JPS6360147B2 - - Google Patents
Info
- Publication number
- JPS6360147B2 JPS6360147B2 JP13875780A JP13875780A JPS6360147B2 JP S6360147 B2 JPS6360147 B2 JP S6360147B2 JP 13875780 A JP13875780 A JP 13875780A JP 13875780 A JP13875780 A JP 13875780A JP S6360147 B2 JPS6360147 B2 JP S6360147B2
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- color development
- silicon oxide
- weight
- yarn
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000835 fiber Substances 0.000 claims description 58
- 229920000728 polyester Polymers 0.000 claims description 58
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 38
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 38
- 239000003513 alkali Substances 0.000 claims description 35
- 239000002245 particle Substances 0.000 claims description 31
- 238000004090 dissolution Methods 0.000 claims description 29
- 238000001035 drying Methods 0.000 claims description 28
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 claims description 14
- 239000011164 primary particle Substances 0.000 claims description 12
- 125000005372 silanol group Chemical group 0.000 claims description 12
- 239000002253 acid Substances 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 238000004040 coloring Methods 0.000 claims description 3
- 238000011161 development Methods 0.000 description 53
- 238000000034 method Methods 0.000 description 49
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 45
- 230000000694 effects Effects 0.000 description 30
- 239000004744 fabric Substances 0.000 description 24
- 238000006116 polymerization reaction Methods 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 230000004580 weight loss Effects 0.000 description 17
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 16
- -1 polyethylene terephthalate Polymers 0.000 description 15
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 14
- 229920001515 polyalkylene glycol Polymers 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000011362 coarse particle Substances 0.000 description 11
- 239000007864 aqueous solution Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000002270 dispersing agent Substances 0.000 description 10
- 238000009987 spinning Methods 0.000 description 10
- 238000005809 transesterification reaction Methods 0.000 description 10
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 229910052783 alkali metal Inorganic materials 0.000 description 7
- 239000000975 dye Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000004043 dyeing Methods 0.000 description 6
- 230000007062 hydrolysis Effects 0.000 description 6
- 238000006460 hydrolysis reaction Methods 0.000 description 6
- 230000006872 improvement Effects 0.000 description 6
- 238000009940 knitting Methods 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 6
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 238000010828 elution Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- FDZZZRQASAIRJF-UHFFFAOYSA-M malachite green Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C(C=1C=CC=CC=1)=C1C=CC(=[N+](C)C)C=C1 FDZZZRQASAIRJF-UHFFFAOYSA-M 0.000 description 4
- 229940107698 malachite green Drugs 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000009991 scouring Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 235000011121 sodium hydroxide Nutrition 0.000 description 4
- 241001589086 Bellapiscis medius Species 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 150000001339 alkali metal compounds Chemical class 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 3
- 239000000986 disperse dye Substances 0.000 description 3
- 239000006185 dispersion Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000002845 discoloration Methods 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 229940082328 manganese acetate tetrahydrate Drugs 0.000 description 2
- CESXSDZNZGSWSP-UHFFFAOYSA-L manganese(2+);diacetate;tetrahydrate Chemical compound O.O.O.O.[Mn+2].CC([O-])=O.CC([O-])=O CESXSDZNZGSWSP-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- WLJVXDMOQOGPHL-UHFFFAOYSA-N phenylacetic acid Chemical compound OC(=O)CC1=CC=CC=C1 WLJVXDMOQOGPHL-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000001632 sodium acetate Substances 0.000 description 2
- 235000017281 sodium acetate Nutrition 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 2
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 2
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- QFGCFKJIPBRJGM-UHFFFAOYSA-N 12-[(2-methylpropan-2-yl)oxy]-12-oxododecanoic acid Chemical compound CC(C)(C)OC(=O)CCCCCCCCCCC(O)=O QFGCFKJIPBRJGM-UHFFFAOYSA-N 0.000 description 1
- CARJPEPCULYFFP-UHFFFAOYSA-N 5-Sulfo-1,3-benzenedicarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(S(O)(=O)=O)=C1 CARJPEPCULYFFP-UHFFFAOYSA-N 0.000 description 1
- SWKVSFPUHCMFJY-UHFFFAOYSA-N 6-methyl-2-oxo-5-pyridin-4-yl-1h-pyridine-3-carboxamide Chemical compound N1C(=O)C(C(N)=O)=CC(C=2C=CN=CC=2)=C1C SWKVSFPUHCMFJY-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 241000047703 Nonion Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910000288 alkali metal carbonate Inorganic materials 0.000 description 1
- 150000008041 alkali metal carbonates Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-M benzenesulfonate Chemical compound [O-]S(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-M 0.000 description 1
- 229940077388 benzenesulfonate Drugs 0.000 description 1
- JBIROUFYLSSYDX-UHFFFAOYSA-M benzododecinium chloride Chemical compound [Cl-].CCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1 JBIROUFYLSSYDX-UHFFFAOYSA-M 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000006085 branching agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-L dithionite(2-) Chemical compound [O-]S(=O)S([O-])=O GRWZHXKQBITJKP-UHFFFAOYSA-L 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- ZTFGVIAJMLPQOC-UHFFFAOYSA-M lithium;3,5-bis(2-hydroxyethoxycarbonyl)benzenesulfonate Chemical compound [Li+].OCCOC(=O)C1=CC(C(=O)OCCO)=CC(S([O-])(=O)=O)=C1 ZTFGVIAJMLPQOC-UHFFFAOYSA-M 0.000 description 1
- AVPYUFDQTKOBNG-UHFFFAOYSA-M lithium;3,5-bis(methoxycarbonyl)benzenesulfonate Chemical compound [Li+].COC(=O)C1=CC(C(=O)OC)=CC(S([O-])(=O)=O)=C1 AVPYUFDQTKOBNG-UHFFFAOYSA-M 0.000 description 1
- IAQLJCYTGRMXMA-UHFFFAOYSA-M lithium;acetate;dihydrate Chemical compound [Li+].O.O.CC([O-])=O IAQLJCYTGRMXMA-UHFFFAOYSA-M 0.000 description 1
