alkaline hydrolysis treatment, magnified 1,100 times.

Claims (1)

【特許請求の範囲】[Claims] 1 100平方ミクロン当り5〜30個存在する深さ
0.3ミクロン以上、0.8ミクロン以下で繊維軸方向
にたて長の不連続なくぼみと、さらに微小な凹凸
で覆われた表面を有するポリエステル系繊維であ
つて、該ポリエステル系繊維が、ポリマーの重合
が完結するまでの任意の段階で、平均の一次粒子
径が100mμ以下で、かつ0.1〜5重量%の酸化ア
ルミニウムを含有する酸化アルミニウム含有乾式
法酸化ケイ素を、該ポリマー中に0.1〜5重量%
添加含有させて重合を完結したものを紡糸、延伸
した後、アルカリ水溶液で繊維表面を加水分解し
たものであることを特徴とするポリエステル系繊
維。
1 Depth where 5 to 30 particles exist per 100 square microns
A polyester fiber having a surface covered with discontinuous depressions of 0.3 microns or more and 0.8 microns or less in the longitudinal direction of the fiber, and further minute irregularities, the polyester fiber having a surface covered with microscopic irregularities. At any stage until completion, 0.1 to 5% by weight of aluminum oxide-containing dry process silicon oxide having an average primary particle size of 100 mμ or less and containing 0.1 to 5% by weight of aluminum oxide is added to the polymer.
1. A polyester fiber, which is obtained by spinning and stretching a polyester fiber that has been polymerized by adding it, and then hydrolyzing the fiber surface with an alkaline aqueous solution.
JP15468179A 1979-11-29 1979-11-29 Polyester fiber Granted JPS5679714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15468179A JPS5679714A (en) 1979-11-29 1979-11-29 Polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15468179A JPS5679714A (en) 1979-11-29 1979-11-29 Polyester fiber

Publications (2)

Publication Number Publication Date
JPS5679714A JPS5679714A (en) 1981-06-30
JPS6219523B2 true JPS6219523B2 (en) 1987-04-30

Family

ID=15589582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15468179A Granted JPS5679714A (en) 1979-11-29 1979-11-29 Polyester fiber

Country Status (1)

Country Link
JP (1) JPS5679714A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197309A (en) * 1982-05-10 1983-11-17 Toray Ind Inc Polyester fiber and preparation thereof
JPS5921785A (en) * 1982-07-27 1984-02-03 帝人株式会社 Color improved polyester fiber structure
JPS61194219A (en) * 1985-02-22 1986-08-28 Toyobo Co Ltd Polyester fiber with pores on its surface
JPH0742608B2 (en) * 1986-03-03 1995-05-10 東洋紡績株式会社 Polyester synthetic fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107512A (en) * 1979-02-05 1980-08-18 Kuraray Co Ltd Polyester synthetic fibers and their production
JPS55112313A (en) * 1979-02-19 1980-08-29 Kuraray Co Ltd Polyester fiber with high pilling resistance and good surface property

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55107512A (en) * 1979-02-05 1980-08-18 Kuraray Co Ltd Polyester synthetic fibers and their production
JPS55112313A (en) * 1979-02-19 1980-08-29 Kuraray Co Ltd Polyester fiber with high pilling resistance and good surface property

Also Published As

Publication number Publication date
JPS5679714A (en) 1981-06-30

Similar Documents

Publication Publication Date Title
US4468434A (en) Dyed polyester fiber composite structure
JPS6219523B2 (en)
JPH0340124B2 (en)
JPS58149316A (en) Spun yarn-like polyester fiber having improved color developing property and preparation thereof
JPH0373668B2 (en)
JPH0121245B2 (en)
JPS6319628B2 (en)
JPH0140145B2 (en)
JPS5887364A (en) Polyester fiber and production thereof
JPH0753689A (en) Production of polyester
JPS6132434B2 (en)
JPS6244064B2 (en)
JPS6335749B2 (en)
JPS641584B2 (en)
JPH0335403B2 (en)
JPS6346169B2 (en)
JPS6175873A (en) Production of modified polyester fiber
JPH0222766B2 (en)
JPS6319630B2 (en)
JPS6347822B2 (en)
JPS5836280A (en) Polyester fiber structure with improved color
JPH0250230B2 (en)
JPS6360147B2 (en)
JPH05311506A (en) Polyester yarn having excellent coloring property and deep coloring property
JPS6317153B2 (en)