- KYTZHLUVELPASH-UHFFFAOYSA-N naphthalene-1,2-dicarboxylic acid Chemical compound C1=CC=CC2=C(C(O)=O)C(C(=O)O)=CC=C21 KYTZHLUVELPASH-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000005825 oxyethoxy group Chemical group [H]C([H])(O[*:1])C([H])([H])O[*:2] 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- 229960003424 phenylacetic acid Drugs 0.000 description 1
- 239000003279 phenylacetic acid Substances 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000233 poly(alkylene oxides) Polymers 0.000 description 1
- 235000011118 potassium hydroxide Nutrition 0.000 description 1
- FJIZBDJKYXYPAE-UHFFFAOYSA-M potassium;3,5-bis(methoxycarbonyl)benzenesulfonate Chemical compound [K+].COC(=O)C1=CC(C(=O)OC)=CC(S([O-])(=O)=O)=C1 FJIZBDJKYXYPAE-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- YZLGIRGCZODDCE-UHFFFAOYSA-M sodium;3,5-bis(2-hydroxyethoxycarbonyl)benzenesulfonate Chemical compound [Na+].OCCOC(=O)C1=CC(C(=O)OCCO)=CC(S([O-])(=O)=O)=C1 YZLGIRGCZODDCE-UHFFFAOYSA-M 0.000 description 1
- LLHSEQCZSNZLRI-UHFFFAOYSA-M sodium;3,5-bis(methoxycarbonyl)benzenesulfonate Chemical compound [Na+].COC(=O)C1=CC(C(=O)OC)=CC(S([O-])(=O)=O)=C1 LLHSEQCZSNZLRI-UHFFFAOYSA-M 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000010025 steaming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- XAMMKFSEEQGBIC-UHFFFAOYSA-N tetra(propan-2-yl)azanium Chemical compound CC(C)[N+](C(C)C)(C(C)C)C(C)C XAMMKFSEEQGBIC-UHFFFAOYSA-N 0.000 description 1
- WALNCKJQTNNUDQ-UHFFFAOYSA-M tetra(propan-2-yl)azanium;chloride Chemical compound [Cl-].CC(C)[N+](C(C)C)(C(C)C)C(C)C WALNCKJQTNNUDQ-UHFFFAOYSA-M 0.000 description 1
- HWCKGOZZJDHMNC-UHFFFAOYSA-M tetraethylammonium bromide Chemical compound [Br-].CC[N+](CC)(CC)CC HWCKGOZZJDHMNC-UHFFFAOYSA-M 0.000 description 1
- YMBCJWGVCUEGHA-UHFFFAOYSA-M tetraethylammonium chloride Chemical compound [Cl-].CC[N+](CC)(CC)CC YMBCJWGVCUEGHA-UHFFFAOYSA-M 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- FBEVECUEMUUFKM-UHFFFAOYSA-M tetrapropylazanium;chloride Chemical compound [Cl-].CCC[N+](CCC)(CCC)CCC FBEVECUEMUUFKM-UHFFFAOYSA-M 0.000 description 1
- LPSKDVINWQNWFE-UHFFFAOYSA-M tetrapropylazanium;hydroxide Chemical compound [OH-].CCC[N+](CCC)(CCC)CCC LPSKDVINWQNWFE-UHFFFAOYSA-M 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
Landscapes
- Chemical Or Physical Treatment Of Fibers (AREA)
- Artificial Filaments (AREA)
Description
本発明は、発色性のすぐれたポリエステル繊維
の製造方法に関するものである。さらに詳しくは
特定の製造方法で製造した酸化ケイ素を主成分と
する不活性無機微粒子を含むポリエステル繊維を
アルカリ溶解処理することを特徴とする発色性の
すぐれたポリエステル繊維の製造方法に関するも
のである。ポリエステル繊維はすぐれた物理的特
性、化学的特性を有するが故に衣料用、工業用に
広く使用されている。
しかしながら、ポリエステル繊維は他の繊維た
とえばアセテート,レーヨン,羊毛,絹などの繊
維に比べて染色布の発色性(黒の深味あるいは有
彩色の鮮明性)が劣つていた。特に黒色の深味は
前記他の繊維に比べて大幅に劣るためブラツクフ
オーマル分野などでは黒の発色性向上(深味向
上)が強く望まれていた。
従来かかるポリエステル繊維の欠点である染色
布の発色性を改善する方法として、
(1) 有機合成繊維にグロー放電プラズマ中でプラ
ズマ照射して繊維表面に0.1〜0.5μの凹凸を付
与する方法(特開昭52−99400号公報)
(2) 繊維表面に低屈折率成分の薄膜をほどこす方
法(特開昭53−111192号公報)
(3) 平均粒径80mμ以下であるシリカゾルなどの
無機微粒子を0.5〜10重量%添加したポリエチ
レンテレフタレート繊維をアルカリ溶解処理
し、特定の表面構造を付与する方法(特開昭54
−120728号公報)
などが知られている。
これらのうち前記(1)の方法はプラズマ放電の設
備が高いためコストアツプが大きくなること、お
よび顕著な発色性向上効果が期待できないなどの
問題点があつた。
一方、前記(2)の方法は繊維表面に低屈折率成分
を付着せしめる方法であるため、確かにその発色
性向上効果は大きいが、摩擦堅牢度が悪いという
問題点があつた。
さらに、前記(3)の方法は繊維に特定の表面形態
粗面化を付与できるため、ある程度の発色性向上
効果は期待できる。しかし、この方法では繊維表
面に粒状構造を発生させるため、繊維表面で光を
反射しやすく、発色性向上効果は十分でなかつ
た。
さらに粒状構造が存在すると布帛を摩擦した
際、該粒状構造が破壊され鏡面になりやすく、部
分的に光を反射しやすくなるため色目がかわると
いう問題があつた。
本発明者らは上記した問題点に鑑み、不活性無
機微粒子添加ポリエステル繊維のアルカリ溶解処
理による繊維表面形態改善と発色性向上効果につ
いて鋭意検討した結果本発明に到達したものであ
る。
すなわち本発明は粒子表面にアルキル基を有
し、かつ粒子表面のシラノール基を封鎖した平均
の一次粒子径が100mμ以下である乾式法酸化ケイ
素を0.3〜4重量%含み、かつ全酸成分の少なく
とも70モル%がテレフタル酸成分であるポリエス
テル繊維をアルカリ溶解処理することを特徴とす
る発色性のすぐれたポリエステル繊維の製造方法
である。本発明は上述のように特定の酸化ケイ素
を含有するポリエステルをアルカリ溶出処理し、
繊維表面に特定の表面形態を付与することによる
発色性のすぐれたポリエステル繊維の製造方法で
ある。
かかる発色性のすぐれたポリエステル繊維につ
いて鋭意検討した結果繊維表面に最大幅が0.1〜
1.5μ、長さ/最大幅の比が2以上である繊維軸方
向にたて長のくぼみを1平方ミクロンあたり6〜
60個付与することにより達成できることが判明し
たものである。
ここでいうたて長のくぼみの最大幅とは該くぼ
みをま上からみた平面図において、片方の端の一
点から反対側の端までの最短距離を幅といい、そ
の最大のものをいう。
なお、長さ方向の距離は幅に含めないものとす
る。たとえば該たて長のくぼみがだ円形の場合は
短径を最大幅という。
本発明における好ましいたて長のくぼみの最大
幅は0.1〜1.5μである。0.1μ以下では発色性向上の
効果が十分でなく、1.5μ以上ではむしろ光の反射
が増加し発色性が低下する傾向がある。
また、本発明におけるポリエステル繊維の表面
における繊維軸方向にたて長のくぼみの長さ/最
大幅の比は2以上である。2未満では発色性向上
効果が十分でない。ここでいうたて長のくぼみの
長さとは該くぼみの最大直線距離をいう。たとえ
ば該たて長のくぼみがだ円形の場合は長径をい
う。
本発明におけるポリエステルとはエチレングリ
コールまたは1,4―ブタンジオールを主たるグ
リコール成分とし、テレフタル酸またはそのエス
テルを主たるジカルボン酸成分とするポリエステ
ルを対象とする。
このジカルボン酸成分の一部をたとえば5―ス
ルホイソフタル酸のモノアルカリ金属塩,イソフ
タル酸,ジフエニルジカルボン酸,ナフタレンジ
カルボン酸,アジピン酸,セバシン酸,ドデカン
二酸などのジカルボン酸またはそのエステル,p
―オキシ安息香酸,p―β―オキシエトキシ安息
香酸などのオキシカルボン酸またはそのエステル
で置き換えても良く、またエチレングリコールま
たは1,4―ブタンジオールの一部をたとえば炭
素数2〜10のアルキレングリコール,1,4―シ
クロヘキサンジメタノール,1,4―ビス(β―
オキシエトキシ)ベンゼン,ビスフエノールAの
ビスグリコールエーテル,ポリアルキレングリコ
ールなどの主グリコール成分以外のグリコールで
置き換えても良い。特に発色性向上の面からポリ
アルキレングリコールおよびアルカリ金属スルホ
ネート基を有するイソフタル酸成分で置き換える
ことがより好ましい。
また本発明のポリエステルには、さらにペンタ
エリスリトール,トリメチロールプロパン,トリ
メリツト酸,トリメシン酸などの鎖分岐剤やモノ
ハイドリツクポリアルキレンオキサイド,フエニ
ル酢酸などの重合停止剤を少割合使用することも
可能である。
かかる原料からポリエステルを製造するには、
たとえばテレフタル酸ジメチルをエチレングリコ
ール、または1,4―ブタンジオールでエステル
交換反応せしめるか、テレフタル酸をエチレング
リコールまたは1,4―ブタンジオールで直接エ
ステル化反応せしめるか、またはテレフタル酸に
エチレンオキサイドを付加反応せしめるかしてテ
レフタル酸のエチレングリコールまたは1,4―
ブタンジオールエステルおよび/またはその低重
合体を合成し、次いで該生成物を常法により重合
反応せしめる方法が最も広く採用される。
さらに本発明を実施するポリエステルの合成に
当つては当業界周知の触媒、着色防止剤、エーテ
ル結合副生防止剤、抗酸化剤、難燃剤などを適宜
使用することができる。
本発明における粒子表面にアルキル基を有し、
かつ粒子表面のシラノール基を封鎖した乾式法酸
化ケイ素とは、たとえば乾式法酸化ケイ素とジア
ルキルジクロルシランを反応させることにより、
粒子表面のシラノール基を30%以上封鎖したもの
である。
ここにいう乾式法による酸化ケイ素とは、たと
えば「プラスチツク用およびゴム用添加剤実用便
覧」(化学工業社、昭和45年8月10日発行)の524
ページに記載されているような、一般にハロゲン
化ケイ素を水分および酸素とともに気相で熱分解
させる方法である。
上記乾式法酸化ケイ素の粒子表面に存在するア
ルキル基は特に限定しないがメチル基およびエチ
ル基が好ましい。
上記乾式法酸化ケイ素の粒子表面のシラノール
基封鎖率は30%以上であり特に60%以上が好まし
い。30%未満ではポリエステルの重合反応中に激
しく凝集し、ポリマ中の粗大粒子数が増加し、か
つ得られるポリエステルの発色性および耐加水分
解性が低下するので好ましくない。
本発明における乾式法酸化ケイ素の平均の一次
粒子径は100mμ以下、好ましくは40mμ以下であ
る。平均の一次粒子径が100mμを越えると発色性
向上効果が低下するので好ましくない。
また、該乾式法酸化ケイ素の添加量は生成する
ポリエステル組成物に対して0.3〜4重量%の範
囲であり、0.5〜2重量%の範囲が特に好ましい。
0.3重量%未満では発色性向上効果が不十分で好
ましくなく、また4重量%を越える量では発色性
向上効果が低下するようになり、添加量アツプの
効果がなくなつてしまうので好ましくない。
本発明における乾式法酸化ケイ素は脂肪族グリ
コール、脂肪族アルコールあるいは水等に公知の
方法で分散させ分散スラリーとしてポリエステル
の重合が完結するまでの任意の段階で添加するこ
とができるが特に該ポリエステルの原料となるグ
リコールに分散させて添加することが好ましい。
本発明における乾式法酸化ケイ素の分散スラリ
ーは従来公知の方法で調整できるが、乾式法酸化
ケイ素とエチレングリコールまたは1,4ブタン
ジオールを特開昭53−125495号公報に開示された
撹拌翼の回転方向と平行した複数個のせん断翼を
もつ高速撹拌機中で分散させる方法が好ましい。
さらに分散剤として従来公知の分散剤も使用可能
である。
ここで、分散剤の使用は添加粒子の分散向上の
他に染色布の発色性向上においても効果を有する
ことである。この理由は明確ではないが、分散剤
を添加してポリマ中の粒子分散性を向上せしめる
ことにより、アルカリ溶解処理糸をより好ましい
糸表面に改善するものと思われる。特にテトラア
ルキルアンモニウム化合物系分散剤は発色性向上
効果および乾式法酸化ケイ素の凝集防止効果が大
きく、好適である。
ここで、テトラアルキルアンモニウム化合物と
しては水酸化テトラメチルアンモニウム,塩化テ
トラメチルアンモニウム,水酸化テトラエチルア
ンモニウム,塩化テトラエチルアンモニウム,臭
化テトラエチルアンモニウム,水酸化テトラプロ
ピルアンモニウム,塩化テトラプロピルアンモニ
ウム,酸化テトライソプロピルアンモニウム,塩
化テトライソプロピルアンモニウム,水酸化テト
ラブチルアンモニウム,塩化テトラブチルアンモ
ニウムなどが挙げられるが、なかでも水酸化テト
ラエチルアンモニウムが特に好ましい。
かかる分散剤であるテトラアルキルアンモニウ
ム化合物を使用する場合、その好ましい使用量は
本発明の乾式法酸化ケイ素に対して0.5〜30重量
%が好ましく、5〜20重量%が特に好ましい。使
用量が0.5重量%未満では分散剤使用による発色
性向上効果が乏しく、30重量%を越えるとその効
果が飽和するばかりか、逆にポリマが黄褐色に着
色してポリエステル繊維の物性が悪化するなどの
欠陥を誘起することもある。
本発明における乾式法酸化ケイ素のスラリーの
添加時期はポリエステルの重合が完結するまでの
任意の段階であるが、特に該ポリエステルの重合
反応開始前が本発明の乾式法酸化ケイ素の粗大粒
子数が少なくなるので好ましい。
ただし、該乾式法酸化ケイ素の分散媒を変え
て、本発明のポリエステルと同じポリエステルに
高濃度に分散させたいわゆるマスターバツチ方式
であれば、重合完結後でも紡糸時でも添加可能で
ある。
また、本発明においてはポリエステルを構成す
るグリコール成分の一部をポリアルキレングリコ
ールで、および/またはテレフタル酸成分の一部
をアルカリ金属スルホネート基を有するイソフタ
ル酸成分で置き換えることにより、より一層の発
色性向上効果を達成することができる。かかるポ
リアルキレングリコール成分共重合の効果は分散
染料の繊維内部における分散性が向上することに
より、繊維内部における光吸収量が増加して発現
するものと思われる。またアルカリ金属スルホネ
ート基を有するイソフタル酸成分共重合の効果は
もともと分子吸光係数の大きなカチオン染料での
染色が可能となり、同様に繊維内部における光吸
収量が増加して発現するものと思われる。
本発明において使用し得るポリアルキレングリ
コールとしてはポリエチレングリコール,ポリ―
1,2―プロピレングリコール,ポリトリメチレ
ングリコール,ポリテトラメチレングリコールな
どがあげられるが、これらのうちポリエチレング
リコールは他のポリアルキレングリコールに比べ
て得られるポリエステル中での本発明の乾式法酸
化ケイ素の凝集が起りにくく、かつ同一添加量に
おける発色性向上効果が大きく、特に好ましい。
本発明におけるポリアルキレングリコールの分
子量は特に限定しないが、得られるポリエステル
中で層分離しない程度のものが好ましい。たとえ
ばポリエチレングリコールの場合分子量5000以下
が好ましい。
本発明におけるポリアルキレングリコールの好
ましい添加量は得られるポリエステルに対して1
〜10重量%であり、さらに好ましくは、3〜7重
量%である。1重量%未満では、得られるポリエ
ステル繊維のポリアルキレングリコール共重合に
よる発色性向上効果が小さく、また10重量%を越
える量では得られるポリエステルの耐光性が低下
することがある。
また、本発明で使用し得るアルカリ金属スルホ
ネート基を有するイソフタル酸成分として具体的
には3,5―ビス(メトキシカルボニル)ベンゼ
ンスルホン酸リチウム,3,5―ビス(メトキシ
カルボニル)ベンゼンスルホン酸ナトリウム、
3,5―ビス(メトキシカルボニル)ベンゼンス
ルホン酸カリウム,3,5―ビス(β―ヒドロキ
シエトキシカルボニル)ベンゼンスルホン酸リチ
ウム,3,5―ビス(β―ヒドロキシエトキシカ
ルボニル)ベンゼンスルホン酸ナトリウム,3,
5―ビス(β―ヒドロキシエトキシカルボニル)
ベンゼンスルホン酸カリウム,3,5―ビス(β
―ヒドロキシブトキシカルボニル)ベンゼンスル
ホン酸リチウム,3,5―ビス(δ―ヒドロキシ
ブトキシカルボニル)ベンゼンスルホン酸ナトリ
ウム等を挙げることができる。
かかるアルカリ金属スルホネート基を有するイ
ソフタル酸成分の好ましい使用量は該ポリエステ
ルを構成する全酸成分に対して0.5〜10モル%の
範囲、特に好ましくは1〜6モル%の範囲であ
る。その使用量が0.5モル%未満ではカチオン染
料に対する親和性に乏しく、また10モル%を越え
るとポリエステル特有の優れた物性が損なわれる
ことがある。
本発明における乾式法酸化ケイ素添加ポリエス
テル繊維はストレート糸のみでなく強撚加工糸、
仮撚加工糸も対象とするのが、特に強撚加工糸、
仮撚加工糸ではより発色性が向上するので好まし
い。
本発明にかかる強撚加工は一般に行なわれてい
るアツプツイスター方式、ダウンツイスター方式
またはダブルツイスター方式が採用されるが、強
撚加工による発色性向上効果は撚係数に依存す
る。
本発明における強撚糸は、繊維のデニール数(D)
と繊維1m当りの撚数(T)より、次式により算
出される撚係数(K)
K=T√
が3500以上のものが好ましく、望ましくは5500以
上のものである。ここで撚係数とは繊維に対する
撚角度に関係する数であり、撚係数を上げること
により撚角度が増し、繊維束の単位長さ当りの単
繊維間の接触部分の長さが増大することは周知の
とおりである。
したがつて、乾式法酸化ケイ素を添加したポリ
エステル繊維を強撚し、アルカリ溶解処理する場
合に相乗的に発色性が大巾に向上するのは強撚に
より増大した単繊維間の接触部分に、アルカリ溶
解処理による減量で空隙が生じ、この空隙が光に
対する一種のトンネルとなり、光の吸収効率を上
げることに加え、乾式法酸化ケイ素を含むポリエ
ステル繊維をアルカリ溶解処理することに起因す
る繊維表面の粗面化が前記の単繊維間の空隙によ
るトンネル効果をより効果的に行なわせしめるこ
とによるものと考えられる。
したがつて、強撚糸の撚係数が3500を下回る場
合、十分な量の単繊維間の空隙が得られず、強撚
加工による発色性向上効果は極めて小さくなる。
また、撚係数を上げることにより、染色物の発
色性は向上するが、過大な撚は繊維の強度低下を
併い、実用上、K=25000をもつて上限とされる。
本発明における仮撚加工方式としてはスピンド
ル方式、チユーブまたはデイスクによるフリクシ
ヨン方式のいずれをも採用できる。
仮撚加工に供する糸条は通常の延伸糸でも良
く、また一般的な引取速度(1000〜1500m/
min)で引取つた未延伸糸ないしはPOY(pre―
Orientedyarn)と呼ばれる高速引取速度(2500
〜4000m/min)で引き取つた高配向低結晶性の
未延伸糸を使用して延伸同時仮撚りすることも可
能である。
本発明で仮撚加工する直接の目的は嵩高性や伸
縮性の付与ではなく、仮撚加工後のアルカリ溶解
処理によつて本発明の乾式法酸化ケイ素を添加し
たポリエステル繊維の発色性をさらに改善しよう
とすることにある。
本発明の乾式法酸化ケイ素を添加したポリエス
テル繊維を仮撚りし、アルカリ溶解処理する場合
に相乗的に発色性が向上するのは仮撚加工により
増大した単繊維間の空隙によるトンネル効果と、
本発明の乾式法酸化ケイ素添加ポリエステル繊維
をアルカリ溶解処理することに起因する繊維表面
の粗面化によつてより効果的に発現するためと考
えられる。
したがつて仮撚加工条件の選択の自由度は極め
て大きい。
発色性向上面からヒーター温度は供給するポリ
エステルの昇温結晶化頂点温度から糸条が融着し
たり脆弱化したりしない程度の高温までの範囲が
好ましく、ポリエチレンテレフタレート繊維の場
合には160℃以上が特に好ましい。
仮撚加工時の仮撚数は発色性向上の面から下記
()式の範囲が好ましく、下記()式の範囲
が特に好ましい。
T√≧10000 ……()
35000≧T√≧15000 ……()
〔但し、Tは加撚数(tpm)を、Dはスピナ
ー,チユーブ,デイスク等の最終加撚素子から出
た直後の糸条のデニールを表わす。〕
なお加撚数の上限は糸切れが多発したり、過度
の二重撚りが発生しない範囲で設定される。
また仮撚加工糸とある程度伸長したまま乾熱ヒ
ーターを走行させて熱処理するか、または仮撚加
工糸を柔かく巻き取つてスチームセツトする、い
わゆる仮撚改良方法を採用しても本発明の効果は
発現する。
本発明のアルカリ溶解処理は苛性ソーダ,苛性
カリ等のアルカリ金属の水酸化物,水に溶かした
時にアルカリ金属水酸化物の形になるアルカリ金
属化合物,アルカリ金属の炭酸塩等,塩基性アル
カリ金属化合物の水溶液中で繊維または織編物を
加熱するか、または塩基性アルカリ金属化合物の
水溶液を織編物にパツド/スチーム処理すること
等によつて達成される。
本発明におけるアルカリ溶解は上述のようなア
ルカリ溶解処理法で減量率を繊維または織編物に
対し3〜50重量%、好ましくは5〜30重量%の範
囲にする必要がある。アルカリ溶解減量率が3%
未満では発色性向上効果が十分でなく、また50重
量%を越えると発色性向上効果は飽和し、糸の強
度が低下しすぎるので好ましくない。
また、アルカリ溶解処理にはセチルトリメチル
アンモニウムブロマイド,ラウリルジメチルベン
ジルアンモニウムクロライドなどのアルカリ溶解
促進剤を適宜使用することができる。
以上詳述したように本発明の効果は、本発明の
乾式法酸化ケイ素を添加することによつてポリエ
ステル中での粒子分散性を改善した繊維をアルカ
リ処理することによつて発現するものである。ま
た(イ)該ポリエステル製造時にテトラアルキルアン
モニウムや金属スルホネート基を含有する芳香族
ポリエステルなどの分散剤を使用する。(ロ)該ポリ
エステルにポリアルキレングリコールやアルカリ
金属スルホネート基を含有するイソフタル酸成分
を共重合する。(ハ)該ポリエステル繊維を強撚加工
や仮撚加工することによつて本発明の効果をさら
に顕著に発現させ得るものである。
以下実施例を挙げて本発明を具体的に説明す
る。
なお、実施例中の部は重量部を、%は重量%を
意味する。また本発明における各種測定、評価方
法およびアルカリ溶解処理条件は次の通りであ
る。
(粗大粒子数の測定法)
試料約10mgを18mm×18mmのカバーグラスにはさ
み、280℃〜300℃のホツトプレート上で熱圧着
し、直径約10mmのフイルムを作成する。このフイ
ルムを位相差顕微鏡(100倍)で観察し、最大長
さ15μ以上の粗大粒子を測定し、試料10mg当たり
の粗大粒子の数を算出し、1水準当たり10回測定
した平均値とする。
(一次粒子径)
酸化ケイ素の粉末を電子顕微鏡で10万倍に拡大
した写真を撮影し、得られた像から各一次粒子の
最長径を測定し、1000個の平均として求めた値を
いう。
(融点Tm,昇温結晶化頂点温度Tc)
Perkin―Elmer社製DSC―1Bを使用し、試料
ポリマ10mgを用いて窒素ガス雰囲気下、常温から
16℃/minの速度で昇温した時の結晶化ピーク頂
点の温度をTcとし、融解ピークの極小点をTm
とした。
(b値)
ポリマを直径2.5〜3.5mm、高さ4.5〜5.5mmの円
柱状に成形し、スガ試験機株式会社製直読式色差
コンピユーターで測定する。b値が大きい程ポリ
マの黄味傾向が増大する。
(極限粘度〔η〕の測定法〕
ポリマをO―クロルフエノールに溶解し、25℃
で測定した値である。
(耐加水分解性)
一辺が約1mmの直方体に切断したポリエステル
ポリマ1gと蒸留水100gをオートクレーブに仕
込み30分で130℃に昇温し、更に30℃で2時間加
熱した。熱水処理終了後100℃で1時間減圧乾燥
後極限粘度を測定し、初期極限粘度に対する極限
粘度の低下から次の基準で耐加水分解性を判定し
た。
◎ 極限粘度の低下はほとんどない
〇 〃 〃 非常に小さい。
△ 〃 〃 若干ある
× 〃 〃 やや大きい
(発色性の測定方法)
評価すべきフイラメント糸を27ゲージのトリコ
ツト靴下編機〔小池機械製作所(株)製〕により、筒
編地を編成したのち、常法により0.2%の非イオ
ン活性剤〔サンデツトG―900(三洋化成(株)製)〕
と0.2%のソーダ灰を含む沸騰水中で5分間煮沸
精練し、次いで水洗、乾燥した。
次に180℃に調整したベーキング試験装置〔大
栄科学精器製作所(株)製MODEL―DK―1H〕を用
いて30秒間無緊張状態で乾熱処理を行ない筒編地
をセツトした。次いで、
分散染料Sumikaron Black S―BB10%owf(な
いしはカチオン染料Cathilon Black CD―
BLH14%owf)
酢 酸 0.5c.c./
酢酸ソーダ 0.2g/
からなる浴比1:30の130℃の水溶液中で60分間
染色を行なつたのち、常法に従い、
ハイドロサルフアイト 2g/
苛性ソーダ 2g/
非イオン活性剤(サンデツトG―900)
2g/
からなる80℃の水溶液中で20分間還元洗浄を行な
い、水洗、乾燥した。
発色性の評価は、デジタル測定色差計算機〔ス
ガ試験機(株)製〕で筒編地を6枚以上重ね、照射光
が透過しない状態で測定されるL値で行なつた。
L値は濃色ほど値が小さく、淡色ほど値が大きく
なる。
(アルカリ溶解条件)
筒編地1重量部を水酸化ナトリウム(3重量
%)の沸騰水溶液50重量部中に浸漬し、撹拌しな
がら所定時間処理したのち水洗し、次いで1%酢
酸水溶液で中和し、さらに水洗および乾燥した。
アルカリ溶解処理時間は、あらかじめ予備検討
し、所定の減量率になるように設定した。
なお、減量率の算出は処理前の筒編地を100℃
の熱風中で20分間乾燥し、重量を測定〔この時の
重量を(A)とする〕し、減量加工後の筒編地を同様
に100℃で20分間乾燥し重量を測定〔この時の重
量を(B)とする〕して、式
A−B/A×100=減量率(%)
より求めた。
(耐光性)
発色の測定方法に記載した方法で編成、精練後
分散染料 Resoline Blue FBL 5%owf
酢 酸 0.5c.c./
酢酸ソーダ 0.2g/
からなる浴比1:100の120℃の水溶液中で染料吸
尽率が14〜16%になるように染色した。次いでノ
イゲン221g/溶液(溶比1:50)を用いて60
℃、20分間洗浄し、さらに水洗した後風乾した。
次いでこの染色布を東洋理化(株)製フエードメータ
ーFA―2型を用い、カーボンアーク光を10時間
(63℃)照射した。得られた照射後の染色布を次
の基準で肉眼判定した。
◎ 退色は非場に少い
〇 若干退色する
× かなり退色する
なお、染料吸尽率は染色後の染色残液5mlをア
セトンで50mlに希釈し、島津製作所(株)製マルチコ
ンバーチブル分光々度計Double―40を用いて、
水を対照液にして627mμの吸光度から求めた。
(マラカイトグリーン吸尽率(%))
付着している油剤を通常の精練方法にて除去し
た試料繊維をマラカイトグリーン5%owf、染色
液PH5、浴比1:100、120℃で60分間加圧振とう
する条件下で染色し、十分に水洗した後染色物を
オルソクロロフエノールに溶解せしめてその吸光
度を測定して吸尽率を求めた。マラカイトグリー
ン吸尽率が45%以上であれば十分濃色に染色し得
るといえる。
(繊維の表面状態の観察)
繊維を(株)日立製作所製電界放射型走査電子顕微
鏡を用い36000倍で撮影し、得られた写真からた
て長のくぼみの数、最大幅および長さを測定し
た。
(摩擦テスト)
染色布を学振型摩擦堅牢度試験機を使用して、
10cmの試験片を台上に固定し、2cm×2cmの白布
(綿)を取付けた摩擦子(荷重200g)を往復運動
させた。30回/分の速度で10分間行ない、白布の
汚染度で判定した。
◎ ほとんど汚染されない
〇 汚染は少ない
△ 若干汚染される
× かなり汚染される
実施例 1
テレフタル酸ジメチル100部、エチレングリコ
ール64部、酢酸マンガン・4水和物0.05部、三酸
化アンチモン0.03部をエステル交換缶に仕込み、
窒素雰囲気下で150〜230℃に昇温して生成するメ
タノールを連続的に系外に留去しながら、エステ
ル交換反応を行ない、反応開始後3時間で反応を
終了した。得られた生成物にリン酸トリメチルを
0.05部加え、さらに粒子表面にメチル基を有し、
かつ粒子表面のシラノール基を75%封鎖した平均
の一次粒子径が16mμである乾式法酸化ケイ素と
エチレングリコールの重量比が5:95の混合物を
Janke&Kunkel製Ultra Turrax T45DX
(10000rpm)で30分間分散せしめたスラリーを乾
式法酸化ケイ素として得られるポリエステルに対
して1.0%になるようにして添加した。
次いで重合反応系を除々に減圧にして1時間30
分かけて760mmHgから1mmHgまで減圧し、同時
に1時間30分かけて230℃から280℃まで昇温し
た。1mmHg以下の減圧下、重合温度280℃でさら
に3時間、合計4時間30分重合した。反応終了後
ポリマを直径3mmの棒状で水中に吐出し、長さ5
mmに切断してポリエステルチツプを得た。得られ
たポリエステルチツプの〔η〕は0.746g/dl、
b値は4.0、Tcは130℃、および粗大粒子数は12
個であつた。また、得られたチツプの耐加水分解
性を評価した結果、極限粘度の低下は非常に小さ
く良好であつた。
得られたポリエチレンテレフタレートを160℃
で5時間減圧乾燥後、紡糸温度290℃、引取速度
900m/minで紡糸し、次いで延伸倍率3.45倍、ピ
ン温度100℃で延伸し、75デニール/36フイラメ
ント、糸強度4.9g/dの延伸糸を得た。
この延伸糸を27ゲージのトリコツト靴下編機で
筒編地を作成した。
次いで精練し、減量率20%になるようにアルカ
リ溶解処理した後繊維の表面状態を観察した結
果、最大幅0.12〜1.1μ、長さ/最大幅の比2.5〜14
のたて長のくぼみが1平方ミクロンあたり15個発
生していた。また、アルカリ溶出処理後の強度は
3.5g/dであつた。
さらに、発色性を評価した結果L値は13.9で良
好な深味を有していた。また、耐摩擦性を評価し
た結果摩擦後白布の汚染は少なかつた。
比較実施例 1
実施例1において粒子表面にメチル基を有し、
かつ粒子表面のシラノール基を封鎖した乾式法酸
化ケイ素のかわりに、平均の一次粒子径が16mμ
であり、かつ粒子表面をアルキルコートしない普
通の乾式法酸化ケイ素を使用した以外は実施例1
と同様にして重合,紡糸,延伸,編製,アルカリ
溶出処理および染色を実施した。得られたチツプ
の〔η〕は0.740、粗大粒子数は42であつた。
また、チツプの耐加水分解性を評価した結果
〔η〕の低下はやや大きく不良であつた。
さらに、アルカリ溶解処理糸の表面状態を観察
した結果、最大幅0.5〜2.4μ、長さ/最大幅の比
1.5〜8であり、最大幅0.1〜1.5μ、長さ/最大幅
の比が2以上のたて長のくぼみが1平方ミクロン
あたり5個発生していた。また、染色布のL値は
14.4であつた。
実施例 2
実施例1において本発明の乾式法酸化ケイ素の
分散剤として水酸化テトラエチルアンモニウムの
20%水溶液を酸化ケイ素に対し水酸化テトラエチ
ルアンモニウムとして15%添加してEGスラリー
を製造した以外は実施例1と同様にして重合、紡
糸延伸、編製をした。さらに減量率が20%になる
ようにアルカリ溶出処理を実施した後発色性を評
価した。得られたチツプの粗大粒子数は6個/10
mg、b値は4.1であり、さらに最大幅0.11〜1.0μ、
長さ/最大幅の比2.4〜14のたて長のくぼみが1
平方ミクロンあたり21個発生していた。また、染
色布のL値は13.6で良好であつた。
実施例 3
実施例2において粒子表面にメチル基を有し、
かつ粒子表面のシラノール基を封鎖した乾式法酸
化ケイ素の量を表1のように変更した以外は実施
例1と同様にして重合、紡糸、延伸をした。ただ
し、目標の〔η〕の糸を作るため重合時間は適当
に変更した。得られた延伸糸を実施例1と同様に
して編製、アルカリ溶解処理、繊維表面観察、発
色性評価および耐摩擦性評価を実施した。評価結
果は表1に示したとおりである。
表1から本発明の酸化ケイ素の添加量が本発明
の範囲内の場合は良好であることは明白である。
The present invention relates to a method for producing polyester fibers with excellent color development. More specifically, it relates to a method for producing polyester fibers with excellent color development, which is characterized by subjecting polyester fibers containing inert inorganic fine particles mainly composed of silicon oxide produced by a specific production method to alkali dissolution treatment. Polyester fibers have excellent physical and chemical properties and are therefore widely used for clothing and industrial purposes. However, polyester fibers have been inferior to other fibers such as acetate, rayon, wool, and silk in terms of color development (depth of black or sharpness of chromatic colors) of dyed fabrics. In particular, since the depth of black color is significantly inferior to that of the other fibers mentioned above, there has been a strong desire for improved black color development (improvement of depth) in the black formal field. As a method to improve the color development of dyed fabrics, which is a drawback of conventional polyester fibers, (1) a method in which organic synthetic fibers are irradiated with plasma in a glow discharge plasma to give the fiber surface an unevenness of 0.1 to 0.5μ (a special method); (1987-99400) (2) A method of applying a thin film of a low refractive index component on the fiber surface (1987-111192) (3) Using inorganic fine particles such as silica sol with an average particle size of 80 mμ or less A method of imparting a specific surface structure by subjecting polyethylene terephthalate fibers to which 0.5 to 10% by weight has been added by alkali dissolution treatment
-120728) are known. Among these methods, method (1) has problems such as high cost due to expensive plasma discharge equipment and no significant effect of improving color development. On the other hand, method (2) above involves attaching a low refractive index component to the fiber surface, and although it certainly has a great effect on improving color development, it has the problem of poor abrasion fastness. Furthermore, since the method (3) above can impart a specific surface roughness to the fibers, a certain degree of color development improvement effect can be expected. However, this method generates a granular structure on the fiber surface, which tends to reflect light on the fiber surface, and the effect of improving color development was not sufficient. Furthermore, when a granular structure is present, when the fabric is rubbed, the granular structure is easily destroyed and becomes a mirror surface, which tends to partially reflect light, resulting in a change in color. In view of the above-mentioned problems, the present inventors have arrived at the present invention as a result of intensive studies on the effect of improving fiber surface morphology and improving color development by alkali dissolution treatment of polyester fibers containing inert inorganic fine particles. That is, the present invention contains 0.3 to 4% by weight of dry process silicon oxide having an alkyl group on the particle surface and having an average primary particle size of 100 mμ or less with the silanol groups blocked on the particle surface, and at least 1% of the total acid component. This is a method for producing polyester fibers with excellent color development, which is characterized by subjecting polyester fibers containing 70 mol% of terephthalic acid components to an alkali dissolution treatment. As mentioned above, the present invention subjects polyester containing specific silicon oxide to alkali elution treatment,
This is a method for producing polyester fibers with excellent color development by imparting a specific surface morphology to the fiber surfaces. After extensive research into polyester fibers with excellent color development, we found that the fiber surface has a maximum width of 0.1~
1.5μ, with a length/maximum width ratio of 2 or more, vertically long indentations in the fiber axis direction per 1 square micron.
It turned out that this can be achieved by giving 60 pieces. The maximum width of a vertically long recess here refers to the shortest distance from one point on one end to the opposite end in a plan view of the recess viewed from above, and refers to the maximum width. Note that the distance in the length direction is not included in the width. For example, if the recess with the vertical length is oval, the short axis is called the maximum width. The maximum width of the vertical depression in the present invention is preferably 0.1 to 1.5 μ. If it is less than 0.1μ, the effect of improving color development is not sufficient, and if it is more than 1.5μ, light reflection tends to increase and color development tends to decrease. Further, the ratio of length/maximum width of the vertical depression in the fiber axis direction on the surface of the polyester fiber in the present invention is 2 or more. If it is less than 2, the effect of improving color development is not sufficient. The length of the vertical recess here refers to the maximum straight-line distance of the recess. For example, if the recess with the vertical length is oval, it is referred to as the major axis. The polyester in the present invention refers to a polyester containing ethylene glycol or 1,4-butanediol as the main glycol component and terephthalic acid or its ester as the main dicarboxylic acid component. A part of this dicarboxylic acid component is, for example, a monoalkali metal salt of 5-sulfoisophthalic acid, a dicarboxylic acid such as isophthalic acid, diphenyl dicarboxylic acid, naphthalene dicarboxylic acid, adipic acid, sebacic acid, dodecanedioic acid, or an ester thereof, p
- Oxycarboxylic acids such as oxybenzoic acid and p-β-oxyethoxybenzoic acid or esters thereof may be substituted, and a portion of ethylene glycol or 1,4-butanediol may be replaced with, for example, alkylene glycol having 2 to 10 carbon atoms. , 1,4-cyclohexanedimethanol, 1,4-bis(β-
Glycols other than the main glycol component may be substituted, such as (oxyethoxy)benzene, bisglycol ether of bisphenol A, and polyalkylene glycol. Particularly, from the viewpoint of improving color development, it is more preferable to replace it with an isophthalic acid component having a polyalkylene glycol and an alkali metal sulfonate group. Furthermore, the polyester of the present invention may further contain a small proportion of a chain branching agent such as pentaerythritol, trimethylolpropane, trimellitic acid, trimesic acid, or a polymerization terminator such as monohydric polyalkylene oxide or phenylacetic acid. be. To produce polyester from such raw materials,
For example, dimethyl terephthalate is transesterified with ethylene glycol or 1,4-butanediol, terephthalic acid is directly esterified with ethylene glycol or 1,4-butanediol, or ethylene oxide is added to terephthalic acid. Terephthalic acid with ethylene glycol or 1,4-
The most widely adopted method is to synthesize a butanediol ester and/or a low polymer thereof, and then subject the product to a polymerization reaction by a conventional method. Further, in synthesizing the polyester for carrying out the present invention, catalysts, color inhibitors, ether bond by-product inhibitors, antioxidants, flame retardants, etc. well known in the art can be appropriately used. Having an alkyl group on the particle surface in the present invention,
And the dry process silicon oxide which has blocked the silanol groups on the particle surface can be obtained by, for example, reacting the dry process silicon oxide with dialkyldichlorosilane.
More than 30% of the silanol groups on the particle surface are blocked. The silicon oxide produced by the dry process mentioned here is, for example, 524 of "Practical Handbook of Additives for Plastics and Rubber" (Kagaku Kogyosha, published August 10, 1970).
Generally, silicon halides are thermally decomposed together with moisture and oxygen in the gas phase, as described on page 1. The alkyl group present on the particle surface of the dry method silicon oxide is not particularly limited, but methyl and ethyl groups are preferred. The silanol group blocking rate on the particle surface of the dry process silicon oxide is 30% or more, particularly preferably 60% or more. If it is less than 30%, it is not preferable because the polyester will aggregate violently during the polymerization reaction, the number of coarse particles in the polymer will increase, and the color development and hydrolysis resistance of the resulting polyester will decrease. The average primary particle diameter of the dry process silicon oxide in the present invention is 100 mμ or less, preferably 40 mμ or less. If the average primary particle diameter exceeds 100 mμ, the effect of improving color development will be reduced, which is not preferable. Further, the amount of the dry process silicon oxide added is in the range of 0.3 to 4% by weight, particularly preferably in the range of 0.5 to 2% by weight, based on the polyester composition to be produced.
If the amount is less than 0.3% by weight, the effect of improving color development will be insufficient, which is undesirable, and if the amount exceeds 4% by weight, the effect of improving color development will decrease, and the effect of increasing the amount added will be lost, which is not preferable. The dry process silicon oxide in the present invention can be dispersed in aliphatic glycol, aliphatic alcohol, water, etc. by a known method and added as a dispersed slurry at any stage until the polymerization of the polyester is completed. It is preferable to add it by dispersing it in glycol as a raw material. The dispersion slurry of dry process silicon oxide in the present invention can be prepared by a conventionally known method, but the dry process silicon oxide and ethylene glycol or 1,4 butanediol are mixed by rotating a stirring blade as disclosed in JP-A-53-125495. A preferred method is dispersion in a high speed stirrer with a plurality of shear blades parallel to the direction.
Furthermore, conventionally known dispersants can also be used as dispersants. Here, the use of a dispersant is effective not only in improving the dispersion of the additive particles but also in improving the color development of the dyed fabric. The reason for this is not clear, but it is thought that adding a dispersant to improve particle dispersibility in the polymer improves the surface of the alkali-dissolved yarn. In particular, a tetraalkylammonium compound-based dispersant is preferable because it has a large effect of improving color development and preventing agglomeration of dry process silicon oxide. Here, the tetraalkylammonium compounds include tetramethylammonium hydroxide, tetramethylammonium chloride, tetraethylammonium hydroxide, tetraethylammonium chloride, tetraethylammonium bromide, tetrapropylammonium hydroxide, tetrapropylammonium chloride, tetraisopropylammonium oxide, Examples include tetraisopropylammonium chloride, tetrabutylammonium hydroxide, and tetrabutylammonium chloride, among which tetraethylammonium hydroxide is particularly preferred. When such a dispersant, such as a tetraalkylammonium compound, is used, its amount is preferably 0.5 to 30% by weight, particularly preferably 5 to 20% by weight, based on the dry process silicon oxide of the present invention. If the amount used is less than 0.5% by weight, the effect of improving color development by using a dispersant will be poor, and if it exceeds 30% by weight, not only will the effect be saturated, but on the contrary, the polymer will be colored yellowish brown and the physical properties of the polyester fiber will deteriorate. It may also induce defects such as In the present invention, the slurry of dry process silicon oxide can be added at any stage until the polymerization of polyester is completed, but especially before the start of the polymerization reaction of the polyester, the number of coarse particles of the dry process silicon oxide of the present invention is small. Therefore, it is preferable. However, if the dispersion medium of the dry process silicon oxide is changed and it is dispersed at a high concentration in the same polyester as the polyester of the present invention, it can be added either after completion of polymerization or during spinning. Furthermore, in the present invention, by replacing a part of the glycol component constituting the polyester with polyalkylene glycol and/or replacing a part of the terephthalic acid component with an isophthalic acid component having an alkali metal sulfonate group, further color development can be achieved. An improvement effect can be achieved. The effect of the copolymerization of polyalkylene glycol components is thought to be due to the improvement in the dispersibility of the disperse dye inside the fibers, thereby increasing the amount of light absorption inside the fibers. Furthermore, the effect of copolymerizing an isophthalic acid component having an alkali metal sulfonate group is that it becomes possible to dye with a cationic dye that originally has a large molecular extinction coefficient, and it is thought that this is also caused by an increase in the amount of light absorption inside the fiber. Polyalkylene glycols that can be used in the present invention include polyethylene glycol, polyalkylene glycol,
Examples include 1,2-propylene glycol, polytrimethylene glycol, polytetramethylene glycol, etc. Among these, polyethylene glycol is more suitable than other polyalkylene glycols due to the dry process method of silicon oxide of the present invention. It is particularly preferred because agglomeration is less likely to occur and the effect of improving color development is large at the same amount added. The molecular weight of the polyalkylene glycol in the present invention is not particularly limited, but it is preferably a molecular weight that does not cause layer separation in the resulting polyester. For example, in the case of polyethylene glycol, the molecular weight is preferably 5000 or less. The preferred amount of polyalkylene glycol added in the present invention is 1
-10% by weight, more preferably 3-7% by weight. If the amount is less than 1% by weight, the effect of improving the coloring property of the resulting polyester fiber by polyalkylene glycol copolymerization will be small, and if the amount exceeds 10% by weight, the light resistance of the resulting polyester may decrease. Further, specific isophthalic acid components having an alkali metal sulfonate group that can be used in the present invention include lithium 3,5-bis(methoxycarbonyl)benzenesulfonate, sodium 3,5-bis(methoxycarbonyl)benzenesulfonate,
Potassium 3,5-bis(methoxycarbonyl)benzenesulfonate, Lithium 3,5-bis(β-hydroxyethoxycarbonyl)benzenesulfonate, Sodium 3,5-bis(β-hydroxyethoxycarbonyl)benzenesulfonate, 3,
5-bis(β-hydroxyethoxycarbonyl)
Potassium benzenesulfonate, 3,5-bis(β
Examples include lithium -hydroxybutoxycarbonyl)benzenesulfonate, sodium 3,5-bis(δ-hydroxybutoxycarbonyl)benzenesulfonate, and the like. The amount of the isophthalic acid component having an alkali metal sulfonate group is preferably in the range of 0.5 to 10 mol%, particularly preferably in the range of 1 to 6 mol%, based on the total acid components constituting the polyester. If the amount used is less than 0.5 mol %, the affinity for cationic dyes will be poor, and if it exceeds 10 mol %, the excellent physical properties peculiar to polyester may be impaired. The dry method silicon oxide-added polyester fiber in the present invention is not only a straight yarn but also a highly twisted yarn,
False-twisted yarns are also targeted, especially highly twisted yarns.
False-twisted yarn is preferable because it improves color development. The strong twisting process according to the present invention employs the commonly practiced up twister method, down twister method, or double twister method, but the effect of improving color development by the strong twisting process depends on the twist coefficient. The denier number (D) of the highly twisted yarn in the present invention is
and the number of twists per meter of fiber (T), the twist coefficient (K) K=T√ calculated by the following formula is preferably 3,500 or more, preferably 5,500 or more. Here, the twist coefficient is a number related to the twist angle of the fibers, and by increasing the twist coefficient, the twist angle increases and the length of the contact area between single fibers per unit length of the fiber bundle increases. As is well known. Therefore, when polyester fibers containing dry silicon oxide are strongly twisted and subjected to alkali dissolution treatment, the synergistic color development is greatly improved due to the increased contact area between single fibers due to strong twisting. The weight loss caused by the alkali dissolution treatment creates voids, and these voids act as a kind of tunnel for light, increasing the light absorption efficiency. It is thought that this is because the roughening of the surface makes the tunneling effect caused by the voids between the single fibers more effective. Therefore, if the twist coefficient of the highly twisted yarn is less than 3500, a sufficient amount of voids between the single fibers cannot be obtained, and the effect of improving color development by the highly twisted yarn becomes extremely small. Increasing the twist coefficient improves the color development of dyed products, but excessive twisting also reduces the strength of the fibers, and in practice, K=25,000 is the upper limit. As the false twisting method in the present invention, either a spindle method or a friction method using a tube or disk can be adopted. The yarn to be subjected to the false twisting process may be a normal drawn yarn, and the yarn may be drawn at a typical drawing speed (1000~1500m/
Undrawn yarn or POY (pre-
Fast withdrawal speed (2500
It is also possible to use highly oriented, low crystallinity undrawn yarn drawn at a speed of ~4000 m/min) to perform false twisting at the same time as drawing. The direct purpose of the false twisting process in the present invention is not to impart bulkiness or elasticity, but to further improve the color development of the polyester fiber to which the dry method silicon oxide of the present invention has been added by performing an alkali dissolution treatment after the false twisting process. It lies in trying. When the dry-method silicon oxide-added polyester fiber of the present invention is false-twisted and subjected to alkali dissolution treatment, the synergistic improvement in color development is due to the tunnel effect due to the voids between single fibers increased by the false-twisting process,
This is thought to be due to the roughening of the fiber surface resulting from the alkali dissolution treatment of the dry method silicon oxide-added polyester fiber of the present invention, which makes the effect more effective. Therefore, the degree of freedom in selecting the false twisting processing conditions is extremely large. In order to improve color development, the heater temperature is preferably in the range from the peak crystallization temperature of the polyester supplied to a high temperature that does not cause the threads to fuse or become brittle, and in the case of polyethylene terephthalate fibers, the heater temperature is 160°C or higher. Particularly preferred. The number of false twists during the false twisting process is preferably within the range of the following formula () from the viewpoint of improving color development, and is particularly preferably within the range of the following formula (). T√≧10000 …() 35000≧T√≧15000 …() [However, T is the number of twists (tpm), and D is the yarn immediately after leaving the final twisting element such as a spinner, tube, or disk. Represents the denier of the strip. ] The upper limit of the number of twists is set within a range that does not cause frequent yarn breakage or excessive double twisting. Furthermore, the effects of the present invention will not be obtained even if a so-called false-twisting improvement method is adopted, in which the false-twisted yarn is heat-treated by running a dry heat heater while the yarn is stretched to a certain extent, or the false-twisted yarn is gently wound and steam-set. manifest. The alkali dissolution treatment of the present invention is applied to basic alkali metal compounds such as alkali metal hydroxides such as caustic soda and caustic potash, alkali metal compounds that form alkali metal hydroxides when dissolved in water, and alkali metal carbonates. This is achieved by heating the fibers or woven or knitted fabric in an aqueous solution, or by padding/steaming the woven or knitted fabric with an aqueous solution of a basic alkali metal compound. In the alkali dissolution in the present invention, it is necessary to achieve a weight loss rate of 3 to 50% by weight, preferably 5 to 30% by weight, based on the fiber or woven or knitted fabric by the above-mentioned alkali dissolution treatment method. Alkali dissolution weight loss rate is 3%
If it is less than 50% by weight, the effect of improving color development will be insufficient, and if it exceeds 50% by weight, the effect of improving color development will be saturated and the strength of the yarn will decrease too much, which is not preferable. Further, in the alkali dissolution treatment, an alkali dissolution promoter such as cetyltrimethylammonium bromide or lauryldimethylbenzylammonium chloride can be used as appropriate. As detailed above, the effects of the present invention are manifested by alkali treatment of fibers whose particle dispersibility in polyester has been improved by adding the dry process silicon oxide of the present invention. . Furthermore, (a) a dispersant such as an aromatic polyester containing tetraalkylammonium or a metal sulfonate group is used during the production of the polyester. (b) Copolymerizing the polyester with a polyalkylene glycol or an isophthalic acid component containing an alkali metal sulfonate group. (c) By subjecting the polyester fibers to strong twisting or false twisting, the effects of the present invention can be brought out even more markedly. The present invention will be specifically explained below with reference to Examples. In addition, parts in Examples mean parts by weight, and % means weight %. Further, various measurement and evaluation methods and alkali dissolution treatment conditions in the present invention are as follows. (Method for measuring the number of coarse particles) Approximately 10 mg of the sample is sandwiched between 18 mm x 18 mm cover glasses and thermocompressed on a hot plate at 280°C to 300°C to create a film with a diameter of approximately 10 mm. Observe this film with a phase contrast microscope (100x magnification), measure coarse particles with a maximum length of 15 μ or more, calculate the number of coarse particles per 10 mg of sample, and use the average value of 10 measurements per level. (Primary particle diameter) This is the value obtained by taking a photograph of silicon oxide powder magnified 100,000 times using an electron microscope, measuring the longest diameter of each primary particle from the obtained image, and taking the average of 1000 particles. (Melting point Tm, peak crystallization temperature Tc) Using Perkin-Elmer's DSC-1B, 10 mg of sample polymer was used under a nitrogen gas atmosphere from room temperature.
The temperature at the top of the crystallization peak when the temperature is raised at a rate of 16℃/min is Tc, and the minimum point of the melting peak is Tm.
And so. (b value) The polymer is molded into a cylindrical shape with a diameter of 2.5 to 3.5 mm and a height of 4.5 to 5.5 mm, and measured using a direct-reading color difference computer manufactured by Suga Test Instruments Co., Ltd. The larger the b value, the greater the yellowing tendency of the polymer. (Measurement method of intrinsic viscosity [η]) Polymer was dissolved in O-chlorophenol and heated at 25°C.
This is the value measured at (Hydrolysis resistance) 1 g of polyester polymer cut into a rectangular parallelepiped with sides of about 1 mm and 100 g of distilled water were placed in an autoclave, heated to 130°C in 30 minutes, and further heated at 30°C for 2 hours. After completion of the hot water treatment, the intrinsic viscosity was measured after drying under reduced pressure at 100° C. for 1 hour, and hydrolysis resistance was determined based on the decrease in intrinsic viscosity relative to the initial intrinsic viscosity based on the following criteria. ◎ There is almost no decrease in the intrinsic viscosity 〃 〃 Very small. △ 〃 〃 Slightly × 〃 〃 Slightly large (Method of measuring color development) The filament yarn to be evaluated was knitted into a tube-knitted fabric using a 27-gauge tricot sock knitting machine (manufactured by Koike Kikai Seisakusho Co., Ltd.). 0.2% nonionic activator by method [Sandet G-900 (manufactured by Sanyo Chemical Co., Ltd.)]
and scouring by boiling in boiling water containing 0.2% soda ash for 5 minutes, followed by washing and drying. Next, using a baking test device (MODEL-DK-1H, manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.) adjusted to 180°C, a dry heat treatment was performed in a non-tensioned state for 30 seconds to set the cylindrical knitted fabric. Next, disperse dye Sumikaron Black S-BB10% owf (or cationic dye Cathilon Black CD-
After dyeing for 60 minutes in an aqueous solution at 130°C with a bath ratio of 1:30 consisting of acetic acid 0.5 cc/sodium acetate 0.2 g/acid, hydrosulfite 2 g/caustic soda 2 g/non Ion activator (Sandet G-900)
Reduction cleaning was performed for 20 minutes in an aqueous solution of 2 g/ml at 80°C, followed by water washing and drying. The color development was evaluated using a digital measurement color difference calculator (manufactured by Suga Test Instruments Co., Ltd.) by stacking six or more tube knitted fabrics and using the L value measured in a state where no irradiation light was transmitted.
The darker the color, the smaller the L value, and the lighter the color, the larger the value. (Alkali dissolution conditions) 1 part by weight of the tubular knitted fabric was immersed in 50 parts by weight of a boiling aqueous solution of sodium hydroxide (3% by weight), treated for a predetermined time with stirring, washed with water, and then neutralized with a 1% acetic acid aqueous solution. Then, it was further washed with water and dried.
The alkali dissolution treatment time was preliminarily studied and set to achieve a predetermined weight loss rate. In addition, the weight loss rate is calculated by heating the tubular knitted fabric at 100℃ before treatment.
After drying in hot air for 20 minutes, the weight was measured [the weight at this time was referred to as (A)], and the tubular knitted fabric after the reduction process was similarly dried at 100°C for 20 minutes and the weight was measured [the weight at this time was taken as (A)]. The weight is defined as (B)], and the weight loss was calculated from the formula A-B/A×100=weight loss rate (%). (Lightfastness) Disperse dye Resoline Blue FBL 5% OWF A dye in an aqueous solution of acetic acid 0.5cc/sodium acetate 0.2g/at 120°C in a bath ratio of 1:100. Dyeing was carried out so that the exhaustion rate was 14-16%. Then, using 221 g of Neugen/solution (solution ratio 1:50),
It was washed at ℃ for 20 minutes, further washed with water, and then air-dried.
Next, this dyed cloth was irradiated with carbon arc light for 10 hours (63°C) using a Fademeter Model FA-2 manufactured by Toyo Rika Co., Ltd. The dyed cloth obtained after irradiation was visually judged according to the following criteria. ◎ Discoloration is extremely rare 〇 Slight fading × Significant discoloration The dye exhaustion rate was determined by diluting 5 ml of the residual dye solution after dyeing to 50 ml with acetone, and using a multi-convertible spectrophotometer manufactured by Shimadzu Corporation. Using Double-40,
It was determined from the absorbance at 627 mμ using water as a control solution. (Malachite Green Exhaustion Rate (%)) Sample fibers from which attached oil was removed by normal scouring method were pressurized with malachite green 5% OWF, dyeing solution PH5, bath ratio 1:100, 120℃ for 60 minutes. After dyeing under shaking conditions and thorough washing with water, the dyed material was dissolved in orthochlorophenol and its absorbance was measured to determine the exhaustion rate. If the malachite green exhaustion rate is 45% or more, it can be said that it can be dyed in a sufficiently deep color. (Observation of the surface condition of fibers) The fibers were photographed at 36,000x magnification using a field emission scanning electron microscope manufactured by Hitachi, Ltd., and the number of vertical depressions, maximum width, and length were measured from the photograph obtained. did. (Friction test) The dyed cloth was tested using a Gakushin type friction fastness tester.
A 10 cm test piece was fixed on a table, and a friction element (load: 200 g) to which a 2 cm x 2 cm white cloth (cotton) was attached was reciprocated. The test was carried out for 10 minutes at a rate of 30 times/minute, and the degree of contamination of the white cloth was judged. ◎ Hardly contaminated 〇 Little contaminated △ Slightly contaminated × Significantly contaminated Example 1 Transesterification of 100 parts of dimethyl terephthalate, 64 parts of ethylene glycol, 0.05 part of manganese acetate tetrahydrate, and 0.03 part of antimony trioxide Prepare it in a can,
The transesterification reaction was carried out while the temperature was raised to 150 to 230°C under a nitrogen atmosphere, and methanol produced was continuously distilled out of the system, and the reaction was completed 3 hours after the start of the reaction. Add trimethyl phosphate to the resulting product.
In addition to 0.05 parts, it also has a methyl group on the particle surface,
A mixture of dry method silicon oxide and ethylene glycol with a weight ratio of 5:95, which has an average primary particle diameter of 16 mμ and which has blocked 75% of the silanol groups on the particle surface, is used.
Ultra Turrax T45DX by Janke & Kunkel
The slurry was dispersed at 10,000 rpm for 30 minutes and added to the polyester obtained as dry method silicon oxide at a concentration of 1.0%. Then, the pressure of the polymerization reaction system was gradually reduced for 1 hour.
The pressure was reduced from 760 mmHg to 1 mmHg over a period of minutes, and at the same time the temperature was raised from 230°C to 280°C over 1 hour and 30 minutes. Polymerization was carried out for an additional 3 hours at a polymerization temperature of 280° C. for a total of 4 hours and 30 minutes under reduced pressure of 1 mmHg or less. After the reaction, the polymer was discharged into water in the form of a rod with a diameter of 5 mm.
Polyester chips were obtained by cutting into mm pieces. [η] of the obtained polyester chip was 0.746 g/dl,
b value is 4.0, Tc is 130℃, and number of coarse particles is 12
It was individual. Furthermore, as a result of evaluating the hydrolysis resistance of the obtained chips, the decrease in the intrinsic viscosity was very small and good. The obtained polyethylene terephthalate was heated to 160℃
After drying under reduced pressure for 5 hours, the spinning temperature was 290℃ and the take-up speed was
The yarn was spun at 900 m/min and then drawn at a draw ratio of 3.45 times and a pin temperature of 100° C. to obtain a drawn yarn with 75 denier/36 filaments and a yarn strength of 4.9 g/d. A tubular knitted fabric was made from this drawn yarn using a 27-gauge tricot sock knitting machine. After scouring and alkali dissolution treatment to achieve a weight loss rate of 20%, the surface condition of the fibers was observed, and the maximum width was 0.12 to 1.1μ, and the length/maximum width ratio was 2.5 to 14.
There were 15 vertical depressions per square micron. In addition, the strength after alkali elution treatment is
It was 3.5 g/d. Furthermore, as a result of evaluating color development, the L value was 13.9, indicating that the color had good depth. Furthermore, as a result of evaluating the abrasion resistance, there was little staining of the white cloth after rubbing. Comparative Example 1 In Example 1, the particle had a methyl group on the surface,
And instead of using dry method silicon oxide that blocks the silanol groups on the particle surface, the average primary particle diameter is 16 mμ.
Example 1 except that ordinary dry method silicon oxide without alkyl coating on the particle surface was used.
Polymerization, spinning, stretching, knitting, alkali elution treatment, and dyeing were carried out in the same manner as described above. [η] of the obtained chips was 0.740, and the number of coarse particles was 42. Furthermore, as a result of evaluating the hydrolysis resistance of the chips, the decrease in [η] was rather large and poor. Furthermore, as a result of observing the surface condition of the alkali-dissolved yarn, the maximum width was 0.5 to 2.4μ, and the length/maximum width ratio was
1.5 to 8, the maximum width was 0.1 to 1.5 μm, and five vertical depressions with a length/maximum width ratio of 2 or more were generated per square micron. In addition, the L value of dyed cloth is
It was 14.4. Example 2 In Example 1, tetraethylammonium hydroxide was used as a dispersant for the dry method silicon oxide of the present invention.
Polymerization, spinning, stretching, and knitting were carried out in the same manner as in Example 1, except that EG slurry was produced by adding 15% of tetraethylammonium hydroxide to silicon oxide in a 20% aqueous solution. Furthermore, the color development property was evaluated after carrying out an alkali elution treatment so that the weight loss rate was 20%. The number of coarse particles in the obtained chips was 6/10
mg, the b value is 4.1, and the maximum width is 0.11 to 1.0μ,
A vertical depression with a length/maximum width ratio of 2.4 to 14 is 1
There were 21 particles per square micron. Furthermore, the L value of the dyed cloth was 13.6, which was good. Example 3 In Example 2, a particle having a methyl group on the surface,
Polymerization, spinning, and stretching were carried out in the same manner as in Example 1, except that the amount of dry process silicon oxide that blocked the silanol groups on the particle surface was changed as shown in Table 1. However, the polymerization time was changed appropriately in order to produce the target [η] yarn. The obtained drawn yarn was subjected to knitting, alkali dissolution treatment, fiber surface observation, color development evaluation, and abrasion resistance evaluation in the same manner as in Example 1. The evaluation results are shown in Table 1. It is clear from Table 1 that the results are good when the amount of silicon oxide added is within the range of the present invention.
【表】
ない。
2) たて長のくぼみは存在しない。
実施例 4
実施例2において乾式法酸化ケイ素の粒子表面
のシラノール基の封鎖率、アルキル基の種類およ
び平均の一次粒子径を表2のように変更した以外
は実施例2と同様にしてエステル交換反応後重
合、チツプ化し、次いで製糸した。
得られたチツプの粗大粒子数および耐加水分解
性を表2に示した。また、得られたチツプの特性
および減量率が20%になるようにアルカリ溶解処
理した後の発色性を表2に示した。
表から乾式法酸化ケイ素のシラノール基の封鎖
率、平均の一次粒子径などは本発明の範囲が好ま
しいことは明白である。[Table] None.
2) There are no vertical depressions.
Example 4 Transesterification was carried out in the same manner as in Example 2, except that the blocking rate of silanol groups on the particle surface of dry process silicon oxide, the type of alkyl group, and the average primary particle diameter were changed as shown in Table 2. After the reaction, the mixture was polymerized, chipped, and then spun. Table 2 shows the number of coarse particles and hydrolysis resistance of the chips obtained. Further, Table 2 shows the characteristics of the obtained chips and the color development after an alkali dissolution treatment so that the weight loss rate was 20%. From the table, it is clear that the blocking rate of silanol groups, average primary particle diameter, etc. of dry process silicon oxide are preferably within the range of the present invention.
【表】
実施例 5
実施例1においてスラリー調製時に表3に記載
したテトラアルキルアンモニウム化合物を添加し
た以外は実施例1と同様にしてエステル交換反応
後、重合、チツプ化し、次いで製糸した。
得られたチツプの特性および減量率が20%にな
るようにアルカリ溶解処理したあとの発色性を表
3に示した。テトラアルキルアンモニウム系分散
剤としては水酸化テトラエチルアンモニウムが特
に好適である。[Table] Example 5 A transesterification reaction was carried out in the same manner as in Example 1 except that the tetraalkylammonium compound listed in Table 3 was added during slurry preparation, followed by polymerization, chipping, and then spinning. Table 3 shows the characteristics of the obtained chips and the coloring properties after alkali dissolution treatment to achieve a weight loss rate of 20%. Tetraethylammonium hydroxide is particularly suitable as the tetraalkylammonium dispersant.
【表】
* 乾式法酸化ケイ素に対する添加量(%)
実施例 6
実施例2においてエステル交換反応終了後、表
4に記載した各種ポリアルキレングリコールを添
加した以外は、実施例2と同様にエステル交換反
応後、重合、チツプ化し、次いで製糸した。
得られたチツプの粗大粒子数、耐光性および減
量率が20%になるようにアルカリ溶解処理したあ
との発色性を表4に示した。ポリアルキレングリ
コールとしてはポリエチレングリコールが特に好
ましい。[Table] * Addition amount (%) to dry method silicon oxide
Example 6 After the transesterification reaction in Example 2, the polyalkylene glycols listed in Table 4 were added after completion of the transesterification reaction, followed by polymerization, chipping, and yarn spinning in the same manner as in Example 2. Table 4 shows the number of coarse particles, light resistance, and color development of the obtained chips after an alkali dissolution treatment such that the weight loss rate was 20%. As the polyalkylene glycol, polyethylene glycol is particularly preferred.
【表】
* 得られるポリエステルに対する添加量(%
)
実施例 7
テレフタル酸ジメチル100部、表5に記載した
量の3,5―ビス(メトキシカルボニル)ベンゼ
ルスルホン酸ナトリウム,エチレングリコール64
部,酢酸リチウム・2水和物0.2部,酢酸マンガ
ン・4水和物0.02部,三酸化アンチモン0.03部を
エステル交換缶に仕込み、窒素雰囲気下で150〜
230℃に昇温して生成するメタノールを連続的に
系外に留去しながら、エステル交換反応を行な
い、反応開始後3時間で反応を終了した。得られ
た生成物にリン酸トリメチルを0.05部加え、さら
に粒子表面にメチル基を有し、かつ粒子表面のシ
ラノール基を75%封鎖した平均の一次粒子径が
16mμである乾式法酸化ケイ素水酸化テトラエチ
ルアンモニウムの20%水溶液およびエチレングリ
コールの重量比が5:25:97.5である混合物を
Janke&Kunkel社製Ultra Turrax T45DX
(10000rpm)で30分間分散せしめたスラリーを乾
式法酸化ケイ素として得られるポリエステルに対
して1.0%になるようにして添加した。
次いで重合反応系を除々に減圧にして1時間30
分かけて760mmHgから1mmHgまで減圧し、同時
に1時間30分かけて230℃から280℃まで昇温し
た。1mmHg以下の減圧下、重合温度280℃でさら
に3時間、合計4時間30分重合した。反応終了後
ポリマを直径3mmの棒状で水中に吐出し、長さ5
mmに切断してポリエステルチツプを得た。
得られたポリエステルチツプを160℃で5時間
減圧乾燥後、紡糸温度290℃、引取速度900m/
minで紡糸し、次いで延伸倍率3.45倍、ピン温度
100℃で延伸し、75デニール/36フイラメントの
延伸糸を得た。
得られたチツプの特性、延伸糸強度、マラカイ
トグリーン吸尽率および減量率が10%になるよう
にアルカリ溶解処理後のCathilon Black CD―
BLHによる発色性評価結果を表5に示した。表
5からアルカリ金属スルホネート基を有するイソ
フタル酸成分の添加量は0.5〜10モル%が好まし
い。[Table] * Addition amount (%) to the obtained polyester
)
Example 7 100 parts of dimethyl terephthalate, sodium 3,5-bis(methoxycarbonyl)benzelsulfonate in the amounts listed in Table 5, ethylene glycol 64
1.0 parts, 0.2 parts of lithium acetate dihydrate, 0.02 parts of manganese acetate tetrahydrate, and 0.03 parts of antimony trioxide were placed in a transesterification tank, and the mixture was heated to 150 to 100% under a nitrogen atmosphere.
The transesterification reaction was carried out while the methanol produced by raising the temperature to 230°C was continuously distilled out of the system, and the reaction was completed 3 hours after the start of the reaction. 0.05 part of trimethyl phosphate was added to the obtained product, and the average primary particle size was obtained by adding methyl groups on the particle surface and blocking 75% of the silanol groups on the particle surface.
A mixture of a 20% aqueous solution of dry method silicon oxide tetraethylammonium hydroxide having a particle size of 16 mμ and ethylene glycol in a weight ratio of 5:25:97.5 was prepared.
Janke & Kunkel Ultra Turrax T45DX
The slurry was dispersed at 10,000 rpm for 30 minutes and added to the polyester obtained as dry method silicon oxide at a concentration of 1.0%. Then, the pressure of the polymerization reaction system was gradually reduced for 1 hour.
The pressure was reduced from 760 mmHg to 1 mmHg over a period of minutes, and at the same time the temperature was raised from 230°C to 280°C over 1 hour and 30 minutes. Polymerization was carried out for an additional 3 hours at a polymerization temperature of 280° C. for a total of 4 hours and 30 minutes under reduced pressure of 1 mmHg or less. After the reaction, the polymer was discharged into water in the form of a rod with a diameter of 5 mm.
Polyester chips were obtained by cutting into mm pieces. After drying the obtained polyester chips at 160℃ for 5 hours under reduced pressure, the spinning temperature was 290℃ and the take-up speed was 900m/min.
Spinning at min, then stretching ratio 3.45 times, pin temperature
It was drawn at 100°C to obtain a drawn yarn of 75 denier/36 filaments. Cathilon Black CD after alkali dissolution treatment so that the properties of the obtained chips, drawn yarn strength, malachite green exhaustion rate and weight loss rate are 10%.
Table 5 shows the color development evaluation results by BLH. From Table 5, the amount of the isophthalic acid component having an alkali metal sulfonate group is preferably 0.5 to 10 mol%.
【表】
実施例 8
実施例2で得た原糸を表6に示した条件で強撚
し、編製、減量率が20%になるようにアルカリ溶
解処理した後発色性を評価した。
発色性評価結果は表6に示した通りである。表
6から撚係数は3500以上が好ましい。[Table] Example 8 The raw yarn obtained in Example 2 was strongly twisted under the conditions shown in Table 6, knitted, and subjected to alkali dissolution treatment so that the weight loss rate was 20%, and then color development was evaluated. The color development evaluation results are shown in Table 6. From Table 6, the twist coefficient is preferably 3500 or more.
【表】
実施例 9
実施例2で得た原糸を表7に示した条件で仮撚
加工し、編製、減量率が20%になるようにアルカ
リ溶解処理した後発色性を評価した。発色性評価
結果は表7に示した通りである。表7からヒータ
ー温度は晶温結晶化温度以上が、またT√は
10000以上が好ましい。[Table] Example 9 The raw yarn obtained in Example 2 was false twisted under the conditions shown in Table 7, knitted, and subjected to alkali dissolution treatment so that the weight loss rate was 20%, and then color development was evaluated. The color development evaluation results are shown in Table 7. From Table 7, the heater temperature is the crystallization temperature or higher, and T√ is
10000 or more is preferable.
【表】
* 二重撚りが発生。
実施例 10
実施例2で得た筒編を表8のようにアルカリ溶
解減量率を変更し、発色性、糸の強度評価した。
評価結果は表8に示した通りである。表8の結果
からアルカリ処理によつて発色性が向上し、一方
アルカリ溶解処理による減量率が50%を越えると
糸強度低下が大きくなり発色性向上効果も飽和す
ることから、アルカリ溶解処理による減量率は3
〜50%の範囲が好ましいといえる。[Table] * Double twist occurs.
Example 10 The tube knitted material obtained in Example 2 was evaluated for color development and yarn strength by changing the alkali dissolution loss rate as shown in Table 8.
The evaluation results are shown in Table 8. From the results in Table 8, color development is improved by alkali treatment, but on the other hand, if the weight loss rate by alkali dissolution treatment exceeds 50%, the decrease in yarn strength becomes large and the effect of improving color development is saturated. The rate is 3
A range of ~50% is preferable.
【表】
実施例 11
テレフタル酸ジメチル100部、1,4―ブタン
ジオール93部、テトラブチルチタネート0.03部を
エステル交換缶に仕込み窒素ガス雰囲気下で140
℃から225℃まで昇温して、生成するメタノール,
テトラヒドロフランおよび水を連続的に系外に留
去しながらエステル交換反応を行ない、反応開始
後4時間で該反応を終了した。得られた生成物に
テトラブチルチタネートを0.03部添加し、さらに
粒子表面にメチル基を有し、かつ粒子表面のシラ
ノール基の75%を封鎖した平均の一次粒子径が
16mμである乾式法酸化ケイ素、水酸化テトラエ
チルアンモニウムの20%水溶液および1,4―ブ
タンジオールの重量比が5:2.5:92.5である混
合物をJanke&Kunkel社製Ultra Turrax
T45DX(10000rpm)で30分間分散せしめたスラ
リーを乾式法酸化ケイ素として得られるポリエス
テルに対して1.0%になるように添加した。次い
で系を除々に減圧にして1時間かけて760mmHgか
ら1mmHgまで減圧し、同時に1時間かけて225℃
から250℃まで昇温した。
1mmHg以下の減圧下重合温度250℃でさらに2
時間、合計3時間重合した。反応終了後直径3mm
の棒状ポリマが得られるように水中に吐出した。
さらに該ポリマを長さ5mmに切断してポリエステ
ルチツプを得た。得られたポリエステルチツプの
極限粘度は0.745、粗大粒子数は10個であつた。
さらに得られたポリエステルチツプを140℃で
5時間減圧乾燥後、紡糸温度260℃、引取速度
1200m/minで紡糸し、次いで延伸倍率2.8倍で延
伸し、75デニール/36フイラメントの糸を得た。
次いで、実施例1の場合と同様に筒編、精練をし
た後、ベーキング試験機を用いて170℃の温度で
30秒間無緊張熱処理を行なつた。これを水酸化ナ
トリウム5%を含む沸騰水中に撹拌しながら浸漬
した後水洗、中和および水洗を行ない、減量率20
%の筒編地を得た。得られた筒編地を実施例1と
同様にしてL値を評価した結果、14.3で非常に良
好な発色性を示した。[Table] Example 11 100 parts of dimethyl terephthalate, 93 parts of 1,4-butanediol, and 0.03 parts of tetrabutyl titanate were charged into a transesterification tank and heated to 140 parts under a nitrogen gas atmosphere.
Methanol produced by raising the temperature from ℃ to 225℃,
The transesterification reaction was carried out while continuously distilling tetrahydrofuran and water out of the system, and the reaction was completed 4 hours after the start of the reaction. 0.03 part of tetrabutyl titanate was added to the obtained product, and the average primary particle size was obtained by adding methyl groups on the particle surface and blocking 75% of the silanol groups on the particle surface.
A mixture of dry method silicon oxide having a particle size of 16 mμ, a 20% aqueous solution of tetraethylammonium hydroxide, and 1,4-butanediol in a weight ratio of 5:2.5:92.5 was heated using Ultra Turrax manufactured by Janke & Kunkel.
A slurry dispersed for 30 minutes using T45DX (10,000 rpm) was added to the polyester obtained as dry method silicon oxide at a concentration of 1.0%. Next, the pressure in the system was gradually reduced from 760 mmHg to 1 mmHg over 1 hour, and at the same time, the pressure was reduced to 225°C over 1 hour.
The temperature was raised from to 250℃. 2 more times at a polymerization temperature of 250°C under reduced pressure of 1 mmHg or less.
Polymerization was carried out for a total of 3 hours. Diameter 3mm after reaction completion
was discharged into water to obtain a rod-shaped polymer.
Further, the polymer was cut to a length of 5 mm to obtain polyester chips. The intrinsic viscosity of the obtained polyester chip was 0.745, and the number of coarse particles was 10. Furthermore, after drying the obtained polyester chips at 140℃ for 5 hours under reduced pressure, the spinning temperature was 260℃ and the take-up speed was
The yarn was spun at 1200 m/min and then drawn at a draw ratio of 2.8 times to obtain a yarn of 75 denier/36 filaments.
Next, after knitting and scouring in the same manner as in Example 1, it was knitted at a temperature of 170°C using a baking tester.
A stress-free heat treatment was performed for 30 seconds. This was immersed in boiling water containing 5% sodium hydroxide with stirring, washed with water, neutralized, and washed with water, resulting in a weight loss rate of 20%.
% tube knitted fabric was obtained. The L value of the obtained tubular knitted fabric was evaluated in the same manner as in Example 1, and the L value was 14.3, showing very good color development.
Claims (1)
のシラノール基を封鎖した平均の一次粒子径が
100mμ以下である乾式法酸化ケイ素を0.3〜4重
量%含み、かつ全酸成分の少なくとも70モル%が
テレフタル酸成分であるポリエステル繊維をアル
カリ溶解処理することを特徴とする発色性のすぐ
れたポリエステル繊維の製造方法。1 The average primary particle size of particles that have an alkyl group on the particle surface and block silanol groups on the particle surface is
A polyester fiber with excellent coloring property, which is produced by subjecting a polyester fiber containing 0.3 to 4% by weight of dry process silicon oxide having a particle size of 100 mμ or less and having a terephthalic acid component of at least 70 mol% of the total acid component to an alkali dissolution treatment. manufacturing method.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13875780A JPS5766121A (en) | 1980-10-06 | 1980-10-06 | Preparation of polyester fiber having improved coloring property |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP13875780A JPS5766121A (en) | 1980-10-06 | 1980-10-06 | Preparation of polyester fiber having improved coloring property |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| JPS5766121A JPS5766121A (en) | 1982-04-22 |
| JPS6360147B2 true JPS6360147B2 (en) | 1988-11-22 |
Family
ID=15229465
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP13875780A Granted JPS5766121A (en) | 1980-10-06 | 1980-10-06 | Preparation of polyester fiber having improved coloring property |
Country Status (1)
| Country | Link |
|---|---|
| JP (1) | JPS5766121A (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS58197309A (en) * | 1982-05-10 | 1983-11-17 | Toray Ind Inc | Polyester fiber and preparation thereof |
| JPS584818A (en) * | 1982-05-21 | 1983-01-12 | Toray Ind Inc | Polyester fiber and its production |
-
1980
- 1980-10-06 JP JP13875780A patent/JPS5766121A/en active Granted
Also Published As
| Publication number | Publication date |
|---|---|
| JPS5766121A (en) | 1982-04-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US4361617A (en) | Hollow water-absorbing polyester filaments and a process for producing the same | |
| EP0109647B2 (en) | Easily dyeable copolyester fiber and process for preparing the same | |
| JPS58149316A (en) | Spun yarn-like polyester fiber having improved color developing property and preparation thereof | |
| JPS6360147B2 (en) | ||
| JPH0233378A (en) | Polyester fiber fabric with good dyeability and method for producing the same | |
| JPH0340124B2 (en) | ||
| JPH0753689A (en) | Method for producing polyester | |
| JPS6319628B2 (en) | ||
| JPH03241024A (en) | Production of cation-dyeable superfine false twist yarn | |
| JPH0860442A (en) | Composite fiber with excellent color development and gloss | |
| JPH08269820A (en) | Easily dyeable modified polyester fiber and its production | |
| JPH0524267B2 (en) | ||
| JPH0335404B2 (en) | ||
| JPS584818A (en) | Polyester fiber and its production | |
| JP2675414B2 (en) | Polyester fiber with excellent coloring and deep color | |
| JPS62149914A (en) | Modified polyester yarn | |
| JPH0598512A (en) | Polyester fiber | |
| JPS58149320A (en) | Preparation of modified polyester fiber | |
| JPH07166423A (en) | Dark dyeable polyester fiber | |
| JPS58120815A (en) | Easily dyeable polyester fiber | |
| JPH0335403B2 (en) | ||
| JPS6131232B2 (en) | ||
| JPS6354807B2 (en) | ||
| JPS58149314A (en) | Preparation of polyester fiber having improved color developing property | |
| JPS58132114A (en) | Production of synthetic fiber |